SIGNAL ENHANCEMENT IN DISPERSE SOLUTIONS FOR THE ANALYSIS OF BIOMEDICAL SAMPLES BY PHOTOTHERMAL SPECTROSCOPY

Authors:
M.A. Proskurnin, D.S. Volkov, E.S. Ryndina, D.A. Nedosekin, V.P. Zharov

DOI: 10.12684/alt.1.82

Corresponding author: M.A. Proskurnin

e-mail: proskurnin@gmail.com
Materials and Methods

**Photothermal setups**

The design of the optical scheme of continuous-wave (cw) mode PT-lens spectrometer was based on previously made optimization [3]. The schematic (Fig. 1) is based on recording an excitation (IDL55, Polyus, Moscow; wavelengths 532, 610, 635, 660 and 690 nm; waist diameter, 59.8 ± 0.5 µm; power range 1–20 mW) diode-laser-induced refractive heterogeneity (thermal-lens effect) causing defocusing of a collinear diode laser probe beam (wavelength, 808 nm; waist diameter, 25.0 ± 0.2 µm; (attenuated) power, 1 mW) and hence a reduction in the probe beam intensity at its centre as detected by a far-field photodiode (sample-to-detector distance 180 cm) supplied with a stained-glass broadband-range (610–640 nm) bandpass filter and a 2-mm-diameter pinhole (Fig. 1). Other parameters are summarized in Table 1.

The synchronization of the measurements is implemented by in-house written software. The PT spectrometer has a linear dynamic range of the signal of four orders of magnitude (the corresponding range of absorption coefficients for 10 mm optical pathways is $1 \times 10^{-6}$ to $2 \times 10^{-2}$ cm$^{-1}$) and response time of 0.005–2 s (depending on the selected measurement parameters, namely, on the data throughput rate and time, the number of points to be averaged, etc.). The spectrometer implements a secondary channel (for gathering scattering signal, if present). The probe beam was reflected by a dichroic mirror; the residual excitation beam was removed with a stained-glass bandpass filter and after a 2-mm pinhole appeared at the primary PT detector. If the photometric or PT channel is not needed, the corresponding detector is switched off. The scattering at the excitation wavelengths was collected with the secondary photodiode near the flowing cell and used to correct the absorbance value, see below.

**Flow manifold for in vitro measurements**

The flow manifold consisted of a circular flow system pumped with a Watson–Marlow 501U peristaltic pump (UK), a cylindrical flow cell
\( l = 15 \text{ mm}; \ 16 \text{ cm}^3 \) and a changeable (volume-adjusting) vessel (volume 0.25 to 6 L).

All the tubing parts were from a KDM blood-transfusion system (KD Medical GmbH, Germany; length 90 cm, i.d. 0.3 cm). The system was filled with doubly distilled water, PBS, or stabilized rat blood. The dye was injected through an injected valve before the measurement cell to emulate the injection of the target dye in \textit{in vivo} tests. The flow rate was kept at 35 \pm 1 \text{ mL/min} \) (linear velocity 2 cm/s). After each measurement, the working liquid was drained to waste and washed with distilled water through a secondary injection valve. The measurements were made using the PT setup or with a Shimadzu UV Mini 1240 spectrophotometer, Japan (optical absorbance measurements).

\textbf{Data Treatment}

The instrumental signal during an excitation on–off cycle (chopper cycle) is \( \mathcal{S}(t) \),

\[
\mathcal{S}(t) = \frac{I_p(0) - I_p(t)}{I_p(t)},
\]

where \( I(0) \) and \( I(t) \) are intensities of the probe beam in the centre of a detector during the heating part of the chopper cycle. According to the diffraction theory of thermal lensing [4-6], the interrelation between the absorption-based (analytical) signal \( \theta \) (see below, (5)) and the instrumental \( \mathcal{S} \) signal is

\[
\mathcal{S}(t) = (1 - B(t) \theta)^2 - 1, \tag{2}
\]

where \( B(t) \) is the time-dependent geometry-configuration constant of thermal-lens spectrometer [7].

\[
B(t) = \frac{1}{2} \tan^{-1} \left( \frac{2mV}{(1 + 2m)^2 + V^2 (t/2t) + 1 + 2m + V^2} \right). \tag{3}
\]

