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Mobile eye tracking captures egocentric vision and is well-suited for naturalistic studies. However, 
its data is noisy, especially when acquired outdoor with multiple participants over several sessions. 
Area of interest analysis on moving targets is difficult because A) camera and objects move 
nonlinearly and may disappear/reappear from the scene; and B) off-the-shelf analysis tools are limited 
to linearly moving objects. As a result, researchers resort to time-consuming manual annotation, 
which limits the use of mobile eye tracking in naturalistic studies. We introduce a method based on a 
fine-tuned Vision Transformer (ViT) model for classifying frames with overlaying gaze markers. 
After fine-tuning a model on a manually labelled training set made of 1.98% (=7845 frames) of our 
entire data for three epochs, our model reached 99.34% accuracy as evaluated on hold-out data. We 
used the method to quantify participants’ dwell time on a tablet during the outdoor user test of a 
mobile augmented reality application for biodiversity education. We discuss the benefits and 
limitations of our approach and its potential to be applied to other contexts.  
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Introduction 
Eye tracking enables the measuring of various features related to an individual’s eye movements, 

providing a glimpse into their cognition and behavior (Carter & Luke, 2020). It is an unobtrusive, 
objective measuring tool for quantitative data that can be applied to various diagnostic analytics in 
fields like usability, psychology and neurology research, but also clinical rehabilitation, treatment, 
training, or even used as a natural interface (Duchowski, 2017; Kong et al., 2021). Usually, eye 
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tracking data act as a dependent variable and are linked to an independent variable for further 
interpretation: Studies often consist in observing the impact of external, semantic stimuli (e.g. 
looking at something, operating an interface, etc.) on a specific metric (e.g. dwell time, gaze 
position, pupil size, fixation sequence, etc.) (Carter & Luke, 2020). Despite being used in a growing 
range of contexts, many eye tracking measures are little known (Lim et al., 2022) and new methods 
to extract knowledge from eye tracking data are constantly emerging (Simpson, 2021), which 
reflects the technique’s relative lack of maturity (Lappi, 2015). Eye tracking data is often of uneven 
quality, making it notoriously difficult to analyze (Ahlström et al., 2012). Stationary eye trackers’ 
use is limited to controlled environments, and usually only operates with screen interaction. On the 
other hand, thanks to head-mounted devices (see Figure 1(a)), mobile eye tracking (MET) enables 
the recording of egocentric vision “in the wild” while engaging in everyday tasks (Lappi, 2015), 
enabling naturalistic studies. Apart from the egocentric camera, inward-facing sensors typically 
operate at speeds from 25 Hz to 250 Hz (Andersson et al., 2010). These sensors’ data is used to 
calculate the direction of the gaze and an overlaid visual marker may be marked on top of the 
egocentric video, as seen in Figure 1(b). MET offers an unprecedented opportunity to look through 
someone else’s eyes and momentarily step into their shoes. In usability research, MET can be used 
to identify key issues such as ill-informed use or challenges in spatial navigation. MET offers an 
optimal freedom of movement, enabling more realistic interactive experimental settings (Franchak 
& Yu, 2022). This freedom comes at a price: precision, accuracy and sample rate are all decreased, 
resulting in data of even more erratic quality than its stationary counterpart (Ahlström et al., 2012; 
Barz & Sonntag, 2021; Carter & Luke, 2020; Lappi, 2015; Niehorster et al., 2020). When MET is 
used outdoors, output data is even more challenging (Evans et al., 2012). When data collection takes 
place over multiple sessions, spanning several weeks, and covering large areas, as is common in 
naturalistic studies, the fluctuating environmental conditions further hinder data homogeneity.  

 
Figure 1.  

(a) A participant wearing a head-mounted mobile eye tracking device (Tobii Pro Glasses 3).  

(b) The front camera captures egocentric vision. The overlaying red dot representing gaze is added during post 
processing with the manufacturer’s software. 

 
Naturalistic studies featuring MET often rely on the use of areas of interest (AOIs). AOIs are regions 
in the visual field that hold semantic significance in the context of a given study. AOI dwell time 
(Holmqvist et al., 2011) is the sum of the durations of fixations within the AOI. This metric can be 
interpreted as the total amount of time a participant gazed at the AOI. Dwell time may be subjected 
to statistical analysis to examine differences between conditions or AOIs, or inference about the 
cognitive processes it reveals, based on additional background theory the study relies upon (Lappi, 
2015). Although AOI-based methods represent a tool of choice for MET data analysis, they are often 
limited by variability in shape, size, and general definition of AOIs. Researchers often don’t include 
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Journal of Eye Movement Research Mercier, J., Ertz, O. & Bocher, E. (2024) 
17(3):3 Quantifying Dwell Time With Location-based Augmented Reality 
 

 3 

their definitions of AOI as part of their method (Purucker et al., 2013). This variability decreases 
the reproducibility of research and makes inter-study comparison difficult (Rim et al., 2021).  

