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Eye movement detection algorithms (e.g., I-VT) require the selection of thresholds to identify eye 
fixations and saccadic movements from gaze data. The choice of threshold is important, as thresholds 
too low or large may fail to accurately identify eye fixations and saccades. An inaccurate threshold 
might also affect the resulting visual scan path, the time-ordered sequence of eye fixations and 
saccades, carried out by the participant. Commonly used approaches to evaluate threshold accuracy 
can be manually laborious, or require information about the expected visual scan paths of participants, 
which might not be available. To address this issue, we propose two different computational 
approaches, labeled as “between-participants comparisons” and “within-participants comparisons.” 
The approaches were evaluated using the open-source Gazebase dataset, which contained a bullseye-
target tracking task, where participants were instructed to follow the movements of a bullseye-target. 
The predetermined path of the bullseye-target enabled us to evaluate our proposed approaches against 
the expected visual scan path. The approaches identified threshold values (220°/s and 210°/s) that 
were 83% similar to the expected visual scan path, outperforming a 30°/s benchmark threshold 
(41.5%). These methods might assist researchers in identifying accurate threshold values for the I-
VT algorithm or potentially other eye movement detection algorithms. 
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Introduction 
Exploring how humans visually search their environment has been an important topic in eye-

tracking research. One way to study how we visually explore the environment is to analyze visual 
scan paths, the time-ordered sequence of eye fixations and saccades (Josephson & Holmes, 2002), 
created throughout a task. Visual scan paths have been analyzed across various domains, such as 
healthcare (Hermens, Flin, & Ahmed, 2013; Davies et al., 2018), air traffic control (Mandal and 
Kang, 2018; Kang and Landry, 2014; Palma Fraga et al., 2021; Palma Fraga, Kang, & Crutchfield, 
2024), aircraft piloting (Robinski & Stein, 2013; Naeeri, Kang, and Palma Fraga, 2022), automobile 
driving (Jeong, Kang, and Liu Y, 2019), deepwater horizon operations (Raza et al., 2023), education 
(Tang et al., 2016; Špakov et al., 2017), among others. 
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In order to create visual scan paths or scan path sequences (Figure 1), researchers apply eye 
movement detection algorithms, such as the Velocity-Threshold Identification algorithm (I-VT) 
(Salvucci & Goldberg, 2000), to identify eye fixations and saccades from the gaze data collected by 
an eye tracker. The I-VT algorithm classifies gaze samples collected by an eye tracking device as 
eye fixations or saccadic movements, based on a gaze velocity threshold. More specifically, if the 
gaze velocity between two gaze points is less than the gaze velocity threshold, the points are classi-
fied as belonging to an eye fixation, otherwise, it is considered to be a saccadic movement (Salvucci 
& Goldberg, 2000).  

Figure 1 

Representative examples of a visual scan path, highlighting one eye fixation and a saccadic 
movement. The scan path sequence created by the visual scan path is ABCDEF. 

 

The choice of threshold value of the I-VT algorithm is important, as it might affect the resulting 
visual scanpath that can be created. Prior research has shown how the ability of eye movement de-
tection algorithms to properly identify and classify eye fixations and saccades may be influenced by 
the threshold selected (Salvucci & Goldberg, 2000; Andersson et al., 2017). In the case of the I-VT 
algorithm, different gaze velocity thresholds can affect the number of eye fixations identified (Ko-
mogortsev et al., 2010). Therefore, different visual scan paths might be created at different threshold 
values due to the varying number of eye fixations and saccadic movements identified across thresh-
olds (Yoo, Jeong, & Jang, 2021).  

Furthermore, the threshold values capable of creating accurate visual scan paths might vary be-
tween studies. The accuracy of threshold values might be affected by differences in participant pop-
ulation, such as older individuals (Blignaut & Beelders, 2009), the task to be completed and the 
stimuli presented (van der Lans et al., 2011), the device (e.g., mobile phone) in which participants 
complete tasks (Trabulsi et al., 2021), among others. As a result, a gaze velocity threshold of 30 °/s 
might be accurate when investigating how syntax highlighting affects code comprehension 
(Beelders & du Plessis, 2016), while a gaze velocity threshold of 60 °/s might be accurate when 
participants are tasked with reading text (Leube, Rifai, & Wahl, 2017). In order to create accurate 
visual scan paths using the I-VT algorithm, researchers need to select appropriate threshold values 
for their respective study. 

