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Abstract 

Effective supercontinuum generation in fiber media 
in spectral range over 2 µm was experimentally 
demonstrated. Supercontinuum generation was 
observed in passive optical fibers. Maximum 
spectral broadening was obtained in germanium- 
doped fibers with longest wavelength near 2.7 µm. 
To provide high spectral density we used optical 
fiber amplifiers. Thus supercontinuum generation 
was obtained in holmium optical fiber amplifiers 
medium with spectral density 10 W/nm, in the 
range from 2 to 2.5 µm. In thulium fiber amplifiers 
observed amplification not only in conventional 
range near 1.8 µm, but in spectral range from 2.3 to 
2.5 µm, that corresponds to 3H4→ 3H5 optical 
transition possibility in thulium-doped optical 
fibers.  

Introduction 

Supercontinuum generation beyond 2 µm is 
interesting due to the potential application in 
spectroscopy, atmospheric analysis, medicine, etc. 
As a rule, to generate supercontinuum in this 
spectral range special fibers are applied. For 
example, in [1] sapphire fiber was used, in [2,3] – 
microstructured fiber based on oxide glass with 
complex composition. Generation up to 4.8 µm was 
obtained in ZBLAN fiber [4]. The main 
disadvantage of such sources is the bad 
compatibility with standard communication fiber 
technology. 

But one can apply silica-based optical fibers with 
special properties to provide spectral broadening 
and all-fiber scheme simultaneously. So we have 
wide field of investigations. From one point of 
view, we can use fibers with high nonlinearity, for 
example, silica based germanium doped fibers and 
from another we can use media of optical fiber 
amplifiers.  

Application of the active fiber is one of the 
promising ways to enhance and transform the 
supercontinuum spectrum.  In [5] Yb-doped fiber 
amplifier was used to amplify a part of the 
supercontinuum spectra. Paper [6] describes an 
application of the Yb-doped fiber amplifier as the 
active and the gain medium simultaneously. As a 

result, 750-nm broadening from 1 μm to 1.75 μm 
with tunable spectral power density according to 
the amplifier gain level was obtained. This 
approach was used in [7] to get supercontinuum in 
the mid-IR range in Ho-doped fiber amplifier. In 
this case Q-switched Er-doped laser [8] was used to 
generate supercontinuum, and Ho-doped fiber 
amplifier was separately pumped by Yb-doped fiber 
laser.  

In this paper we consider review of our previous 
works devoted to supercontinuum generation and 
an application of Tm-doped fiber in the 
supercontinuum source scheme. These fibers allow 
one to get amplification and lasing in the range of 
1.9-2.1 µm [9] therefore they are promising for the 
application in the mid-IR sources. The main 
objective of our work is to show how the use of 
Tm-doped amplifier can modify the 
supercontinuum spectrum.  

Experimental setup 

Pump source. 

Cladding pumped Q-switched Er-doped fiber laser 
was used as the pump source [8]. Q-switching was 
realized by emplacement of a self-saturable 
absorber based on a Tm-doped fiber. Lasing 
wavelength was of 1.59 µm, maximum output 
power was near 1 W with repetition rate of 4.4 kHz 
and pulse duration of 35 ns. Pulse energy of 0.21 
mJ and peak power of 6 kW can be estimated. 

Fig. 1. Scheme of master pulse laser. 

 

Passive media. 

We have tested few specimens of the heavily Ge-
doped and conventional telecommunication fibers 
with different lengths. All samples were spliced 
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supercontinuum generation under pumping at 1.59 
µm. The same source was used for the excitation of 
Tm-ions. The obtained spectrum occupies the range 
of 1.85-2.4 µm with the power variation of one 
decade. The observed spectrum shape allows one to 
believe the existence of the optical transition 3H4→ 
3H5 in the Tm-doped silica based fibers.  
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