
Journal of Eye Movement Research
https://doi.org/10.16910/jemr.17.1.4

1

Advancing Dynamic-Time Warp

Techniques for Correcting Eye Tracking

Data in Reading Source Code

Naser Al Madi*

Department of Computer Science,

Colby College

USA

Background: Automated eye tracking data correction algorithms such as Dynamic-Time Warp

always made a trade-off between the ability to handle regressions (jumps back) and distortions

(fixation drift). At the same time, eye movement in code reading is characterized by non-linearity and

regressions.

Objective: In this paper, we present a family of hybrid algorithms that aim to handle both regressions

and distortions with high accuracy.

Method: Through simulations with synthetic data, we replicate known eye movement phenomena to

assess our algorithms against Warp algorithm as a baseline. Furthermore, we utilize two real datasets

to evaluate the algorithms in correcting data from reading source code and see if the proposed

algorithms generalize to correcting data from reading natural language text.

Results: Our results demonstrate that most proposed algorithms match or outperform baseline Warp

in correcting both synthetic and real data. Also, we show the prevalence of regressions in reading

source code.

Conclusion: Our results highlight our hybrid algorithms as an improvement to Dynamic-Time Warp

in handling regressions

Keywords: Eye movement, Reading, Gaze, Source Code, Eye Tracking, Correction, Drift.

*Corresponding author: Naser Al Madi, nsalmadi@colby.edu

Received December 24, 2023; Published March 18, 2024.

Citation: Al Madi, N. (2024). Advancing Dynamic-Time Warp Techniques for Correcting Eye Tracking Data in Reading

Source Code. Journal of Eye Movement Research, 17(1):4. https://doi.org/10.16910/jemr.17.1.4

ISSN: 1995-8692
Copyright © 2024, Al Madi, N

This article is licensed under a Creative Commons Attribution 4.0 International license.

Introduction

Eye tracking recordings in general are susceptible to a form of error where the detected fixation

location drifts from the actual fixation location. The consistent deviations between participants’ in-

tended fixation location and the position captured by the eye-tracker are referred to as systematic

error (Mishra, Carl, & Bhattacharyya, 2012). Systematic error in eye movement recording results

from various difficulties (Andersson, Nyström, & Holmqvist, 2010), including low accuracy of the

eye-tracker (Yamaya, Topić, Martínez-Gómez, & Aizawa, 2017), calibration problems (Hoormann,

Jainta, & Jaschinski, 2007), free head movement (Hermens, 2015), fixation detection algorithm

(Blignaut & Beelders, 2008), and changes in light conditions (Carl, 2013). These errors significantly

increase the difficulty of processing, analyzing, and modeling eye movement data, especially in

reading tasks, where eye movement is often studied at the word level to establish connections with

human cognition (Mishra et al., 2012). For example, a horizontal displacement of eye movement

data shifts participants’ gaze position from one word to another, and a vertical displacement shifts

mailto:nsalmadi@colby.edu
https://creativecommons.org/licenses/by/4.0/

Journal of Eye Movement Research Al Madi. (2024)
17(1):4 Advancing Dynamic-Time Warp

 2

the gaze position from one line to another (Yamaya et al., 2017). These errors could potentially

invalidate the recorded experimental data and complicate the understanding of participants’ reading

processes, even with more sophisticated eye trackers. One study by Reichle and Drieghe (2015)

shows how systematic errors in the position of fixations can falsely produce eye movement phe-

nomena such as parafoveal-on-foveal effects and spillover effects in reading. Therefore, the rec-

orded fixation data must be corrected prior to analysis. Various methods have been proposed to

handle such errors associated with fixations in reading tasks, including manual and automated cor-

rection techniques.

 Manual correction is a common approach to correct fixation positions (Palmer & Sharif, 2016).

In the manual correction procedure, human correctors are given a visualization of the recorded par-

ticipant’s fixations overlaid on the stimuli image, and they adjust the recorded fixations if necessary.

Correctors are usually guided by fixation duration and position, saccade trajectories, textual context,

as well as general knowledge of eye tracking and human reading behavior (Carr, Pescuma, Furlan,

Ktori, & Crepaldi, 2021). Human correctors also have the option to discard fixations when neces-

sary, especially when some fixations are far away from any text (Carr et al., 2021).

Although manual correction is frequently used, it is considered time-consuming (Carr et al.,

2021; Mishra et al., 2012) and subjective (Cohen, 2013). To reduce bias in manual correction, two

or more human correctors often work side by side to correct eye tracking data simultaneously, with

at least one corrector having prior experience in correcting fixation data in natural language reading

(Palmer & Sharif, 2016). However, employing multiple human correctors increases the time and

labor involved, resulting in an inefficient correction process in terms of time and effort. Therefore,

automated correction techniques have been developed and are in high demand.

Over the years, many automated correction algorithms have been developed (Abdulin & Ko-

mogortsev, 2015; Beymer, Russell, & Orton, 2005; Blignaut, 2016; Carl, 2013; John, Weitnauer, &

Koesling, 2012; Lima Sanches, Augereau, & Kise, 2016; Martinez-Gomez, Chen, Hara, Kano, &

Aizawa, 2012; Yamaya, Topi ć, Martinez-Gomez, & Aizawa, 2017; Zhang & Hornof, 2011). Re-

cently, Carr et al. (2021) classified automated correction techniques into three categories based on

their underlying concept and the information they utilize (the algorithm names come from Carr et

al. (2021)):

1. Absolute positional algorithms: Algorithms that use the absolute position of the fixation

and closest line in the correction process, include Chain (Schroeder, 2019) and Attach (Carr

et al., 2021). For example, the simple Attach algorithm relies on the absolute position of the

fixation to attach it to the closest line, while the Chain algorithm groups fixations based on

their position and attaches each group to its closest line. These methods focus on the absolute

position of fixations and lines and are considered minimalist and conservative (Carr et al.,

2021).