AOIs pose specific challenges when used in combination with outdoor data (Holmqvist & 
Andersson, 2017). MET devices manufacturers advertise features such as “automated” and 
“dynamic” AOI that presumably allow the mapping and tracking of moving AOIs. But based on the 
examples show on tutorial videos, these refer to either a moving target, viewed from a static point 
of view or a static target, viewed from a moving point of view. In these situations, either the point 
of view or the AOI does not move, and the trajectory of the AOI remains much more linear. The 
light conditions under which objects are captured tend to vary less, making them easier landmarks 
to map and track by computer vision algorithms. In most MET naturalistic studies however, both 
the egocentric camera and the tracked object are moving independently, causing the latter to undergo 
abrupt, nonlinear changes (trajectory, size, shape), be subjected to contrasting light conditions, and 
even disappear and reappear (Kurzhals et al., 2017), which makes traditional computer vision 
tracking algorithms ineffective. Admittedly, manufacturers’ tools are primarily devoted to the 
analysis of objects that move in a linear way and at a constant speed, which limits their usefulness 
to the analysis of data captured under laboratory conditions. These tools are usually unable to operate 
on noisy field data (Ahlström et al., 2012; Holmqvist & Andersson, 2017). Because continuous data 
of reasonable quality are key for tracking such objects, performing data analysis involving moving 
AOIs is difficult. As pointed out by several researchers (Barz & Sonntag, 2021; Friedrich et al., 
2017; Kredel et al., 2015; Kumari et al., 2021; Kurzhals et al., 2017; Lappi, 2015), there is a gap in 
available, accurate, reliable, structured, easy to use, and automated methods to analyze eye tracking 
data in combination with moving objects. Moving AOIs analysis usually must be carried using 
bespoke computer vision methods. As a consequence to the unavailability of solutions, MET data is 
still often processed manually (Kredel et al., 2017; Panetta et al., 2020; Rim et al., 2021), which is 
very time-consuming and has major implications for the widespread dissemination of this 
methodology (Kredel et al., 2015; Rim et al., 2021).  

In this paper, we present a method for post hoc automatic detection of users’ focus on moving 
AOIs by using one of the most up-to-date deep learning architectures for computer vision (see 
Appendix A). We evaluate the accuracy of the proposed method and discuss its potential for 
knowledge extraction from MET data beyond our own use case. We describe a comprehensive and 
repeatable pipeline ranging from data preprocessing, model training, hold-out validation, inference, 
post-processing, and data visualization, aiming to make the method repurposable to other 
researchers with comparable needs. We present our use case: MET data collected during the 
usability test of a location-based augmented reality application for biodiversity education. One of 
the goal of this user test was to measure participants’ dwell time on the tablet screen as opposed to 
looking up at the natural environment during 15-minute sessions (Mercier et al., 2023).  

Background 
Mobile Eye Tracking for Educational Technology Research 
The rapid development and adoption of mobile technologies has sparked numerous research 

projects aimed at improving learning processes using information technologies. While mobile screen 
can be beneficial when used for education, it has drastically increased since the COVID pandemic 
(Madigan et al., 2022) and an excessive or harmful use by young audiences is a societal concern. 
Considerations of the content and context as well as considerations on the design of the interfaces 
that shape educational technology are essential for guidelines that are practical and operationally 
relevant (Kucirkova et al., 2023). While excessive mobile screen time and its impact highly depend 
on the context, technology was found to dominate user experience in a problematic way in 70% of 
the examined mobile learning projects (Goth et al., 2006). Methods used to quantify screen time 
vary from one study to the next and often lack precision, making it difficult to make informed 
decisions (Kucirkova et al., 2023) or even compare results. It is therefore important and useful to 
monitor and track screen interaction dwell time in mobile learning experiments with methods that 
are scientifically based, aimed at objectivity and reproducibility. In a typical outdoor user study that 
includes eye tracking, participant-generated data is recorded during multiple sessions, over 
extensive areas, and under varying lighting and environmental conditions (Evans et al., 2012; 
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Kurzhals et al., 2017). This process can quickly result in large amounts of noisy data that is difficult 
to process. As a result, extracting any kind of actionable knowledge from this type of data or that of 
others that present similar challenges is difficult. In our use-case, MET data was gathered during a 
mobile application for biodiversity education’s user test (Mercier et al., 2023). We wanted to 
measure the ratio of dwell time participants interacted with the mobile device screen to gauge the 
role played by technology in the use of our system.  

Deep Learning for Eye Tracking Data Analysis 

The benefits of using computer vision algorithms powered by deep learning for MET analysis 
has been repeatedly demonstrated and their use have increased over the last few years. Three 
common methods stand out in this context: image classification, object detection, and semantic 
segmentation (Russakovsky et al., 2015). With image classification, input images get labeled from 
a set of predefined classes, as illustrated in Figure 2(a). With object detection, multiple objects are 
labeled on input images and localized by drawing a rectangular bounding box around them, as 
illustrated in Figure 2(b). With semantic segmentation, objects are labeled and accurately contoured, 
and may include surfaces (sky, ground, water…), as illustrated in Figure 2(c). These methods (see 
Appendix A) are especially relevant for analysis that include nonlinearly moving AOIs, which are 
very difficult to track with deterministic computer vision algorithms.  
Figure 2.  

(a) Image classification: an entire image is assigned with a label, or “class”. Our approach consists in training 
a model to detect whether the red gaze marker is located within the tablet.  

(b) Object detection: several objects are detected as well as their locations as rectangular frames. While more 
insightful than image classification, determining if the red gaze marker lies in the tablet would require an extra 
step of geometric calculation to cross-reference the marker’s coordinates with that of the tablet’s area, and 
rectangular shape of the latter makes it prone to inaccuracies.  

(c) Semantic segmentation: several objects are detected, and the detail of their contour. Using this approach 
to compute dwell time on the tablet would also require extra geometric calculation, without being prone to 
inaccuracies, because the contours accurately fit the detected objects.   

 
A few works addressed the problem of mapping gaze to moving objects or AOIs in MET data. 