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
\textbf{Excitation laser} & \lambda_r \ 532, 610, 635, 660 and 690 nm \\
& Focusing lens focal length, \( f_r \) \ 300 mm \\
& Rayleigh range, \( z_r \) \ 25–32 mm \\
& laser power at cell(s) \ 1–20 mW \\
& spot size at the waist, \( 2a_{r0} \) \ 60 \mu m \\
\hline
\textbf{Probe laser} & \lambda_p \ 808 nm \\
& Focusing lens focal length, \( f_p \) \ 185 mm \\
& Rayleigh range, \( z_p \) \ 7.1 mm \\
& laser power at cell(s) \ 1 mW \\
& spot size at the waist, \( 2a_{p0} \) \ 38 \mu m \\
\hline
\textbf{Other constants} & Optical path length of cells \ 10.00 \pm 0.05 mm \\
& \( E_0 \), Eq. \ 0.12 mW\(^{-1} \) \\
& Cell to detector distance \ 95 cm \\
\hline
\end{tabular}
\caption{Experimental parameters for the optimization of the optical-scheme configuration of the dual-beam PT-lens spectrometer, \( T = 293K \).}
\end{table}

Here \( m \) is the ratio of cross-section areas of the probe and excitation beams at the sample, and \( V \) is the relative distance from the excitation waist to the sample, and

\[
t_e = \omega_0^2 p C_p/4k \tag{4}
\]

is the characteristic time of the thermal lens. The meanings of other parameters are summed up in Table 1. Analytical signals is given by

\[
\theta_{TLS} = 2.303 \varepsilon c E_0 P_e = 2.303 A E_0 P_e \tag{5}
\]

where \( \varepsilon \) is apparent molar absorptivity; \( t \) is optical pathlength of the medium; \( c \) is molar concentration;
$P_e$ is the excitation power; $A$ is absorbance; and $E_0$ is the enhancement factor of thermal lensing:

$$E_0 = -\frac{dn/dT}{\lambda_p k}.$$  
(6)

Here, $\lambda_p$ is the probe wavelength; $dn/dT$ is the temperature gradient of the refractive index, and $k$ is the thermal conductivity.

A theoretical description for two-beam photothermal-lens detection coupled to optoacoustic detection and pulsed laser modes for solutions with multi-point light-absorbing entities: nanoparticles (1 – 300 nm), organelles [mitochondria] (0.5 – 3 µm), cells (5 – 20 µm), bacteria (5 – 20 µm) and proteins (0.1 – 3 µm) [8-16]. The theory makes it possible to estimate the irregularities of temperature and refractive-index profiles for a discrete number of particles in a laser beam and a change the concentration and particles size parameters for the system.

Each determination was characterized by the limit of detection (LOD) calculated as the analyte concentration that produces a thermal lens signal which is three times greater than the standard deviation of the blank solution (3σ-criterion). The limit of quantification (LOQ) calculated from the RSD$\% = f(c)$ curves is the analyte concentration that produces estimates having a relative standard deviation of 10% (10σ-criterion)

The minimum detectable linear absorption coefficients for PT and photometric (PM) measurements were calculated according to the equations previously deduced from the theory of these two methods for the conditions of shot noise determining the measurement precision [17]

$$\alpha_{PT}^{min} = \frac{2hv}{\eta p} \frac{B_x \omega_0^2 \psi^2}{4 P_e E_0 D_l l}$$  
(7)

$$\alpha_{PM}^{min} = \frac{hv}{\eta P_e} \frac{1}{l}$$  
(8)

Here, $h$ is Planck constant, $v_e$ and $v_p$ are frequencies of the excitation and probe beams; $\eta$ is the detector quantum yield; $\Delta f$ is the detection channel bandwidth; $\psi$ is chopper frequency in PT measurements; $B_x$ is the steady-state geometry constant of the setup optical scheme, other parameters are listed above.

**CBV assessment**

We used dyes for intravenous administration for simultaneous PT and optical absorbance determination of components of their two-dye mixtures in circulating blood. CBV were measured as an average of two PT signals for each dye to decrease the interference of both dyes on one another and thus to improve the accuracy (and determined after their dilution in circulation. The concentration of each dye diminishes due to dilution. From the curve of the relative decrease in the concentration, CBV is calculated from the ratio of concentrations of the initial dye solution and the solution of dye in the blood according to the following equation [18-21]:

$$\text{CBV} = \frac{V_0}{\text{Abs}^0} = \frac{V_0}{A_0/\lambda} = \frac{V_0}{c_0/\varepsilon_0},$$  
(9)