2. Relative positional algorithms: These algorithms focus on the relative position of fixations

and lines and consider the overall number of lines in the trial in the correction process. Rel-

ative positional algorithms include Cluster (Schroeder, 2019), Regress (Cohen, 2013),

Merge (Špakov, Istance, Hyrskykari, Siirtola, & Räihä, 2019), and Stretch (Lohmeier,

2015). For example, the Regress algorithm fits n regression lines to the cloud of fixation

data (n = number of lines) and classifies each fixation based on the regression line with the

minimum error.

3. Sequential algorithms: Algorithms that assume that reading is sequential from top to bot-

tom and from left to right in languages like English. These algorithms rely primarily on the

order of fixations in matching fixations to lines. Sequential algorithms include Segment

(Abdulin & Komogortsev, 2015) and Warp (Carr et al., 2021).

Journal of Eye Movement Research Al Madi. (2024)
17(1):4 Advancing Dynamic-Time Warp

 3

Warp is one of the most successful algorithms in correcting eye tracking data in reading tasks,

and it relies on Dynamic Time Warping (DTW) (Sakoe & Chiba, 1978) to align fixations to text

lines. The algorithm assumes that readers will read the text sequentially from left to right and from

top to bottom, matching fixations to word centers in a way that minimizes the overall Euclidean

distance between fixations and word centers. Warp and sequential methods are invariant to distor-

tions, such as noise, because they focus on the order of fixations in addition to their positions. The

main limitation of Warp and sequential algorithms is regressions, where the eyes move back to

previous words or lines in violation of the sequential reading assumption. While the prevalence and

magnitude of regressions can vary in natural language reading, regressions can be common in read-

ing source code, where nonlinear reading is the main characteristic (Busjahn et al., 2015).

While Warp appears to outperform almost all correction algorithms, one of the main findings of

Carr et al. (2021) is that no single algorithm is suitable for all distortions and conditions. Algorithms

that perform well with regressions tend to underperform in other situations, and algorithms that

perform well with distortions tend to underperform when regressions are present. Algorithms have

to make a trade-off between how well they handle distortions and regressions.

This poses a significant challenge for the automatic correction of eye tracking data in reading

source code, since reading source code is characterized by regressions. Despite sharing similarities

with natural text, such as the use of Latin letters and Arabic digits, source code reading differs fun-

damentally in purpose, syntax, semantics, and viewing strategy from reading natural language text

(Busjahn et al., 2015; Busjahn, Bednarik, & Schulte, 2014; Liblit, Begel, & Sweetser, 2006; Schulte,

Clear, Taherkhani, Busjahn, & Paterson, 2010). Empirical studies on eye movement during reading

reveal distinctions between natural text and source code. One major distinction is that natural text is

typically read in a linear fashion (from left to right and top to bottom in English), while source code

reading is less linear and characterized by regressions (jumps back). This unique reading strategy

tends to increase with programming experience and resembles code tracing rather than following

the sequential order of code (Beelders & du Plessis, 2016; Busjahn et al., 2015; Peitek, Siegmund,

& Apel, 2020).

In the study of human-oriented Software Engineering, the use of eye-tracking has gained traction

with hundreds of studies conducted since 1990, offering valuable insights into the attention and

cognitive processes of programmers (Obaidellah, Al Haek, & Cheng, 2018; Sharafi, Soh, &

Guéhéneuc, 2015). Therefore, presenting automated algorithms for correcting eye tracking data in

reading source code can be very beneficial for eye movement in programming research. In this pa-

per, we propose a family of hybrid algorithms, which aim to enhance the performance of Warp

(DTW) in correcting eye tracking data in reading source code. The proposed algorithms combine

Warp with other algorithms to optimize the correction performance across trials with and without

regressions.

We assess the proposed algorithms with synthetic data and two real datasets, and we compare

their performance to Warp. We present a realistic synthetic data that includes typical reading phe-

nomena such as word skipping, and we utilize real eye tracking data from reading source code (Bed-

narik et al., 2020), and examine the generalizability of the algorithms in a natural language dataset.

Additionally, we provide a detailed analysis of the runtime of each algorithm, along with recom-

mendations for researchers on how to design experiments and choose automated algorithms to cor-

rect data and maximize correction quality based on our findings. Also, we make our code and data

publicly available through a replication package.

Proposed Approach

One of the main findings of Carr et al. (2021) is that automated algorithms have to make a trade-off

between excelling in correcting data either with regressions or with distortions, none of the algo-

rithms reviewed performed well in both conditions. Despite the excellent performance of Warp in

Journal of Eye Movement Research Al Madi. (2024)
17(1):4 Advancing Dynamic-Time Warp

 4

almost all forms of distortion, the algorithm underperforms in trials containing between-line regres-

sions, as regressions violate the sequential reading assumption made by the algorithm, as illustrated

in Figure 1. On the other hand, algorithms like Chain and Regress (Cohen, 2013) are indifferent to

regressions, but they underperform in correcting trials with typical drift distortions.

(a) Between-line regression.

(b) Within-line regression.

Figure 1: Illustration between-line and within-line regressions, where fixation order is repre-

sented by a number.

The hybrid algorithms we propose aim to advance Warp by allowing it to perform well in cor-

recting trials with between-line regressions and distortions. The main concept behind our hybrid

algorithms is detecting regressions and splitting regressions from the rest of the data, the data with-

out regressions is corrected with Warp, then the regression is added to the correction and the com-

bination is corrected by one of the algorithms that excel in correcting regressions.

Figure 2: Illustration of the two areas defined by the regression detection and splitting function.

The main component that hybrid algorithms rely on is the detection and splitting of regressions

from the rest of the data. The detection of regressions is based on defining two areas while progress-

ing through fixations, as illustrated in Figure 2. For fixation number 5 in the illustration, if the next

fixation is within the area above the red line, then that is considered the beginning of a regression.