Deep learning models are applied in a variety of ways, but in most cases researchers used a 
convolutional neural network (CNN, see Appendix B) object detection model to draw boundaries 
around the objects, and then cross-referenced these with gaze data (Barz & Sonntag, 2021; 
Callemein et al., 2019; Kumari et al., 2021; Silva Machado et al., 2019; Sümer et al., 2018; Tzamaras 
et al., 2023; Venuprasad et al., 2020; Wolf et al., 2018). Kumari et al. (2021) compared the 
performance of three CNN object detection models to analyze MET data. Venuprasad et al. (2020) 
used object detection with clustering and further cross-referenced the gaze point coordinates. 
Tzamaras et al. (2023) used an object detection model in combination with an additional, custom-
trained object detection model to track the plotted red gaze marker. Sümer et al. (2018) used a face 
detection model and cross-referenced the raw gaze points coordinates to examine a teacher’s 
attention to their students. Callemein et al. (2019) present a system that detects when gaze focuses 
on other persons’ face or hands. Wolf et al. (2018) mapped gaze (fixations) to moving AOIs with 
Mask R-CNN, with the advantage of operating in real time. Barz and Sonntag (2021) also presented 
real-time object detection using pretrained models without fine-tuning and introduce an evaluation 
framework for automatic gaze to AOI mapping. Silva Machado et al. (2019) matched the detected 
bounding boxes with participants’ fixations using a sliding-window approach with a MobileNet 
CNN model. Rather than using the model for inference on large data for automatic analysis, several 
tools are multitask and offer interactive visualization for manual annotation (Barz et al., 2023; 
Kurzhals, 2021; Kurzhals et al., 2017, 2020; Panetta et al., 2019). Kurzhals et al. (2017) introduced 
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an interactive labeling tool with automatic clustering combined with an analysis system. They went 
on to develop image-based (Kurzhals et al., 2020) and gaze patches techniques (Kurzhals, 2021) for 
dynamic AOI annotation that are conceptually similar to our proposed idea of merging gaze data 
with video. Barz et al. (2023) have implemented an approach based both on image classification and 
object detection. They used a few-shot learning method for its adaptability, with a 50-layer CNN 
(ResNet50). The classifier makes suggestions to the human operator of an interactive annotation 
tool. Based on user feedback, the model can be re-trained for better performance. Panetta et al. 
(2019) used semantic segmentation to create a graphical user interface that enables dynamic MET 
data visualization. Finally, some researchers have introduced methods to analyze egocentric videos 
without gaze data. Ma et al. (2016) use an optical flow algorithm, object and hand segmentation on 
egocentric videos to analyze the participant’s activity. Bertasius et al. (2017) determine the object 
of attention by analyzing action in egocentric videos. 

While approaches based on object detection or semantic segmentation offer many benefits, the 
models only play a role in first step of AOI analysis by mapping and tracking the detected object 
dynamically over time. After this has been done, the AOIs geometries discovered by the models 
must still be cross-referenced with the gaze coordinates using traditional geometry formulas. Object 
detection defines rectangular bounding boxes around detected objects that do not wrap them closely, 
which may bias the analysis (Holmqvist & Andersson, 2017; Kumari et al., 2021; Rim et al., 2021). 
The gaze point may be located inside the bounding box but on an empty area, thus returning a false 
positive or even targeting another unwanted object in the background. Several boxes may also 
overlap. Semantic segmentation addresses this issue, since AOIs are closely shaped after the objects 
(Panetta et al., 2020). However, it is more time-consuming to prepare training data for object 
detection or semantic segmentation than for image classification. Because these models’ tasks 
include image classification in addition to other tasks (localization, detection, or segmentation), 
these models would perform with less accuracy for the analysis at hand than image classification-
only models: SOTA for object detection on the COCO benchmark is 66% [BOXMAP metric] (Zong 
et al., 2023), 53.4% for semantic segmentation [mIoU metric] (Fang et al., 2023), and 93.4% for 
multi-label image classification [MAP metric] (Xu et al., 2023). Overall, object detection and 
semantic segmentation seem needlessly sophisticated for the type of AOI analysis at hand: it may 
not be necessary to know the location of an AOI to determine whether the gaze point is on it.  

Methods 
General Approach 

The question we sought to answer was: What percentage of the experiment’s time do participants 
spend dwelling at the screen? Although this analysis seems conventional, the means of carrying it 
out are not obvious, as we found out. At the time of data collection, we expected that the analysis 
software provided with the devices may allow us to perform the AOI dwell time analysis and thus 
answer our question. In the processed egocentric videos, the overlaying red gaze marker is seen 
entering and exiting the area of the 8-inch tablet handled by participants during the outdoor test. 
However, the tablet is viewed from constantly changing angles and often disappears from the 
camera’s field of view. As a result, any attempt to track its contours using the manufacturer’s moving 
AOI tool failed immediately. Subsequently, we tested two deterministic computer vision algorithms 
(Lucas-Kanade optical flow and template matching with normalized correlation coefficient), but 
they quickly proved inoperant: With optical flow, the process got interrupted as soon as the tracked 
object (the tablet) was not visible in a frame, while the smallest variation in the data (gaze point size 
or position) caused the template matching methods to dysfunction. Consequently, we figured that a 
classification model could detect the presence of the tablet in static frames extracted from videos. 
We also assumed that the same model could detect whether an overlaid gaze marker is located within 
the tablet or outside of it, provided the model is trained on labeled data representing the features of 
each category (in/out). Unlike other researchers who sought to address this challenge, we did not 
consider the use of an object detection model, despite the suitability of this approach, which mimics 
the steps of a manual analysis. In comparison with previous research, we introduce a more cunning, 
blind, and minimalistic approach featuring the use of SOTA ViT architecture (see Appendix C) for 
image classification where each frame needs not be parsed as thoroughly. Instead, the model learns 
to classify frames of the egocentric videos based on their visual appearance, including the visual 
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marker at gaze position. To our knowledge, such a minimalistic method was not described or 
documented elsewhere, possibly because it might not meet typical additional analysis requirements 
of other use cases. In our situation, this seemed to be the most suitable tool and it occurred to us that 
the method could offer a straightforward solution in some other circumstances, too. Our classifier 
naturally learns whether the overlaying gaze marker is located upon a specified object or not. It can 
be used to identify if gaze points are directed to as many objects as are found in the data, without 
any need for additional geometric calculations. As discussed in the introduction, although their task 
is different, classifiers’ SOTA is higher than object detection or semantic segmentation models. In 
the following sections, we outline the steps we took to carry out AOI dwell time analysis on our 
mobile eye tracking data.  