where $\text{Abs}$ is PT signal amplitude, $A$ is absorbance, $V_0$ and $c_0$ are initial volume and concentration of the dye solution, and $c_1$ is the dye concentration in the blood after the dilution. The determination of two components $a$ and $b$ of a dual-component mixture was made using two methods (i) a standard Vierordt’s method at two wavelengths $\lambda_1$ and $\lambda_2$ [22-24]:

$$\begin{align*}
A_1^b & = (c_a \varepsilon_{a}^b + c_b \varepsilon_{b}^b), \\
A_2^b & = (c_a \varepsilon_{a}^b + c_b \varepsilon_{b}^b),
\end{align*}$$  
(10)

and (ii) using an overdetermined Vierordt’s system at four wavelengths to decrease the overall error [22]:

$$\begin{align*}
\Delta A_1 = A_1^b - A_1^a & = [c_a (\varepsilon_a^b - \varepsilon_a^a) + c_b (\varepsilon_b^b - \varepsilon_b^a)], \\
\Delta A_2 = A_2^b - A_2^a & = [c_a (\varepsilon_a^b - \varepsilon_a^a) + c_b (\varepsilon_b^b - \varepsilon_b^a)].
\end{align*}$$  
(11)

Here $A$ is absorbance acquired from spectrophotometric measurements or calculated from PT measurements. The maxima of functions $\varepsilon_{a}^{b}/\varepsilon_{b}^{a}$, $\varepsilon_{a}^{b}/\varepsilon_{a}^{a}$, $\varepsilon_{b}^{b}/\varepsilon_{b}^{a}$, $\varepsilon_{a}^{b}/\varepsilon_{b}^{a}$ were used as the wavelengths for Vierordt’s method. For the overdetermined Vierordt’s system (11), $\lambda_1$ and $\lambda_2$ were at the maxima, and $\lambda_2$ and $\lambda_2$ — at the minima of the absorption spectra of a and b components. The calculations of dye concentration were made taking into account the condition $c_a/c_b = \text{const}$, which is correct for pre-prepared two-dye mixtures injected into the flow [22].

**Reagents, solvents, and procedures**

The following dyes were used Methylene Blue (MB, CAS no. 61-73-4), Brilliant Green (BG, CAS no. 633-03-4), Crystal Violet (CV, CAS no. 548-62-9), Indigo Carmine (CAS no. 860-22-0), and Bromsulphalein (CAS no. 71-67-0) and Evans Blue (CAS no. 314-13-6); their stock solutions of 0.10% wt. in PBS (20 mM, pH 7.4) were used throughout. Other reagents are high-purity 0.1 M KOH, conc. cp HNO3, and p.a. acetone. Water from a TW-600RU water purification system (Nomura MicroScience Co., Ltd.; Okada, Atsugi-City, Kanagawa, Japan) was used: pH 6.8; specific resistance 18.2 Ω·cm, Fe, 2 ppt; dissolved SiO2, 3 ppb; total ion amount, < 0.2 ppb; TOC, < 10 ppb. Solutions were made using a Branson 1510 ultrasonic bath (USA), power 1 W (exposure times 10–15 min). The glassware was
washed with acetone followed by conc. nitric acid. The blood of rats stabilized with heparin was used at the stages of blood batch and flow tests.

Determination of label dyes under batch conditions

Stock solutions of selected dyes in blood (0.40 mL of the stock solution of the corresponding dye and 0.60 mL of blood) were used. This freshly prepared stock solution was diluted in the photometric cells by adding a 0.01 – 0.05 mL of this solution to 0.40 mL of blood. The calibrations were made at wavelengths 615, 630, 663, and 690 nm, and the limits of detection and other performance parameters were measured.

In vitro assessment of circulating blood volume

The main glass vessel of the manifold was filled with the precisely measured blood volume, and the blood started circulating through the manifold. When the regular flow through the cell is established, the zero absorbance is calibrated. Next, 0.4 mL of an aliquot of stock solutions of MB and CV or their mixture of was injected, and the absorbances at 615, 630, 663, and 690 nm was recorded until constant absorbance/PT value are reached. The concentrations of labels were determined from Eqs. (11).