All following fixations are also considered part of the regression, until a fixation falls below the red

line defined for fixation number 5 which preceded the regression. This regression detection tech-

nique works even if fixations are not aligned with lines of text, since the red line is defined in relation

to the position of fixations, not the text. The red line takes into consideration the height of each line,

which is calculated automatically from the image of the text stimulus. The red line combines within-

line and between-line regressions, within-line regression is detected by equation 1 and between-line

regression is detected by equation 2:

Journal of Eye Movement Research Al Madi. (2024)
17(1):4 Advancing Dynamic-Time Warp

 5

 𝑥 < 𝑙𝑎𝑠𝑡_𝑥 − 𝑙𝑖𝑛𝑒_ℎ𝑒𝑖𝑔ℎ𝑡/2 𝑎𝑛𝑑 𝑦 ≤ 𝑙𝑎𝑠𝑡_𝑦 + 𝑙𝑖𝑛𝑒_ℎ𝑒𝑖𝑔ℎ𝑡/2 …(1)

 𝑦 < 𝑙𝑎𝑠𝑡_𝑦 − 𝑙𝑖𝑛𝑒_ℎ𝑒𝑖𝑔ℎ𝑡/2 …(2)

Where x and y are the coordinates of the current fixation, last x and last y are the coordinates of

the previous fixation, and line height is the line height. In the case of variable line height due to

vertical spacing in source code, average line height is taken instead. If either of the two equations

evaluates to true, then the beginning of a regression is marked and all fixations that lay above the

red regression line are marked as part of the regression. The splitting of regressions from the rest of

the fixations allows for using any combination of algorithms to correct the trial. After splitting re-

gressions from the rest of the fixations, we end up with two sets of fixations, a sequential non-

regressive set of fixations and a set of regressive fixations. Warp showed excellent performance in

correcting distortions other than between-line regressions (Carr et al., 2021), so we chose Warp for

correcting the non-regression set of fixations. After that, the regressive set of fixations is combined

with corrected non-regressive set and the combination is passed to an algorithm that performs well

with regressions. Combining the corrected non-regressive set and the regressive set of fixations

gives the regressive algorithm more accurate data to perform its correction. We test four algorithms

that perform well with regressions: Attach (Carr et al., 2021), Regress (Cohen, 2013), Chain

(Schroeder, 2019), and Stretch (Lohmeier, 2015). We name the resulting combinations Hy-

brid(warp+attach), Hybrid(warp+regress), Hybrid(warp+chain), and Hybrid(warp+stretch) respec-

tively.

The simple Attach algorithm relies on the absolute position of the fixation to attach it to the

closest line (Carr et al., 2021), while the Chain algorithm groups fixations based on their position

and attaches each group to its closest line (Schroeder, 2019). Regress is a more sophisticated algo-

rithm that tries to fit fixations to regression lines, where each regression line is associated with a line

of text (Cohen, 2013). Cluster utilizes k-means to group fixations from each line to an associated

cluster (Schroeder, 2019). Then fixations from each cluster are assigned a line from the text. On the

other hand, Stretch was created for correcting source code eye movement data, and it attempts to

find an offset and a scaling factor that aligns fixations with word centers (Lohmeier, 2015). We use

the simplified version of this algorithm that relies only on y-offset instead of x- and y-offsets.

Figure 3: Confusion matrix for regression classification. True Negative (top-left quadrant), False

Positive (top-right quadrant), False Negative (bottom-left quadrant), and True Positive (bottom-right

quadrant).

Journal of Eye Movement Research Al Madi. (2024)
17(1):4 Advancing Dynamic-Time Warp

 6

To validate the regression classifier we describe above, we conduct a simulation where 100 syn-

thetic reading trials are created, 50 of which contain exactly one regression and 50 trials contain no

regressions. The regression classifier is used to classify trials as containing a regression or not. The

resulting confusion matrix in Figure 3 shows True Negative (top-left quadrant), False Positive (top-

right quadrant), False Negative (bottom-left quadrant), and True Positive (bottom-right quadrant).

The classifier accuracy is 91%, precision is 100%, recall is 82%, F1-score is 90%.

The synthetic trials generated in the classifier validation include variations in fixation landing

position, skipping, and small noise in both x and y coordinates, yet they do not include any distor-

tions like shift, slope, or offset. Therefore, the performance of the regression classifier is expected

to degrade in the presence of these distortions. We will elaborate more on which distortions affect

regression detection and which do not in the next section.

Synthetic Data Simulation

In this section, we test our proposed algorithms on synthetic data, and we compare the performance

of our algorithms to Warp. This makes the synthetic data simulation an external conceptual replica-

tion of the synthetic data simulation of Carr et al. (2021) with differences in algorithms, the synthetic

data used, and one additional type of distortion (offset). We use the implementation of Warp, Attach,

Regress, Chain, and Stretch provided by (Carr et al., 2021) to eliminate any implementation varia-

tions that might affect the results and our comparison.

Figure 4: Illustration of realistic synthetic data including normal reading behavior like word skip-

ping. The size of the fixation is proportional to its duration.

Methods

We generate realistic synthetic data that includes normal reading behavior like word skipping and

regressions, as illustrated in Figure 4. The code of the synthetic data is a Java function that performs

Bubble Sort, and it includes typical variable names and comments. Synthetic fixations are positioned

within 15px of the optimal viewing position of each word, which tends to be slightly to the left of

the center of the word in English (Rayner, 1998, 2009). In the synthetic data, short words have 75%

probability of being skipped, and we use 100 trials similar to the one illustrated in Figure 4 as our

synthetic dataset.

Journal of Eye Movement Research Al Madi. (2024)
17(1):4 Advancing Dynamic-Time Warp

 7

In addition to the two types of regressions (within-line and between-line) illustrated in Figure 1,

we conduct simulations with four types of distortions found in eye movement data in reading tasks.

Noise, Slope, and Shift are replications of the distortions presented by Carr et al. (2021), and Offset

is a type of distortion that we add. Each simulation starts with a trial similar to the one in Figure 4,

then distortion is introduced with a certain magnitude, after that the algorithms attempt to correct

the distorted trial. The correction of each algorithm is compared with the original trial before distor-

tion was introduced to measure the correction accuracy of the algorithm. Distortion is introduced in

gradations to show how the algorithms perform under different intensities of distortion. Each form

of distortion is introduced using a generator function, we elaborate on the details of each generator

next.