Data Collection 
Data was collected from November to December 2022 during the user test of a location-based 

augmented reality application (Mercier et al., 2023). We used Tobii Glasses 3 (see Figure 1(a)), 
which are lightweight but do not play well with prescription glasses wearers. Out of 54 participants 
in total, 48 were able and agreed to wear an eye tracking device. 7 recordings failed and were not 
saved on the SD card, resulting in a final sample of 41 participants’ egocentric videos captured at a 
sample rate of 50 Hz. Lasting approximately 15 minutes each, the total data amounted to 11 hours 
of video to analyze. The captured data was downloaded on a computer and processed with the Tobii 
Pro Glasses Analyzer software. In the software, we combined the egocentric videos with the 
unfiltered (as opposed to the optional “fixation”, “noise” or “low pass” filters available) gaze data, 
which is standard procedure for eye tracking data visualization. The resulting videos feature an 
overlaying red marker at gaze location were exported (see Figure 1(b)).  

Data Pre-processing 
We extracted frames from our 11 hours of video data at a rate of 10 frames per second, for a 

resulting 11 × 60 × 60 × 10 = 396000 images of 1920 × 1080 pixels. These figures are the result of 
a balance between a sampling rate that allows the rendition of smooth videos and a total amount of 
data points that can be easily inferred by the trained model on a conventional computer during later 
stages. The frames were organized into 41 directories (one per participant) for post-processing and 
data interpretation. The frames were rescaled to a square aspect ratio–as is the norm for computer 
vision models–with a resolution of 320 × 320 pixels. Although the pretrained model we used was 
trained on input data of 224 × 224 pixels, it is common practice and beneficial for accuracy to use a 
slightly higher resolution for best results with fine-tuning (Kolesnikov et al., 2020).  

Training Set and Manual Image Labeling  
In preparation of training, we randomly selected 1.98% of our dataset (= 7845 images) 

proportionally to each of the participants’ samples to prevent over/underfitting. The size of the 
training set was defined based on the estimated time it would take to manually label. In our situation, 
the tablet represents the moving AOI. We want the model to detect whether the gaze marker is in or 
out, so we defined two categories, based on the possible locations of the marker: “in” or “out”. We 
realized some of the frames in our dataset did not feature any gaze marker. This is due to the 
naturalistic setting of the data collection: sometimes the inward-facing cameras can’t retrieve the 
necessary data to resolve and estimate the gaze direction. We therefore added a “none” category for 
these frames without markers (see Figure 3). We used the free and open source tkteach tool (Mones, 
2018/2024) to label the frames. The process took 2 hours and 24 minutes. Measuring time will be 
useful as a reference to calculate the time saved by using our automated approach during later stages. 
The selected samples were distributed across the three categories as follows: “in” = 4803 (61.22%); 
“out” = 1795 (22.88%); “none” 1247 (15.9%).   
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Figure 3.  

Samples of the resized and labeled dataset. It comprises three classes: “in” where gaze point is in the tablet 
screen; “out” where gaze point is located outside of the screen; “none” where gaze point was not resolved 
and there is no overlaid visual marker.  

 

 

Model Training  
We used Huggingface’s “transformers” library, an API for loading checkpoints and datasets, 

fine-tuning, and deploying models. The process of fine-tuning a ViT model involves adapting a 
pretrained, general-purpose model to a smaller downstream task, such as image classification into 
the “in”, “out”, and “none” classes of our dataset. This enables the transfer of the pretrained model’s 
ability to represent images and extract their most meaningful features. Technically, fine-tuning 
consists in replacing the model’s prediction head (e.g., the last one or two layers of the neural 
network) and creating a new linear (feedforward) layer with our number of classes to perform a new 
classification task. The transformers library has a “ViTModel” class that will load a bare ViT Model 
that only outputs raw hidden states, without any specific head on top. We chose a ViT-Base 16 
checkpoint (Google, 2023), which is a transformer encoder model pretrained on the large ImageNet-
21k dataset (Deng et al., 2009) which contains 14 million images cropped at 224 × 224 pixels and 
21843 classes. It was fine-tuned on the mid-sized ImageNet 2012 dataset (Russakovsky et al., 2015) 
which contains 1.3 million images for 1000 classes (Dosovitskiy et al., 2021). We chose the “base” 
version which is reported to perform well on small datasets whereas ViT-Large and ViT-Huge–
which contain more hidden layers of bigger sizes–will underperform when trained on small datasets. 
ViT-Base 16 reports 88.55% accuracy on ImageNet classification, while SOTA’s current top-1 for 
ImageNet is 92.4% (Srivastava & Sharma, 2023). To train the ViT model with our data, we apply 
specific transformations to images so that the data fits the model’s expected input format. The 
pretrained model comes with a configuration file that specifies the appropriate size, image mean, 
and standard deviation for the architecture we use. A specific transformers class processes our data 
points and turns them into multi-dimensional matrices (torch tensors) which in this case are 3D 
arrays: two dimensions of size 224 for each line/column in the image and one dimension of size 3 
for the RGB value of each pixel. We then load the formatted dataset and the parameters it comes 
with, such as the number of classes, corresponding to the number of different labels in the training 
set. This creates a classification head with our own classes by defining the number of neurons in the 
last classification layer. At this point, training a custom model typically includes a data augmentation 
step: transformations (such as zoom, crop, inversion) are applied on the training set to artificially 
expand it and bring diversity, to foster the model’s ability to generalize. However, if future input 
data is finite, already known and well-represented in the training data, the model won’t need to 
generalize much, and data augmentation is therefore not useful. Finally, a series of hyperparameters 
is set to train the model, including but not limited to: 
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• Epochs: the number of times the model should process the entire dataset. We first ran a test with 
3 epochs then further trained the model for 10 epochs, with the instruction to save checkpoints 
files at the end of each epoch. 