Results and discussion

Back-synchronized spectrometer

We developed a PT-lens flow spectrometer working in batch and flow conditions using the available flow module and an absorption spectroscopy unit to real-time measure of absorption spectra of dye alone and in mixtures. In this excitation/data-treatment mode [3, 25], the advantages are (i) the possibility of detection under batch and flow conditions with no change in the optical-scheme design of the instrument; (ii) the possibility to switch between transient and steady-state thermal-lens measurements within a single set of experiments; and (iii) a wide linear dynamic range (more than five orders of magnitude of detectable absorbances) including strongly absorbing and scattering samples. In spite of a somewhat lower detection sensitivity compared to more commonly used lock-in detection schemes in thermal-lens spectrometry, the flexibility of this measurement mode provide a much larger volume of information, making it a powerful tool for solving so not-straightforward problems like studies of complex formation at trace concentrations, time-resolved heat dynamics around absorbing nanoparticles, etc. [22, 26-30].

The setup (Fig. 1) was made using the previously optimized schematics taking into account the precision of measurements and the linear range of thermal lens signal. The main idea is to combine photometric and PT measurements in a single setup. This idea was supported by our previous data on the use of the thermal-lens spectrometer as a single-wavelength photometer providing enough measurement precision [3].

The probe wavelength of 808 nm (marked grey in Fig. 1) was selected as it provided the minimum light absorption of the blood components according to our previous findings [31] and selected dyes and very low scattering. The probe intensity was attenuated to 1 mW at the output and ca. 0.7 mW at the cell. The excitation beam was made of four beams of diode lasers with the same beam parameters and the wavelengths of 610, 635, 660, and 690 nm. In a more advanced mode, the diode laser with the same beam parameters and the wavelength of 532 nm was added. The lasers are chopped in sequence synchronized with the main light chopper; thus, every excitation on–off cycle of the thermal lens corresponds to the certain wavelength, and the frequency of the excitation with the same wavelength is ω/4 (or ω/5 for a five-wavelength mode).

In order to get the maximum information for a flowing sample (at a flow rate of 35 mL/min), high chopper frequencies are preferable, while the sensitivity of PT measurements decrease with the chopper frequency [12]. Thus, a compromise frequency of 10 Hz was used, which corresponded to 2.5 Hz frequencies for a single wavelength. This corresponded to the measurement of ca. 0.15 mL of the flowing sample with a certain wavelength and 0.45 mL with other wavelengths, in cycles.

To implement dual-mode measurements, we used a dichroic mirror to separate the probe beam from the excitation. The whole excitation beam after the cell penetrated the dichroic mirror and was gathered with a focusing lens by the primary photometric detector, which was compared with pre-calibrated power meter used as the absorbance ground signal. The selection of the optimum parameters of PT measurements are discussed previously [3, 25].

Heme protein studies

The PT determination of some Hb species (deoxyhaemoglobin and oxyhaemoglobin shows the limits of detection at the level of 10⁻⁸ M as in the previous study [31] but with lower errors due to the use of multiple wavelengths.

The experiments with haemoglobin cyanide species with the back-synchronized measurement mode showed that the changes in amplitude and time-resolved thermal-lens signal can be used for determining the dispersity of the solution.

The determination of HbCN and ferroin selected as a highly absorbing chelate shows low and similar
LODs under the excitation conditions (Table 2). However, time-resolved curves for molecular and colloid solutions of HbCN differ (Fig. 2, a) and the characteristic time of thermal-lens measurements, Eq. (4), changes significantly (Table 2), while the slope of the calibration plot goes lower than expected. This is in contrast to ferroin, for which the calculated and experimental value are in good agreement. This behavior is due to faster heating of the vicinity of the absorbing disperse particles, which decreases the characteristic time and slower heat transfer into the solution body, which decreases the steady-state thermal lens signal. This model for thermal lensing in HbCN solutions is well simulated by the developed theoretical approach [8, 10].

Moreover, the overall change in \( t_c \) is additive (see Table 2 and Fig. 2, b): an equimolar mixture of HbCN and ferroin shows a expected change in the slope and a shift in the characteristic time. This, also can be predicted by the approach [8, 10] however, this requires further development in the theory.

The characteristic time of thermal lens in HbCN solutions depend on the concentration of the protein (Fig. 3). The dependence is described with the empirical equation

\[
t_{c,\text{disp}} = k_1 t_{c,aq} - k_2 c d
\]

Here, \( t_{c,\text{disp}} \) and \( t_{c,aq} \) are thermal lens characteristic times for a test disperse system and water, \( c \) is disperse particle molarity, \( d \) is their average diameter and \( k_1 \) and \( k_2 \) are empiric coefficients. From this dependence, the size of hemoglobin cyanide molecule, \((6.0 \pm 3.0) \text{ nm}\) was calculated the developed approach for heterogonous systems in TLS. This value is in good agreement with the size of the hemoglobin globule [32].