Figure 5: Illustration of noise distortion.

The noise generator has one parameter, y-coordinate noise magnitude. For each fixation, a ran-

dom number is generated using Gaussian distribution where the mean is zero and the standard devi-

ation is equal to noise magnitude. The generated number is then added to the y-coordinate of the

fixation. The noise magnitude parameter was given values ranging between zero (no noise) and 20

(maximum noise). This results in a distortion where some fixation positions are changed, as illus-

trated in Figure 5.

Figure 6: Illustration of slope distortion.

The slope generator has one parameter which controls how much fixations are moved from their

original position. The further the fixation is on the x-access from the leftmost fixation, the greater

the distortion introduced to the y-coordinate of the fixation, as illustrated in Figure 6. This results in

a gradual distortion in the position of fixations as they approach one side of the screen.

Journal of Eye Movement Research Al Madi. (2024)
17(1):4 Advancing Dynamic-Time Warp

 8

Figure 7: Illustration of shift distortion.

The shift distortion is similar to slope with distortion that gets progressively stronger from the

top to the bottom of the screen. The shift generator has one parameter that controls the magnitude

of distortion introduced to the y-access of fixations. The distortion introduced is also proportional

to the distance of the fixation from the first line in the trial, as illustrated in Figure 7. This results in

gradual distortion as fixations move away from the first line in the trial.

Figure 8: Illustration of offset distortion.

The offset generator has one parameter that controls the magnitude of distortion introduced to

all fixation on the y-access. Offset distortion affects all fixation to the same magnitude by moving

them on the y-access, as illustrated in Figure 8. This is a new category of distortion that was not

examined by Carr et al. (2021). The regression generators have two parameters, first a list of Areas-

Of-Interest (AOIs) that surround each word, and the second is the probability of regression desired.

Using a random number generator, the regression probability is used to randomly chose a previous

word to regress to. Within-line regression generator guarantees that the regression word is on the

same line as the current fixation, while between-line regression generator guarantees that the regres-

sion is on a previous line.

Correction Results

In this section, we present the results of running Warp and along with the five proposed hybrid

algorithms. For each type of distortion and regression, we run 100 simulations with 11 gradations

of distortion resulting in 6600 simulations. The goal of this simulation is to see if the proposed

algorithms can handle distortions and regressions with accuracy overcoming the main limitation of

Warp. Ideally, the proposed algorithms match Warp’s performance in handling distortions and out-

perform it in handling between-line regressions.

The results from our synthetic data simulations are reported in Figure 9. The five algorithms

appear mostly invariant to noise distortion, as seen in Figure 9a. Warp was completely invariant to

noise, while the hybrid algorithms were susceptible to error at high magnitudes of noise distortion.

More specifically, when the noise was larger than line height, hybrid algorithms mistakenly classify

that as a regression to a previous line, while in fact the fixation was moved above the line due to

noise. The same behavior can be seen with slope distortion, where return sweeps could be incorrectly

classified as regressions if the slope is larger than line height, as seen in Figure 9b.

Journal of Eye Movement Research Al Madi. (2024)
17(1):4 Advancing Dynamic-Time Warp

 9

(a) Noise

(b) Slope

(c) Shift

(d) Offset

(e) Within-line regression

(f) Between-line regression

Figure 9: Algorithms mean accuracy in correcting distortions and regressions.

With Shift, hybrid algorithms match Warp, and all algorithms appear to be susceptible to small

amount of error when shift distortion is large, as seen in Figure 7. This small error is somewhat

unique to source code, as most programs end with several curly brackets to end the scope of a block

of code, as seen at the bottom of Figure 4. Since some of these curly brackets are often skipped,

Warp and hybrid algorithms made errors in assigning fixations to the correct curly bracket, when

shift distortion was large. In addition, all algorithms were invariant to offset distortion and within-

line regressions as seen in Figures 9d and 9e respectively.

The main goal behind hybrid algorithms is to improve the performance of Warp in handling

between-line regressions. Between-line regression is one of the major challenges for sequential cor-

rection algorithms, and Warp had an average accuracy of 53.3%, as seen in Figure 9f. All other

hybrid algorithms had an average score between 98.6 and 98.9%. Hybrid algorithms appear

Journal of Eye Movement Research Al Madi. (2024)
17(1):4 Advancing Dynamic-Time Warp

 10

unaffected by between-line regressions at all magnitudes. Overall, Warp was outperformed by all

proposed algorithms.

Figure 10: Regression detection false positive rate in relation to slope, shift, and offset distor-

tion magnitude.

As mentioned previously, the regression detection mechanism we use is influenced by some

types of distortion as it relies on fixation positions in detecting regressions. To find the types of

distortion that affect regression detection we conduct a simulation with 100 trials without regres-

sions, and introduce noise, slope, shift, and offset distortions gradually to see how each type of error

affects regression detection.

Figure 10 shows the false positive rate at each gradation of error. Offset and shift distortions

appear to have no effect on regression detection across all magnitudes of distortion, as they move

all fixations without distorting the alignment of fixations on the same line. On the other hand, noise

and slope appear to influence regression detection as they affect the positions of some fixations more

than others, causing a false positive regression detection. This means that with higher distortion

magnitude more trials are mislabeled as containing regressions when they do not. This has an effect

on our heuristic for hybrid algorithms. At the same time, mislabeled regressions are corrected by

attach/chain/regress/stretch, therefore the mislabeling at high magnitudes of error does not invalidate

the regression detection heuristic as results show that it still matches or outperforms Warp. None-

theless, this result motivates a better regression detection heuristic as a future direction.

Figure 11: Algorithms mean accuracy in correcting trials containing distortions (accuracy %).

Journal of Eye Movement Research Al Madi. (2024)
17(1):4 Advancing Dynamic-Time Warp

 11

One of the main results from Carr et al. (2021) that motivated this paper is that some algorithms

handle regressions well and others do well with distortions, but a single algorithm was not able to

do both. Figure 11 shows a comparison of the mean accuracy in correcting trials containing distor-

tions and regressions. Warp performs well with distortions and within-line regression, but it under-

performs in correcting between-line regressions. On the other hand, hybrid algorithms appear to do

well in correcting distortions and handling both types of regressions.