• Batch size: the number of images that are processed per step. The bigger the value the faster the 
training, but it is generally limited by the available RAM and its ability to process large amounts 
of data simultaneously. We used a batch size of 24, which is standard. 

• Loss function: the type of algorithm used to minimize the loss value. Cross-entropy loss was 
used. Its output, ranging from 0 to 1, represents how far off the model’s predictions are from 
ground truth. The smaller the loss, the best the model performs (both on training and unseen 
data) with the current weights. Together with accuracy, it may be used to determine the optimal 
checkpoint.  

• Learning rate: the speed at which adjustments will be made in the weights of our neurons 
relative to the loss gradient descent. If the learning rate is too fast, the optimal weights will be 
overlooked, and we will miss the optimal checkpoint. If it’s too small, it will take too many 
steps to attain the optimal solution. An optimal rate should see the loss progress rather than 
jump up and down. We kept the pretrained model’s preset value of 5 × 10−5. 

• Evaluation metric: a model’s performance may be evaluated upon its upon accuracy, precision, 
or recall, during and after training. We used accuracy, which represents how often the model is 
correct overall.  

After (i) the training set was loaded; (ii) the headless pretrained model was loaded; and (iii) the 
hyperparameters were set, we started a training session set for a duration of 3 epochs by connecting 
to a NVIDIA T4 GPU through Google Colaboratory–a hosted Jupyter Notebook service providing 
free and paid access to computing resources. The training was set to evaluate the checkpoint at the 
end of each epoch, by testing its accuracy on a split of the dataset that was not used for training. The 
session lasted 11 minutes 47 seconds and the evaluation metrics reported 99.11% accuracy on the 
test data (see Appendix D). Observing that this peak accuracy was reached upon epoch no. 3, we 
resumed training on the last checkpoint with the same parameters for 10 additional epochs, to see if 
performance could be maxed. This additional training lasted 45 minutes and 48 seconds, but the 
training and validation loss curves and the accuracy plateaued after epoch no. 6 (see Appendix E). 
The training was set to save each session’s most accurate checkpoint, which were the one evaluated 
at epoch no. 3 and no. 6 (both underlined in Appendix D).  

 

Hold-out Validation  
Because fine-tuned models are highly customized, they cannot be benchmarked against one 

another, and their performance can mostly be appreciated contextually. Fine-tuned models are 
gradually easier to train efficiently as their task simplifies (i.e., from Imagenet’s 1000 categories to 
our 3). In machine learning, data scientists often train models on large training sets and test them on 
smaller amount of data. This is due to widespread belief that the larger the training set, the better the 
model will perform. However, the actual goal of a model is to be efficient when inferring on unseen 
data. Therefore, the training set shouldn’t be larger than required to meet this purpose and it may be 
useful instead to reserve a fair part of the labeled data for test purposes. If a model performs well on 
unseen data, it will likely perform well in a production environment. This is why hold-out validation 
of a model is made on an unseen dataset. Considering that our model was aimed at analyzing a finite 
quantity of specific, noisy data, its accuracy should be evaluated internally rather than based on its 
ability to generalize on external datasets. Additionally, rather than relying exclusively on the 
accuracy metrics as measured after each epoch as part of the training pipeline on the test set 
(automatically split from the training set), it is good practice to submit the model to realistic testing 
conditions, with a hold-out dataset that is consistent with the model future working conditions for 
additional evaluation. To that end, we used the frames extracted from one of the 41 participants’ 
video as a new hold-out test set. The goal is to perform hold-out validation of both the accuracy of 
our models and that of the manual labelling, for comparison. The video is 17 minutes and 20 seconds 
long, which represents 10402 frames that we labeled manually. From those, we removed 192 frames 
that were also part of the training set to avoid data leakage. The manual labeling took 3 hours and 
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43 minutes, which gives us an additional reference to calculate the time saved by using our 
automated approach on the rest of the data. We then ran the same data in parallel through both saved 
checkpoints and logged the classification results. It took 55 minutes to infer the 10210 frames 
through one model. Given the large number of frames, it’s just as likely that errors were made during 
manual labeling as by the classification models themselves. We therefore compared the results of 
each method (manual, model v1, model v2) and singled out frames for which at least one of the 
three methods had diverged. In 97.76% (9981/10210) of the cases, all three methods returned the 
same label, indicating a high probability of correctness. We manually reviewed the remaining 2.24% 
(229/10210) of divergent results and reviewed them individually to establish ground truth. Upon 
reviewing, it turns out the manual labelling was wrong in 86 out of the 229 contentious frames, 
which represents an overall accuracy rate of 99.16% on the entire dataset. Model v2 (checkpoint 
saved after epoch no. 6) was wrong in 126 out of the 229 contentious frames, which represents an 
overall accuracy rate of 98.76% on the entire dataset, which is 0.22% below the “advertised” 98.98% 
accuracy calculated during training. Finally, Model v1 (checkpoint saved after epoch no. 3) was 
wrong in only 67 out of the 229 contentious frames, which represents an overall accuracy rate of 
99.34% on the entire dataset, which is 0.23% higher than the expected 99.11% accuracy reported 
during training. This could be explained by the fact that the manually labelled data used for training 
was less accurately labelled than the automatically labelled data against ground truth. See Table 1 
for a summary of the hold-out validation results.  

Table 1. 

Hold-out validation results. 

