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Abstract 

The paper describes the mechanism for formation 
of periodic nanostructures on the surface of solids 
under the action of intense laser radiation. The 
model based on a nonlinear relaxation of 
temperature-induced stresses. The solid deformed 
by laser radiation is considered in a form of three 
simultaneously coexisting phases. The system of 
equations, which describes these phases, is reduced 
to the generalized Ginzburg–Landau equation that 
has a periodic solution. For estimation the 
calculation of the step of the periodic structure 
arising on the silicon surface under the action of a 
laser pulse is done. 

Introduction 

In recent years formation of periodic nanostructures 
in solids by phase transitions begin to receive more 
attention from researchers. For that matter 
developing the physical foundations of new 
effective methods for the formation of two- and 
three-dimensional structures with characteristic 
sizes less than 100 nm both at the surface and in the 
bulk of solids is of great interest.  

One possible approach to the creation of these 
structures is based on the laser processing of solid 
surfaces. The laser-induced thermal stresses [1] 
and/or melting [2, 3] can lead to significant changes 
in the physical properties of the target material. 
Some progress has been achieved in understanding 
the general laws governing the formation of real 
structures during transformations in solids under the 
action of laser radiation. In the present work it is 
offered the mechanism for formation of periodic 
nanostructures on the solid surface under the action 
of power laser radiation, which is based on the 
nonlinear relaxation of temperature-induced 
stresses. 

 

Model of Nanostructure Formation 

The process of deformation of a solid under 
sufficiently high stresses is accompanied by 
residual strain whose appearance is associated with 
both inelastic effects and the transformation of the 
defect structure of a crystal. The stress relaxation 
can be of a heterogeneous character due to the 
formation of novel-structure domains (relaxation 
domains) within the old excited structure [4]. This 
is associated with the collective behavior of excited 
atoms interacting with each other, which transforms 
the relaxation process into a nonlinear one. The 
character of dislocation domains depends on the 
state of the system under consideration, on 
conditions of the external action, and on the degree 
of the development of the deformation process. 
These domains can be centers of the new phase, 
groups of dislocations or disclination groups, 
microcracks, as well as atomic groups or vacancies 
forming clusters, micropores, dislocation loops, etc. 

The nonequilibrium state of an elastic deformed 
solid is determined by its temperature Т, by the 
strain tensor ijε  or by the stress tensor ijσ , and by 
the totality of additional internal parameters of state 

)1(
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ikψ ,…, )(N
ikψ , that characterize the degree of 

the system deviation from the equilibrium state for 
the given Т and ikε . In this case, we deal with a 

number of parameters of state )(αψ ik  that together 
with Т and ikε  entirely determine the state of the 

system. The quantities )(αψ ik  are second-rank 
tensors. Let’s call them order parameters.  

The rate of variation of the order parameter 
)(αψ ik& can be determined from the equation 

according to which the process rate is a linear 
function of the thermodynamic force: 
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where F is the thermodynamic potential per unit 
volume of the deformed body and ),( βα

iklmh  are the 
material constants. 

For analysis of the behavior of the deformed solid it 
is necessary to find an expression for the 
thermodynamic potential F as an explicit function 
of the variables T, ikε and )(αψ ik : 
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ikll VfTffF ]d)(),((T)[ 321
αψε , 

where f1(T) is the free-energy density as a function 
of the temperature of a solid occurring in the 
equilibrium state in the absence of deformation, 
f2(εll, T) is the free-energy density obtained upon 
the expansion of F over invariants εll and T-T0, and 

)(3
αψ ikf  is the free-energy density obtained upon 

the expansion of F over invariant )(αψ ik . 

Assuming the temperature T to be a constant 
value and the quantities ikε and )(αψ ik  to be small, 
let us expand F into a series and restrict the 
expansion to terms of the fourth order. Since the 
thermodynamic potential is a scalar quantity, every 
term in the expansion must also be a scalar: 
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where F0(T) is the free-energy density as a function 
of the temperature of a solid occurring in the state 
of thermodynamic equilibrium in the absence of 
deformation and Aiklm, Biklm, Ciklm, … are material 
constants. Henceforth, the sign of summation over 
identical subscripts or superscripts is, respectively, 
omitted or conserved. 

Equations (1) and (2) can be simplified by 
introducing “normal” coordinates similar to those 
used in the description of oscillations in complex 
systems. In other words we have to introduce new 
variables defined as linear combinations of the old 
ones ( )(αψ ik ) so that each of equations (1) and (2) 

would contain only one variable )(αψ ik . For this 

purpose let us use a linear transformation [5] of 
variables )(αψ ik  to define new )(βψ ik  values such that 
positive quadratic forms in (1) and (2) would take 
the following form: 
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For an isotropic solid this equation can be rewritten 
as 
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Until this point we have considered isothermal 
processes. With allowance for temperature 
variations the state of a solid is determined by the 
deformation of ikε , temperature T, and order 

parameters )(αψ ik . The free energy as a function of 

the state also depends on ikε , T, and )(αψ ik . For 
small variations T – T0 of the temperature and small 
values of ikε  and )(αψ ik the free energy can be 
expanded into series with respect to invariants 
constructed from the variables ikε , )(αψ ik , and T – 
T0: 
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where ikβ , )(αλik , )(αD , )(αE , and )(αF  are the 
material constants and T0 is the initial temperature 
at which the unstressed solid is considered to be 
unstrained. 