Runtime Analysis

In this section we focus on the average runtime per-trial for each of the 9 algorithms that we examine.

The mean duration per trial information reported in this section are measured during the same sim-

ulations presented in the previous section, therefore we compare runtimes under each type of distor-

tion and regression, since runtimes are expected to vary under different simulation conditions. The

runtimes were calculated on a Windows 10 (version 22H2) computer with an Intel Core i7-9700k

CPU at 3.60GHz and 32GB of main memory.

Figure 12: Algorithms mean runtime in correcting trials containing distortions (time in seconds).

Algorithms runtimes appear consistent under different simulation conditions of distortion and

regression, as seen in Figure 12. Simulations with regression have more fixations, which might ex-

plain why within-line and between-line regressions take more time with all algorithms. In regard to

our proposed algorithms, hybrid algorithms that use Regress and stretch take more time per trial

compared to Warp. At the same time, hybrid algorithms that use Attach and Chain match or take

less time than Warp, especially in Between-line regressions. Attach and Chain are simple algorithms

that give hybrid Attach and hybrid Chain an advantage in runtime when regressions are present.

When the fixations are split into two parts in hybrid algorithms, Warp works with fewer fixations

and Attach/Chain are significantly faster than Warp in correcting the combined fixations.

Summary

In terms of algorithm accuracy on synthetic data, the results suggest that hybrid algorithms match

or outperform Warp in correcting distortion and handling regressions, overcoming one of the main

obstacles reported by Carr et al. (2021). This is a significant improvement for correcting eye tracking

data in reading source code, considering how common regressions are in reading source code.

Regarding runtime, hybrid algorithms that use Attach or Chain are the fastest algorithms, and

both had a very good performance in correction accuracy as well. In addition, while most algorithms

show significant increase in runtime when regressions are present, hybrid Attach and Chain algo-

rithms show marginal increase in runtime. Generally, it appears that the number of fixations is more

influential on runtime than distortion type, as trials with regressions have more fixations. The pro-

posed hybrid algorithms that use Regress or Stretch take significantly longer than warp. This means

that some proposed algorithms (hybrid Attach and Chain) outperform Warp and have a shorter

Journal of Eye Movement Research Al Madi. (2024)
17(1):4 Advancing Dynamic-Time Warp

 12

runtime when regressions are present. These promising results motivate testing the proposed algo-

rithms with real data and comparing their performance to base-line Warp.

Performance on Real Data

In this section, we compare the performance of our proposed algorithms to Warp on real eye tracking

data. Starting with our main objective, we utilize a source code reading dataset named the Eye

Movement In Programming dataset (EMIP) (Bednarik et al., 2020). Then we assess the generaliza-

bility and usefulness of the proposed algorithms in correcting data from natural language reading.

One dataset contains many lines of text and many regressions (GazeBase) (Griffith, Lohr, Abdulin,

& Komogortsev, 2021). Figure 13 shows a sample eye tracking recording from each trial.

(a)

(b)

Figure 13: Samples from: (a) EMIP dataset. (b) GazeBase dataset.

Each dataset has a unique characteristic that makes it insightful in the context of correcting eye

tracking data. Using multiple datasets with different conditions provides a more accurate assessment

of the correction algorithms we compare. Also, in addition to measuring and comparing algorithms

in terms of accuracy, one central question that we hope to answer is how often do real eye tracking

trials contain regressions? And what type of regression is prevalent? Answering this question is

important considering the performance trade-off previous algorithms make between distortion and

regression.

Methods

We utilize two datasets with heterogeneous reading tasks to gain insights on the performance of our

proposed algorithms in reading source code and in correcting eye tracking data in general.

First, we assess our algorithms on eye tracking data in reading source code. The dataset consists of

47 trials of reading Java code from the Eye Movement In Programming dataset (EMIP) (Bednarik

et al., 2020). The EMIP dataset was an international and multi-institutional effort that involved

Journal of Eye Movement Research Al Madi. (2024)
17(1):4 Advancing Dynamic-Time Warp

 13

eleven research teams across eight countries on four continents (Al Madi, Guarnera, Sharif, &

Maletic, 2021). The trials include multi-line Java source code in medium sized font, and the eye

tracker used is an SMI Red 250 eye tracker with 250 samples per second. The dataset offers a unique

insight on correcting eye tracking data in reading source code, which is characterized by non-linear

reading and significant regressions and progressions (jumps forward) (Busjahn et al., 2015).

To assess the generalizability and usefulness of the proposed algorithms on natural language

text, one additional dataset is used. The second dataset we use consists of 24 text trials from Gaze-

Base (Griffith et al., 2021). The trials include a dense multi-line poem with small font and variable

spacing between lines. This creates a challenging set of conditions for eye tracking data correction

algorithms. The eye tracker used is a high-frequency EyeLink 1000. In addition, the large number

of lines in each trial increases the chances of between-line regressions.

To measure the accuracy of the algorithms in correcting data from the real datasets, a manually

corrected golden set of the same data is needed. Therefore, we rely on eight human correctors to

manually correct the GazeBase, and EMIP datasets as ground truth. Each dataset was corrected by

two people separately, then a software tool was used by a third person to scan and merge the data.

If the two correctors disagree, the third corrector is presented with a visualization of both corrections

to make the final decision in accepting one.

To answer our question on the presence and prevalent type of regression in real eye tracking

data, we used the human-corrected goldenset to count regressions. This is important considering that

the regression detection heuristic is influenced by some types of distortion (noise and slope).

Correction Results

In this section we compare the accuracy of the proposed algorithms to Warp in correcting the three

real datasets. Accuracy is measured as the percentage of fixations that agree with the golden set by

being positioned on the same line.

Figure 14: Algorithms mean accuracy in correcting trials from EMIP dataset. Black line is mean,

and each trial is a dot.