Method “in” “out” “none” Errors1 Accuracy1 
Ground truth2 5714 (55.96%) 4298 (42.1%) 198 (1.94%) ø 100% 

Model v1 5691 (55.74%) 4318 (42.3%) 201 (1.96%) 67 (0.66%) 99.34% 
Manual labeling 5726 (56.08%) 4327 (42.38%) 157 (1.54%) 86 (0.84%) 99.16% 

Model v2 5608 (54.93%) 4394 (43.07%) 208 (2.04%) 126 (1.24%) 98.76% 
1 Error rate was calculated relative to ground truth, which we subtracted from 100% to obtain accuracy rate. 
2 Ground truth was established by manually assigning a new label to each frame for which Model v1, Model 
v2 and manual labelling returned different results. 

Additionally, in 95 out of the 229 contentious frames, both models returned different results, 
hinting at their individual biases. Upon looking closely at the frames on which the models differed, 
most situations saw the gaze point located on the very edge of the tablet (see Figure 4(a) & 4(b), 
where it was hard to draw the line even during manual labeling. Model v1 tends to consider these 
debatable situations as “in” whereas Model v2 often ruled them “out”, demonstrating an interesting 
discrepancy in their individual sensibilities. Model v2 also seemed to make more mistakes when 
another human was holding the tablet (see Figure 4(c) & 4(d))–which admittedly changes the 
perspective and visual appearance of the tablet–indicating that the model was possibly overfitting. 
Most situations where both models were wrong included frames where the gaze point was on the 
edge of the tablet as well, but also seldom cases, such as when the background contained no grass 
or urban elements such as cars or concrete (see Figure 4(d)). The models were apparently not able 
to detect the gaze marker when the background was made of concrete (see Figure 4(e)). When the 
(red) gaze marker overlays a red element (i.e., a car), the frame was mislabeled by the models. This 
probably could have been prevented by choosing a suitable gaze marker that is detectable across 
different backgrounds. Instances where manual labelling was wrong are very diverse and mostly 
seem to depend on the sequence (i.e., outliers were more frequently erroneous).  
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Figure 4.  

Samples of contentious frames: (a) & (b) Both models tended to mislabel the marker on the tablet’s edge, 
where manual labelling is also difficult. (c) & (d) Model v2 mislabeled other humans holding the tablet. (e) 
Concrete-only backgrounds were mislabeled more often than vegetation-backgrounds. (f) A red car in the 
back, no model detected the (also red) gaze marker.  

 

Inference  
We inferred the entire dataset (396 K images) through Model v1, who had showed the best 

results both during in-training validation and in the additional hold-out validation. The process 
was carried locally on a MacBook Pro (16 inch, 2019, 2,3 GHz Intel Core i9 with 8 cores, 64 Go 
2667 MHz DDR4 and an Intel UHD Graphics 630 card with 1536 Mo) and took approximately 35 
hours. The output was a .csv file containing the frames’ filenames in the first column and their 
assigned labels in the second. A separate file was generated separately for each participant’s video. 

Data Post-Processing and Data-Visualization 
After inference, we calculated dwell time for each participant on the tablet by summing up all 

labels and processing the .csv files using the free and open-source statistical analysis software 
Jamovi (see Figure 5). The average ratio of time that the gaze point was located “in” the tablet by 
all 41 participants was M = 61.83% (SD = 13.99). The average ratio of time that the gaze point 
was located “out” was M = 24.74% (SD = 10.24). On the remaining 13.43% (SD = 12.22), the 
gaze point could not be resolved by the MET device and the model found there to be “none” gaze 
marker in the frames. The individual result for each participant is shown on Figure 5.   
Figure 5.  

Results: Dwell time in/out of the tablet per user 
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We were further able to recreate a data visualisation video by engraving the inferred labels on 
each frame and assembling them back into a sequential video. We also integrated a screen capture 
of what is displayed on the participant’s tablet. This provides an insightful way to visualize the 
discovered knowledge on the source data itself (see Figure 6). A sample video can be seen at the 
following url: https://vimeo.com/912181285 (accessed on the 15th of March 2024). 
Figure 6.  

Screen captures of a post-processed video with engraved labels and tablet screen capture. The video is 
visible at the url: https://vimeo.com/912181285 (accessed on the 15th of March 2024). 

 

Results 
In this study, we aimed to develop a method to measure participants’ dwell time on the tablet 

screen. After pre-processing our data, manually labelling a training set, fine-tuning a model by 
training on our data and evaluating the model with a hold-out set, we obtained a multiclass 
classification model that performs slightly more accurately than manual labelling (99.34% vs 
99.16%). Thanks to this model, we were able to infer and label a large and noisy dataset of 396 K 
frames in 35 hours of autonomous computation process as opposed to the estimated 141.5 hours of 
manual labor it would have required otherwise. Our method enables efficient AOI dwell time 
analysis on MET data by automating the prohibitive and time-consuming manual data annotation 
process (Kredel et al., 2017; Panetta et al., 2019; Rim et al., 2021). It’s also important to consider 
that this work-time ratio depends on the amount of data: the more data there is to analyze, the more 
such an automatic process becomes relevant. Even when accounting for the time necessary to the 
manual labelling of the training set (2h24) as well as for the setting up of the training, the time saved 
is already considerable, not to mention the fact that 141 hours of such a repetitive, laborious task 
would have been mentally exhausting. By running our dataset through the most accurate model we 
trained, we were able to calculate the ratio of dwell time each of our 41 participants spent on the 
tablet screen, which is an important indicator in the context of our broader research on location-
based augmented reality for biodiversity education, and educational technology in general. The 
monitoring of dwell time interaction with our system helped us gain a deeper understanding of its 
strengths and limitations and is an important measure that may prove useful to decision-makers in 
the context of education and deployment towards a younger audience.  