In the isotropic case the kinetic equation (1) can be 
written as follows: 
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The set of equations (1) and (4)-(6) describes the 
relaxation kinetics. It determines the behavior of an 
elastically deformed solid under conditions of stress 
relaxation at small llε , )(αψ ik , provided that kinetic 
equation is valid. However this set of equations has 
a general character because it has been derived 
using almost no model notions. This circumstances 
accounts for both the advantages and the 



disadvantages of any phenomenological theory. 
Equations of this type determine the stable steady 
states corresponding to various spatial structures 
[6], which possess some general features. In 
particular, (a) transformation of any region in a 
solid leads to a certain microscopic change in the 
form of this region that is manifested by the 
appearance of a characteristic relief on the flat 
surface of a sample; (b) there is a definite tendency 
toward an ordered mutual arrangement of 
transformed regions in the crystal. 

In order to determine the constants in (6) let’s 
represent the entire spectrum of order parameters 

)(αψ ik  by a single quantity of a residual strain 

),(0 trijε . Let’s also introduce a mesoscopic 
parameter that describes the field of the relaxation 
process as  

∫=
0
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0 V
ikik dVtr

V
tr εϕ , 

where V0 is the volume over which the ),(0 trikε  
value is averaged. Thus, the system under 
consideration, namely, the deformed solid, can be 
represented in a form consisting of three 
simultaneously coexisting phases. These are the 
relaxation field determined by the parameter 

),( trijϕ , the stress field ).( trijσ  corresponding to 
external loads, and relaxation domains of the 
concentration n. 

The time dependences of ),( trikϕ , ),( trn  and 

),( trijϕ  are determined by the following system of 
nonlinear differential equations 
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The first terms standing on the right-hand side of 
these equations describe, respectively, the 
attenuation of the relaxation process, the decay of 
the relaxation domains formed, and the relaxation 
of stresses. The description occurs in the linear 
approximation when mutual influence is absent. 
The second terms make the relaxation process 
nonlinear. In the first equation, this is associated 
with the generation of the relaxation field due to the 
formation of relaxation domains. The second 
equation allows for the effect of both the relaxation 
field ),( trikϕ  and the stress field ),( trijσ  on the 
nucleation of the relaxation domains. In the third 
equation, the relaxation process is stipulated by the 
effect of the relaxation field on the stress-relaxation 
rate. Here 321 ,,,,, gggκγν  are the material 

constants. The quantity σ0 is determined by the 
external loads applied and corresponds to residual 
stresses produced as a result of the relaxation. The 
relaxation-field variation rate is considerably lower 
than that of atomic processes described by the 
constants γ and ν. This makes it possible to employ 
in (7) the adiabatic exclusion of variables. As a 
result, relaxation equation takes the form 
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The approach described above do not take into 
account possible spatial fluctuations of the 
relaxation parameter whose role grows with the 
elevation of external loads and temperature. 
Considering these fluctuations we get 

ikikikik DBA ϕϕϕϕ Δ+−= 3
&  (8) 

Here D is coefficient of atom diffusion in heated 
crystal area. If we allow for the diffusion 
dispersion, Eq. (8) transforms into the generalized 
Ginzburg–Landau equation [7]. 

For κγσ
1

2
0 g

g
<  Eq. (8) has one stable solution 

0),( =trϕ . Beyond the critical stress level 

κγσσ
1

2
0 g
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с =≥ , new coherent system states 

exhibiting spatial periodicity are realized. The 
period of these structures is as follows 

νπσ
σσ DT c
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We now estimate the step of the periodic structure 
arising on the silicon surface under the action of a 
laser pulse. We assume that the residual stresses are 
σ0=109 N/m2, 13

1 10 −≈≈≈≈ sgνγκ  (since they 
determine the frequency of atomic transitions from 
one equilibrium state into another), g2 ≈ g3 ≈1010 

N/m2 are the stresses in the relaxations domains, D 
≈ 10–8 cm2/s is coefficient of atom diffusion in 
heated crystal area. In this case the period is Т ~ 3 
μm. With increasing σ0, which corresponds to 
harder laser action, the period of structures formed 
must be determined by the diffusion coefficient D 
and by the stress-relaxation rate ν. In this case 
nanostructures with a period T ~ 50–100 nm arise. 

Conclusion 

In conclusion, we should note that the above 
consideration was performed for the three-
dimensional case. We also assumed that the 
appearance of periodic structures in a thin near-
surface layer leads to the appearance of the 



corresponding structures on the surface. Thus, on 
the basis of the approach suggested in this study, 
we manage to explain the appearance of 
nanostructures in solids under the action of an 
intense laser pulse. The mechanism under 
consideration can be realized along with other 
mechanisms suggested previously. The realization 
of this mechanism is associated with the conditions 
excluding the melting of the surface and its 
evaporation under the laser action. 
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