The EMIP dataset is characterized by Java source code, multi-line reading, medium-frequency

eye tracker, and non-linear reading pattern. Counting regression and their types in the corrected

goldenset, we found that 100% of trials contained at least one type of regression, all examined trials

had within-line regression and all examined trials had between-line regression.

Journal of Eye Movement Research Al Madi. (2024)
17(1):4 Advancing Dynamic-Time Warp

 14

As seen in Figure 14, Warp had an accuracy of 38.7%, and it was outperformed by all hybrid

algorithms. The best algorithm was hybrid(warp+attach) with an average accuracy of 69.5%. Over-

all, hybrid algorithms increased the performance of Warp by 7.3 to 30.8 percentage points, which is

substantial. In terms of variance in accuracy of individual trials, it appears that hybrid(warp+attach)

and hybrid(warp+chain) were consist around the mean, while hybrid Regress and Stretch were more

dispersed. These results suggest that hybrid algorithms like hybrid(warp+attach), hy-

brid(warp+chain) are substantially more successful in correcting eye tracking data with regressions

compared to Warp.

The GazeBase dataset is characterized by dense multi-line text with variable line spacing, small

font size, and high-frequency eye tracker. Counting regressions and their types in the corrected gold-

enset, we found that 100% of trials include at least one type of regression, all include within-line

regressions and 95% of trials contain between-line regressions. This makes this dataset suitable for

assessing the generalizability of the proposed algorithms in correcting eye tracking data in reading

natural language text.

Figure 15: Algorithms mean accuracy in correcting trials from GazeBase dataset. Black line is mean,

and each trial is a dot.

As seen in Figure 15, Warp had 63.5% accuracy. all other hybrid algorithms outperformed Warp,

and the most successful was hybrid(warp+regress). All proposed hybrid algorithms outperformed

Warp by 9.4 to 12.4 percentage points. We will elaborate more in the discussion section on a possible

explanation for why hybrid Attach and Chain algorithms excel with source code and hybrid Regress

excels with natural language reading.

Summary

Our real data results suggest that the advantage offered by hybrid algorithms is proportional to the

prevalence of between-line regressions in the data. At the same time, none of the algorithms had an

accuracy above 75.9% in correcting either dataset. Overall, our proposed hybrid algorithms matched

or outperformed Warp, sometimes by 30.8 percentage points.

Regarding regression rates, the results suggest that regressions are very common in real eye

tracking data, especially in reading source code. Our results show that within-line regressions are

more prevalent than between-line regressions, nonetheless both types are common and their pres-

ence varies possibly depending on reading “type” and task objective.

Journal of Eye Movement Research Al Madi. (2024)
17(1):4 Advancing Dynamic-Time Warp

 15

In regard to the correction accuracy in relation to the characteristics of each dataset, it appears

that trials with a large font are easier to correct than smaller font, and fewer lines of text are easier

to correct than many lines. The most difficult data to correct was the EMIP dataset, which is char-

acterized by non-linear reading consisting of many regressions and progressions as typical in reading

source code.

Discussion

Considering the results from our simulations, most of our proposed algorithms appear to match or

offer an improvement over Warp. With real data, our proposed hybrid algorithms matched or

outperformed Warp, sometimes by 30.8 percentage points. Nonetheless, reading source code is

substantially different from reading natural language text, and hence different algorithms are

needed that take into account characteristics such as non-linearity. This makes correction

somewhat more difficult, evident by the low accuracy scores by all algorithms when correcting

eye movement over source code compared to correcting eye movement over natural language text.

In regard to synthetic data, the proposed algorithms matched or outperformed Warp in correcting

data with distortions and regressions. The only exceptions are at high magnitudes of Noise or Slope

distortions, where hybrid algorithms made a few mistakes by incorrectly detecting a regression when

there was no regression. Nonetheless, the overall performance was still higher than 97%. Another

interesting observation from synthetic data is that all algorithms, including Warp, made small cor-

rection mistakes at high magnitudes of Shift distortion. Looking at the data, it appears that these

mistakes are unique to source code data, where a several lines of curly brackets are common at the

end of a block of code. Some of the curly brackets were skipped due to being short, and all algo-

rithms made mistakes in determining which curly bracket was skipped, resulting in a small percent-

age of errors.

In regard to real data, hybrid(warp+attach) was the best performing algorithm in correcting

source code reading data. At the same time, hybrid(warp+regress) was the best performing algorithm

in correcting natural language data from GazeBase. Both datasets share some similarities in having

short lines and many regressions. Nonetheless, the best performing algorithm was different in the

two datasets, this is possibly because the pattern of regressions in reading source code is somewhat

different from regressions in reading natural language text. Despite the fact that both EMIP and

GazeBase had many between-line regressions, looking at the data it seems like natural language

regressions are intended to re-read the text sequentially, where a jump back is followed by sequential

reading. On the other hand, source code regressions are often followed by progressions or jumps

forward instead of re-reading the code sequentially. Regress as an algorithm implicitly matches the

pattern of sequential regressions that are observed in natural language reading, which might explain

why it excels in correcting GazeBase data and under performs with source code. On the other hand,

Attach is a simple algorithm that makes no assumptions on reading order, which might explain its

success with correcting source code regressions. Nonetheless, the observation of different types of

regressions motivates future research in this direction.

It is important to mention that the degree of non-linearity in reading source code is related to the

level of programming experience as reported by Busjahn et al. (2015). Therefore, we assume that

there is a degree of sequential reading that is interrupted by regressions in reading source code, and

this is the assumption that motivates this paper. The advantage of the hybrid Warp approaches is

maximized when sequential reading is interrupted by regressions. Nonetheless, it is possible for

some very non-linear trials to be corrected best by an algorithm that does not make the sequential

reading assumption Warp makes. Algorithms like Attach might be more suitable for correcting trials

with a large degree of non-linearity, but in this paper we focus on giving Warp the ability to handle

regressions.