Overall, the image classification approach we developed seemed best suited and more cost-
effective than using an object detection or semantic segmentation model for the task at hand. Based 
on their respective SOTA performance, the approach might also be more accurate, although a 
dedicated comparative study would be necessary to ascertain this. Because image classification is a 
simpler task than object detection of semantic segmentation, the results are likely to be more 
accurate, outperforming even manual labelling in addition to saving time. Image classification 
training data is also easier to produce, since it requires only labels as opposed to the drawing of 
localized bounding boxes for each frame. By relying upon ViT and its inferential understanding of 
an AOI’s thresholds rather than object tracking algorithms, our method bypasses some of the other 
methods’ most common pitfalls (need for data post-processing, lack of accuracy, minimal AOI size 

https://vimeo.com/912181285
https://vimeo.com/912181285
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requirement, etc.). It avoids the main disadvantages of using an object detector such as biases caused 
by rectangular/non-fitting and overlapping bounding boxes causing the gaze point to be 
miscategorized. Our method also avoids the main disadvantages of using a semantic segmentation 
model such as the complexity of annotating the training and test sets, additional steps for cross-
referencing the data, and lesser accuracy. 

Additionally, this approach could be further developed and applied to more complex tasks. This 
type of fine-tuned classification model could be trained to detect virtually anything that can be 
expressed through labels, beyond localized objects and AOI analysis. We discuss some of these 
perspectives in the following “discussion” section.  

Discussion 
The method we describe in this article aims to address the current gap in the availability of 

efficient tools for the analysis of dynamic AOIs. Through this, we intend to facilitate the use of 
mobile eye tracking tools for naturalistic studies, which may be discouraged by this gap. By building 
alternative methods that help with the automatic detection and annotation of visual attention to AOIs, 
eye tracking will become more convenient to use for naturalistic studies. Using an image classifier–
and particularly a ViT model–is an efficient way to make discoveries from egocentric video with 
gaze data. By dedicating a fraction of the time needed to process data manually, we show how a 
classification model can be used to extract the desired knowledge and perform AOI analysis on 
noisy MET data. The proposed method provides indexed labels for the frames of a given video, 
which makes it possible to perform various analyses (i.e., average glance duration, number of 
fixations, etc.). Glance duration and number of fixations can be calculated on the labelled data with 
simple scripts, but because we did not need them, we did not calculate them. This method does 
require time to familiarize oneself with deep learning tools and jargon, but people that are proficient 
with a programming language may be able to grasp it and use it for their own analysis.  

As already mentioned, object detection and semantic segmentation are viable alternative to 
perform similar analysis and more. Compared to those, our approach, based on image classification, 
may pose limitations to the depth of possible analysis, but this is made up for by its relative 
convenience of use. Using an image classification model does require one extra step: data must 
feature a visible overlaid gaze marker, which can be performed within the manufacturer’s analysis 
tools directly. Again, the cost of this extra step of work seems balanced by the absence of need for 
geometric calculation to cross-reference gaze data with that of the calculated AOIs, which can be 
substantial, especially in the case of non-rectangular AOIs. Object detection and semantic 
segmentation have their own limitations such as the generation of rectangular-shaped AOIs only (in 
the case of object detection), or the additional nontrivial steps required (in the case of semantic 
segmentation), in addition to reduced SOTA accuracy. It appears that limiting the process to 
classifying images (rather than also localizing or segmenting the AOIs, which are additional sources 
of bias) may provide more accurate results.  

These optimistic assessments must however be considered along with a series of limitations 
inherent to the approach. The approach heavily relies on data featuring rendered gaze points, which 
may cause problems when the marker color matches the object or the background. The rendering 
style of the gaze point may influence the results, and study would have to be conducted to determine 
best practice advice. The presented use case considers a single AOI with relatively simple geometry, 
which is not representative of most studies that use dynamic AOIs analysis, and the hold-out test 
was conducted on a single recording. A study would have to show whether the proposed method 
performs with more complex geometries. An approach based on attention maps would also help 
understand whether the model learns a geometric representation of AOIs or if it makes prediction 
based on the scene content, around the gaze point. Finally, it is important to consider the context of 
the very high level of customization of MET data. In this type of studies, data is highly specific and 
may present unique and unexpected traits in every situation. For this reason, while we think our 
approach would be transferable to other cases, this has yet to be demonstrated by applying it in other 
use cases, with data collected under different conditions. A methodical study would have to be 
conducted to weigh the costs and benefits of each approach.  
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While it may not be suitable for every AOI analysis situation, we think the simplicity of the 
approach also gives it potential to be applied to more sophisticated analysis. It shows the necessary 
versatility for the analysis of in-the-wild complex and dynamic scenery that other approaches may 
lack. In the use case presented in this study, the model could have been trained to classify more 
detailed features such as the species of the observed plants, or the type of content displayed on the 
screen. This also includes cases where the classifiable property of a situation is embodied 
holistically, in the entirety of the scene (e.g., some types of land use, weather, human interaction 
and behavior), as opposed to objects whose visible contours can be traced. The approach can be 
scaled-down to discern a subcategory (e.g., “blue-eyed wolf”) or scaled-up to detect a super category 
containing many–visually diverse–examples (e.g., “animals”). It could also be used to classify 
similarly looking habitat types (e.g., savanna, steppe, prairie, pampas are all grasslands, but only a 
trained biologist can easily distinguish them), etc. A classifier should be able to pick up any feature 
that’s visible to a trained human eye without being easy to describe with words or logical conditions, 
such as the weather (e.g., a rainy sky is generally immediately recognizable to the human eye, 
regardless of the multitude of formal features it contains). Arguably, this approach can be repurposed 
by using a variety of data. It is applicable in situations where the extraction of actionable knowledge 
from noisy data (not limited to MET data) would be difficult otherwise. In future research, we would 
like to put these prospects to the test by developing the approach to perform more demanding 
analysis.  