Table 2. Performance parameters and characteristic times of thermal-lens determination of ferroin as a molecular chelate dye and hemoglobin cyanide under various conditions in a phosphate buffer solution, pH 7.0 and in a highly saline solution (\( P = 0.95, n = 6 \)). \( \lambda = 532 \text{ nm} \), excitation power 47.5 mW

<table>
<thead>
<tr>
<th>Substance</th>
<th>LOD, ( \mu \text{g/mL} )</th>
<th>Calibration slope</th>
<th>( t_c ), ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated (PBS)</td>
<td>—</td>
<td>5.20</td>
<td>6.3</td>
</tr>
<tr>
<td>Ferroin, PBS</td>
<td>60</td>
<td>5.2 ± 0.1</td>
<td>6.2 ± 0.1</td>
</tr>
<tr>
<td>HbCN, PBS</td>
<td>30</td>
<td>3.26 ± 0.09</td>
<td>4.8 ± 0.2</td>
</tr>
<tr>
<td>Ferroin : HbCN 1 :1</td>
<td>—</td>
<td>5.5 ± 0.1</td>
<td>5.3 ± 0.2</td>
</tr>
<tr>
<td>Calculated (saline)</td>
<td>—</td>
<td>5.22</td>
<td>6.1</td>
</tr>
<tr>
<td>Saline ferroin</td>
<td>60</td>
<td>5.2 ± 0.1</td>
<td>6.0 ± 0.2</td>
</tr>
<tr>
<td>Saline HbCN</td>
<td>20</td>
<td>5.8 ± 0.1</td>
<td>6.0 ± 0.2</td>
</tr>
</tbody>
</table>

Saline = 0.4M KCl + 2.8M NaCl; LOD is in nmol/L.

Fig. 2. Transient curves of thermal-lens signals from for a molecular dye (ferroin), green line, and hemoglobin cyanide, blue line, with the same absorbance. (a) are full curves for pure substances; (b) are thermal-lens development curves only with the yellow line corresponding to 1 : 1 molar mixture of ferroin and hemoglobin cyanide), \( \lambda = 532 \text{ nm} \), excitation power 47.5 mW.

Fig. 3. Transient thermal-lens development curves of thermal-lens signals from for haemoglobin cyanide in PBS (\( 2 \times 10^{-7} \text{ M} \), green line, \( 8 \times 10^{-7} \text{ M} \), orange line, \( 1.5 \times 10^{-7} \text{ M} \), blue line, and \( 3 \times 10^{-7} \text{ M} \), yellow line) \(, \lambda = 532 \text{ nm} \), excitation power 47.5 mW.
Moreover, this change in the shape of transient thermal-lens curves makes it possible to estimate the state of these proteins in solution. For hemoglobins, an increase in the ionic strength from (i) standard phosphate buffers to highly saline (ii) NaCl, and (iii) NaClO₄ solutions results in the ratio of the TLS signal amplitudes as i : ii : iii of 1 : 2 : 4, which is in good concordance with the existing data [33] for the decomposition of hemoglobin into 2 and 4 subunits, respectively. Measuring the model molecular dye (ferroin) and HbCN under these conditions shows the number of changes. The characteristic times of transient curves and calibration slopes for ferroin do not change as expected (Table 2). To the contrary, the curve for hemoglobin in NaCl start to go much closer to the curve of ferroin (Fig. 4) and τ differ much less significantly (Table 2) due to dissociation of tetramers to dimers, and in NaClO₄ solutions the transient curve for HbCN start to differ insignificantly from the ferroin solution due to final dissociation to monomers [33].

**PT-lens measurements of the circulating blood volume**

The ability of thermal-lensing to change sensitivity in protein solutions was used in the measurement of circulating blood volume (CBV) by the designed setup. CBV is crucial in various medical conditions including surgery, iatrogenic problems, rapid fluid administration, transfusion of red blood cells, or trauma with extensive blood loss including battlefield injuries and other emergency situations loss [18, 20, 34-37]. Currently available commercial techniques are invasive and time-consuming for trauma situations [35, 36]. Recently, we have proposed high-speed multi-wavelength photoacoustic/photothermal (PA/PT) flow cytometry for in vivo CBV assessment with multiple dyes as PA and PT contrast agents (labels) [22].