Journal of Eye Movement Research Al Madi. (2024)
17(1):4 Advancing Dynamic-Time Warp

 16

It is also important to mention that the EMIP and GazeBase datasets are somewhat different from

typical eye movement datasets, as they contain many lines of text and somewhat small vertical spac-

ing between lines. In reading experiments, it is common for large line spacing to be used to aid the

process of drift correction. This decision might be possible for reading natural language text, but for

source code eye tracking experiments aim for a natural presentation of the code in typical format

such as a development environment. This adds to the complexity of correcting eye tracking data

over source code.

Regarding one of our central questions: How often do real eye tracking trials contains regres-

sions? And what type of regression is prevalent? Our results suggest that the majority of trials in-

clude at least one type of regression. In the datasets we used, the percentage of trials containing at

least one type of regression was approximately 100%, with a prevalence for within-line regressions.

This highlights the importance of handling regressions in automated correction algorithms, espe-

cially in tasks such as reading source code where 100% of trials contained within-line regressions

and between-line regressions. Furthermore, the advantage of using hybrid algorithms was propor-

tional to the presence of between-line regressions in the data. Therefore, we expect no advantage

over Warp in correcting data without regressions.

In regard to runtime analysis, the number of fixations in the trial appears to be more influential

on runtime than the type of distortion present. The runtime of hybrid(warp+attach) and hy-

brid(warp+chain) algorithms was faster than Warp, despite taking some steps to split regressions

from fixations. The two algorithms gain an advantage when trials have regressions, as regressions

are corrected with the faster Attach or Chain algorithms. Therefore, hybrid Attach and Chain algo-

rithms have better runtime compared to Warp, and depending on the presence of between-line re-

gressions they can offer better correction accuracy. At the same time, hybrid algorithms that use

Regress or Stretch take significantly longer, since these algorithms have higher computational com-

plexity.

Recommendations

Based on the results of running our proposed algorithms and Warp on synthetic and real data, we

make the following recommendations:

1. For correcting eye tracking data with source code and nonlinear reading, hybrid(warp+at-

tach) was the best algorithm.

2. For automatically correcting eye tracking data with dense multi-line natural language text

(such as GazeBase), hybrid(warp+regress) was the best algorithm.

3. When runtime is a priority, hybrid Attach or Chain algorithms offer a combination of high

accuracy and fast runtime.

4. If 100% accuracy on the word level is required, manual human correction is the only way

this level of accuracy can be achieved (with present correction algorithms).

5. Researchers can achieve better eye tracking accuracy by using a few lines of text stimuli

with a large font and large line spacing, when possible.

Conclusion

In this paper, we presented a family of correction algorithms for eye tracking data in reading source

code that we generalize for some cases of natural language text as well. The proposed hybrid algo-

rithms attempt to split regressions, correct the non-regressive fixations first, and then combine the

corrected data with regressions to correct it with an algorithm that handles regressions well. We

Journal of Eye Movement Research Al Madi. (2024)
17(1):4 Advancing Dynamic-Time Warp

 17

demonstrated that this hybrid approach matches or yields performance improvement over Warp in

cases of synthetic and real data.

We make another contribution by presenting an external conceptual replication of Carr et al.

(2021), where our results match the original study and add to it. We continue the valued effort to

make data and code available by making our code and data available through a replication package.

Future work is still needed to reach a higher accuracy in the automatic correction of eye tracking

data especially with source code, and the hybrid ideas we present could be part of the incremental

work towards the goal of matching the accuracy of experienced human correctors. Here we list some

of the future directions that might improve the techniques presented:

1. For Hybrid algorithms, the regression detection idea presented appears to be sensitive to two

types of distortions: noise and slope. Although Hybrid algorithms continue to outperform

Warp, coming up with a more elaborate regression detection algorithm can improve the

performance even further.

2. Correcting eye tracking data in reading source code appears to be a more challenging prob-

lem than reading natural language text due to the non-linearity. At the same time, source

code has many characteristics that make algorithms specific for correcting eye tracking data

in code reading viable. The variability in line length can aid the process of matching fixa-

tions to specific lines of code, for example.

3. Correction algorithms can take advantage of the different types of regression observed in

real eye tracking data. In addition, future research could focus on identifying and comparing

the different regression patterns and norms in reading source code and natural language text.

4. New and possibly better automated correction methods might be inspired from observing

human correctors and the decisions they make in correcting eye tracking data.

Ethics and Conflict of Interest

The author declares that the contents of the article are in agreement with the ethics described in

http://biblio.unibe.ch/portale/elibrary/BOP/jemr/ethics.html and that there is no conflict of interest

regarding the publication of this paper.

Data Availability

Data and code including examples are available at the following OSF replication package:

https://osf.io/6s3vq/

Acknowledgements

The author would like to thank undergraduate research students Brett Torra, Najam Tariq, Zaynab

Tariq, Owen Raymond, Bishal Khadka, Nafis Bhuiyan, Yelaman Moldagali for their help in creating

the golden set.

References

Abdulin, E., & Komogortsev, O. (2015). Person verification via eye movement-driven text reading

model. In (p. 1-8). doi: 10.1109/BTAS.2015.7358786

http://biblio.unibe.ch/portale/elibrary/BOP/jemr/ethics.html
https://osf.io/6s3vq/

Journal of Eye Movement Research Al Madi. (2024)
17(1):4 Advancing Dynamic-Time Warp

 18

Al Madi, N., Guarnera, D., Sharif, B., & Maletic, J. (2021). Emip toolkit: A python library for cus-

tomized post-processing of the eye movements in programming dataset. In Acm symposium on

eye tracking research and applications (pp. 1–6).

Andersson, R., Nyström, M., & Holmqvist, K. (2010). Sampling frequency and eye-tracking

measures: how speed affects durations, latencies, and more. Journal of Eye Movement Re-

search, 3(3).

Bednarik, R., Busjahn, T., Gibaldi, A., Ahadi, A., Bielikova, M., Crosby, M., . . . others (2020).

Emip: The eye movements in programming dataset. Science of Computer Programming, 198,

102520.