In brief, the method consists in applying a known, non-specific classification pipeline to a known 
problem that is specific to mobile eye tracking: dynamic and nonlinear moving AOI analysis. By 
combining a streamlined deep learning approach to address a methodical gap in the field of MET 
and AOI analysis, we obtain a somewhat innovative, automated, efficient, and structured approach.  
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Appendix A 

Image Data Embedding in Deep Learning 
The performance of deep learning architectures notably comes from their ability to process large 

data (both in the amount of data points or of samples) and to create meaningful representations–also 
known as embeddings–of high-dimensional data (in the number of variables or features for each 
data point). High-dimensional data can be intuited as “extremely high-resolution data”, and has 
surprising properties (Aggarwal et al., 2002). Visual data follows a typical structure that features 
spatial and temporal coherence (Khan et al., 2022). Consider two pictures that each represent a 
different human. In a high-dimensional space, the pictures are likely to share some specific, 
meaningful distance metrics (sometimes referred to as hidden topics or internal representations) 
along some dimensions, whereas a picture of a wolf will be more distant (as can be visualized on a 
t-SNE graph). However, if the wolf and one of the humans’ pictures both have blue eyes, their data 
points will share specific meaningful distance metrics along some dimensions that the two humans’ 
data points will not. However, processing high-dimensional data, let alone in large amounts, has 
prohibitive computational cost. Therefore, a critical aspect is dimensionality reduction, which 
involves the transformation of data from a high-dimensional space into a low-dimensional space, in 
a way that the reduced data retains some meaningful (latent) properties. The key is to identify which 
dimensions are most useful given a specific task (i.e., similarities between pictures of humans or 
blue-eyed mammals?). Various architectures adopt various strategies for data embedding. In the 
following, we provide general intuitions on CNN and Transformer architectures to highlight their 
key differences.  
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Appendix B 

Convolutional Neural Network 
Convolutional Neural Networks (CNNs) perform convolutions to compute the similarity 

between two signals. It can be pictured as the application of filters over portions of an image to 
detect features. The convolutional layers encode high-level features (e.g., humans pictured under 
varying conditions) into vector embeddings, which are numerical representations of data that retain 
their most meaningful features. These embeddings allow data points featuring semantically similar 
things (e.g., pictures of humans, pictures of blue-eyed mammals) to be clustered in a high-
dimensional space, which is a non-trivial task in the raw, full pixel space. CNN’s drawback is its 
computational power needs. Convolutions treat all pixels of input images equally, regardless of their 
importance. It’s also generally little aware of context and struggles to relate concepts that are 
spatially distant in an image (Wu et al., 2020).  
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Appendix C 

Vision Transformer 
The performance, flexibility and customization of deep learning algorithms has been 

continuously improving over the past few years. Introduced in 2017, the Transformer architecture 
(Vaswani et al., 2017) has gained world recognition through the popularization of large language 
models such as GPT-4 and LLaMa. Developed in 2020, Vision Transformer or ViT (Dosovitskiy et 
al., 2021) is a variation for computer vision tasks. ViT is based on the use of self-attention 
mechanisms instead of CNNs’ convolutions to build data representation. Self-attention works with 
sequential data and allows the representation of the interaction of each item of a sequence with all 
other items. To become sequential, high-dimensional data is reduced by splitting the image in non-
overlapping patches (of 16 by 16 pixels each, in the implementation we used) that are mapped and 
transformed into vector embeddings by the self-attention layers. These layers update each item of 
the sequence by retrieving contextual information from the complete sequence, which produces a 
deep semantic representation of each data point. The data can be described as points situated in a 
multidimensional space, where similar data (i.e. pictures of humans) is clustered (Khan et al., 2022). 
The main difference between CNN and ViT is that self-attention layers are dynamic filters 
(constantly recalculated) whereas convolutional layers are static filters. ViT represents images as 
semantic visual tokens can model relationships between tokens that are spatially distant. It allows 
to weigh different image parts based on their contextual importance (Wu et al., 2020). The choice 
of using ViT or CNN relies on many factors, including the task, available data, computational power 
needs, and training time. A literature review found ViT to be lighter, consuming fewer 
computational resources and taking less training time than CNN (Maurício et al., 2023). ViT is found 
to be particularly performant when pretrained with self-supervision on large unlabeled data, then 
fine-tuned to a specific task. Fine-tuning builds on knowledge that an existing model has learned 
from previous data. Fine-tuning a pretrained ViT model with a small labeled dataset is reportedly 
more efficient and accurate (Dosovitskiy et al., 2021), and to our knowledge has not been applied 
to MET data analysis yet. Most recent research combines benefits of both CNN and ViT by using 
convolutions to create feature maps fed as patches in ViT rather than raw images. 
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Appendix D 

Training results. 
Epoch Step Training Loss Validation Loss Accuracy 

1 73 0.1179 0.0977 98.85% 
2 147 0.06 0.0693 98.98% 
3 219 0.0376 0.0604 99.11%1 
4 292 0.024 0.0769 98.09% 
5 366 0.0236 0.1111 97.45% 
6 440 0.0172 0.0542 98.98%2 
7 514 0.0114 0.0630 98.85% 
8 587 0.0051 0.0674 98.60% 
9 661 0.0044 0.0640 98.85% 
10 735 0.0037 0.0646 98.85% 
11 809 0.0034 0.0652 98.85% 
12 882 0.0032 0.0656 98.85% 
13 949 0.0032 0.0657 98.85% 

 

1 After epoch 3, training reached best accuracy overall (as evaluated on a test set that was split from the training 
set) and the checkpoint was saved as Model v1. 
2 After epoch no. 6, training reached best accuracy of the second training run and the checkpoint was saved as 
Model v2. 
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Appendix E 

Training plot.  
The accuracy curve (dotted orange on the graph) reached 98.85% at the end of epoch no. 1 and 

almost capped from thereon. Peak accuracy was reached after epoch no. 3. The validation lost 
lowest scores were also observed at epoch no. 3 (for the first training session) and epoch no. 6 (for 
the second).  
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