**Photothermal vs. photometric sensitivity comparison**

According to Eq. (13), it is possible to compare the sensitivity of photometric and PT measurements and for the same detector and the same laser used for measuring absorption and PT excitation. The comparison of sensitivities for the same detector type (η and Δf parameters in eq. (7)) and the same source of absorption/PT excitation is given by the equation deduced from (7) and (8)

\[
\frac{\alpha_{\text{pt}}}{\alpha_{\text{pt}}} = \frac{2\nu}{\nu_0} \frac{\omega_0 \psi}{4E_D r} = \frac{2\nu}{\nu_0} \frac{\omega_0 \psi}{4E_D r} \frac{1}{\sqrt{\nu_0 P_\nu}}
\]

This equation shows that an increase in the sensitivity depends on the geometry parameters of the setup and the parameters of the medium, in which the thermal lens is bloomed. For the experimental conditions discussed above the calculation shows that the minimum detectable linear absorption coefficient is about 250-fold lower that for photometry. This means that the significant diminishing of dye doses to get reliable PT signals compared to current clinical doses (for PDD, 2.5–5 mg/mL) can be made when shifting from optical photometric to PT measurements of CBV.

**Photothermal measurements of model dyes in blood**

As additional verification of our proof-of-concept of the PT part of this technique, here we performed optical photometric and PT CBV measurements in vitro with the described above multi-wavelength photothermal-lens spectrometer. Two label dyes—Methylene Blue and Crystal Violet—were selected for simultaneous photometric/PT determination of the components of their two-dye mixtures in the circulating blood in vitro. Working concentrations of both label dyes, MB and CV were diminished by a factor of ca. 50 compared to existing CBV methods and to the level used for optical photometric measurements in his study to 10 nmol/L. From absorption spectra, the linear absorption coefficient for MB and CV in blood at the selected wavelengths at the red region are 20–25 cm⁻¹ at 100 µM (0.1 mg/mL) while blood absorption at IR laser line of 808 nm is 4–5 cm⁻¹ at 808 nm [38, 39]. The examples of flow measurements of both dyes by PT spectrometry are shown in Fig. 5.

The minimum detectable concentrations of MB and CV in blood by PT measurements under the selected conditions are 0.2 and 0.5 µM, respectively which is 250 times lower than the clinically approved doses [39]. These values are in good agreement with the theoretical estimations from Eq. discussed in the previous section. The estimations of CBV assessment in the test manifold showed the error of assessment is below 5% for blood volumes 0.3–5 L and above concentrations of dyes diminished
compared to photometric measurements. The error of measurements agrees well with our previous data on PA measurements of blood parameters [22, 40].

![Figure 5. Dilution curves for photothermal measurements of Crystal Violet. Concentrations: (1) $1.2 \times 10^{-4}$ M; (2) $6.5 \times 10^{-5}$ M; (3) $3.3 \times 10^{-5}$ M; (4) $1.6 \times 10^{-5}$ M; (5) $1.1 \times 10^{-5}$ M.]

Conclusions

Thermal lens spectrometry can be implemented as a multifunctional device for various fundamental and applied studies on heme proteins and their solutions. This thermal-lens approach can be used for determining state-of-the-art nanomaterials like nanodiamond and fullerences, which are not considered within the frames of this study. Also, the transient thermal lensing can be used to overcome the diffraction limit of optical photothermal spectroscopy to attain super-resolution of photothermal imaging, which is of high importance for various applications like studies of mitochondria, erythrocyte pathologies and similar problems [41, 42]. The following studies should be focused on the integration of all the modes of photothermal measurements in a single compact device for micro-measurements [2].

Acknowledgements

This work was supported in part by the National Institute of Health, grant numbers R01CA131164, R01 EB009230, and R21CA139373, the National Science Foundation, grant numbers DBI-0852737, and Department of Defense grants: W88XWH-10-2-0130, W81XWH-10-BCRP-CA, and W81XWH-11-1-0129 and in part by the Russian Foundation for Basic Research, grants nos. 10-02-01354-a, 10-03-01018-a and 12-03-31569-mol.a and the Ministry of Science and Technology of Russian Federation, contract no. 16.740.11.0471.

References

[41] D.A. Nedosekin et al (2012), Synergy of photoacoustic and fluorescence flow cytometry for circulating cells with negative and positive contrasts, J Biophotonics.