Beelders, T. R., & du Plessis, J.-P. L. (2016). Syntax highlighting as an influencing factor when

reading and comprehending source code. Journal of Eye Movement Research, 9(1).

Beymer, D., Russell, D. M., & Orton, P. Z. (2005). Wide vs. narrow paragraphs: an eye tracking

analysis. In Ifip conference on human-computer interaction (pp. 741–752).

Blignaut, P. (2016). Idiosyncratic feature-based gaze mapping. Journal of Eye Movement Re-

search, 9(3).

Blignaut, P., & Beelders, T. (2008). The effect of fixational eye movements on fixation identifica-

tion with a dispersion-based fixation detection algorithm. Journal of eye movement research,

2(5).

Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson, J. H., Schulte, C., . . . Tamm, S.

(2015). Eye movements in code reading: Relaxing the linear order. In 2015 ieee 23rd interna-

tional conference on program comprehension (pp. 255–265).

Busjahn, T., Bednarik, R., & Schulte, C. (2014). What influences dwell time during source code

reading?: analysis of element type and frequency as factors. In Proceedings of the symposium

on eye tracking research and applications (pp. 335–338).

Carl, M. (2013). Dynamic programming for re-mapping noisy fixations in translation tasks. Jour-

nal of Eye Movement Research, 6(2).

Carr, J. W., Pescuma, V. N., Furlan, M., Ktori, M., & Crepaldi, D. (2021). Algorithms for the au-

tomated correction of vertical drift in eye-tracking data - behavior research methods. Springer

US. Retrieved from https://link.springer.com/article/10.3758/s13428-021-01554-0#Sec22

Cohen, A. L. (2013). Software for the automatic correction of recorded eye fixation locations in

reading experiments. Behavior research methods, 45(3), 679–683.

Griffith, H., Lohr, D., Abdulin, E., & Komogortsev, O. (2021). Gazebase, a large-scale, multi-

stimulus, longitudinal eye movement dataset. Scientific Data, 8(1), 184.

Hermens, F. (2015). Dummy eye measurements of microsaccades: Testing the influence of system

noise and head movements on microsaccade detection in a popular video-based eye tracker.

Journal of Eye Movement Research, 8(1).

Hoormann, J., Jainta, S., & Jaschinski, W. (2007). The effect of calibration errors on the accuracy

of the eye movement recordings. Journal of Eye Movement Research, 1(2).

John, S., Weitnauer, E., & Koesling, H. (2012). Entropy-based correction of eye tracking data for

static scenes. Proceedings of the Symposium on Eye Tracking Research and Applications -

ETRA ’12, 297–300. doi: 10.1145/2168556.2168620

Liblit, B., Begel, A., & Sweetser, E. (2006). Cognitive perspectives on the role of naming in com-

puter programs. In Ppig (p. 11).

Lima Sanches, C., Augereau, O., & Kise, K. (2016). Vertical error correction of eye trackers in

nonrestrictive reading condition. IPSJ Transactions on Computer Vision and Applications,

8(1), 1–7.

https://link.springer.com/article/10.3758/s13428-021-01554-0#Sec22

Journal of Eye Movement Research Al Madi. (2024)
17(1):4 Advancing Dynamic-Time Warp

 19

Lohmeier, S. (2015). Experimental evaluation and modelling of the comprehension of indirect

anaphors in a programming language. Cambridge.

Martinez-Gomez, P., Chen, C., Hara, T., Kano, Y., & Aizawa, A. (2012). Image registration for

text-gaze alignment. In Proceedings of the 2012 acm international conference on intelligent

user interfaces (pp. 257–260).

Mishra, A., Carl, M., & Bhattacharyya, P. (2012). A heuristic-based approach for systematic error

correction of gaze data for reading. In Proceedings of the first workshop on eye-tracking and

natural language processing (pp. 71–80).

Obaidellah, U., Al Haek, M., & Cheng, P. C.-H. (2018). A survey on the usage of eye-tracking in

computer programming. ACM Computing Surveys (CSUR), 51(1), 5.

Palmer, C., & Sharif, B. (2016). Towards automating fixation correction for source code. In Pro-

ceedings of the ninth biennial acm symposium on eye tracking research & applications (pp.

65–68).

Peitek, N., Siegmund, J., & Apel, S. (2020). What drives the reading order of programmers? an

eye tracking study. In Proceedings of the 28th international conference on program compre-

hension (pp. 342–353).

Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research.

Psychological bulletin, 124(3), 372.

Rayner, K. (2009). Eye movements in reading: Models and data. Journal of eye movement re-

search, 2(5), 1.

Reichle, E. D., & Drieghe, D. (2015). Using ez reader to examine the consequences of fixation-

location measurement error. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 41(1), 262.

Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word

recognition. IEEE transactions on acoustics, speech, and signal processing, 26(1), 43–49.

Schroeder, S. (2019). popeye - an r package to analyse eye movement data from reading experi-

ments. 20th European Conference of Eye Movements Alicante, Spain.

Schulte, C., Clear, T., Taherkhani, A., Busjahn, T., & Paterson, J. H. (2010). An introduction to

program comprehension for computer science educators. In Proceedings of the 2010 iticse

working group reports (pp. 65–86).

Sharafi, Z., Soh, Z., & Guéhéneuc, Y. G. (2015). A systematic literature review on the usage of

eye-tracking in software engineering. Information and Software Technology, 67, 79-107.

Špakov, O., Istance, H., Hyrskykari, A., Siirtola, H., & Räihä, K. J. (2019). Improving the perfor-

mance of eye trackers with limited spatial accuracy and low sampling rates for reading analysis

by heuristic fixation-to-word mapping. Behavior research methods, 51, 2661-2687..

Yamaya, A., Topić, G., Martínez-Gómez, P., & Aizawa, A. (2017). Dynamic-programming based

method for fixation-to-word mapping. In International conference on intelligent decision tech-

nologies (pp. 649–659).

Zhang, Y., & Hornof, A. J. (2011). Mode-of-disparities error correction of eye-tracking data. Be-

havior research methods, 43(3), 834–842.