One way to identify an appropriate threshold value is to evaluate how the scan paths sequences 
created at multiple thresholds differ from an ideal scan path sequence (i.e., the scan path sequence 
actually carried out by the participant). Prior studies have successfully used this approach by calcu-
lating the string edit distance of scan path sequence created at a threshold value to the ideal scan 
path sequence (Blignaut & Beelders, 2009; Hareżlak & Kasprowski, 2014). The thresholds that re-
sulted in scan path sequences that were the most similar to the ideal scan path sequence were con-
sidered to be accurate threshold values. 

However, such an approach requires the researcher to know the likely eye movements that could 
take place ahead of time (i.e. an ideal visual scan path), which might not always be possible (Startsev 
& Zemblys, 2023), or to manually create the ideal scan path sequence from the gaze data collected, 
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which can be very time consuming (Blignaut & Beelders, 2009). Consider the process of manually 
identifying the ideal scan path sequence of a participant whose eye movements were collected using, 
for example, the Tobii Pro Glasses II eye tracker, which collects gaze data every 10 milliseconds. 
For a short 5 second duration experiment, a researcher would need to manually process approxi-
mately 500 gaze points in order to define the ideal scan path sequence. 

Furthermore, to the best of our knowledge, only one prior study has proposed an approach to 
identify appropriate thresholds when ideal visual scan path sequences are not available (Blignaut, 
2009). More specifically, their approach consists of creating multiple variations of the Dispersion-
Threshold Identification (I-DT) algorithm, where each variation uses a different definition of dis-
persion. To identify an accurate threshold, the scan path sequences created by one algorithm varia-
tion are then compared to the scan path sequences created by every other algorithm variation by 
calculating their string edit similarity. The threshold value at which all variations of the I-DT algo-
rithm created similar scan path sequences are then considered to be the accurate thresholds. How-
ever, such an approach relies on the researcher’s subjective judgement to create multiple variations 
of the eye movement detection algorithm used in order to create and compare multiple scan path 
sequences. Furthermore, the I-DT algorithm is not readily available across commonly used eye 
tracking software, such as Tobii Pro Lab, which uses a version of the I-VT algorithm (Olsen, 2012). 
Therefore, it might be challenging for some researchers to carry out the approach in their respective 
studies. 

As a result, the present work expands upon these prior research efforts by introducing two com-
putational approaches, between-participant and within-participant comparisons, to compare scan 
path sequences in order to identify and select accurate thresholds for the I-VT algorithm. In more 
detail, between-participants comparisons calculate the average similarity between the scan path se-
quences of multiple participants at the same threshold value. On the other hand, within-participant 
comparisons calculate the average similarity of the scan path sequence created at one threshold value 
to the scan path sequences created at every other threshold value for a single participant. To evaluate 
the ability of the two approaches to identify acceptable threshold values, we apply them to the open-
source GazeBase dataset (Griffith et al., 2021), which contains the eye movements of 322 partici-
pants instructed to follow the movements of a bullseye target changing locations on a computer 
display. In addition, the performance of the acceptable threshold values identified by each method 
are compared to a benchmark 30 °/s gaze velocity threshold, a threshold value recommended in 
some implementations of the I-VT algorithm (Olsen, 2012). 

The paper is structured as follows. The two methods are introduced and explained alongside 
worked-out examples. Afterwards, the methods are applied to the GazeBase (Griffith et al., 2021) 
dataset. Lastly, the results are presented and interpreted in the discussion section, alongside limita-
tions and avenues of future research. 

Proposed algorithms 
String edit similarity of scan path sequences as a measure to evaluate and select 
thresholds 

When selecting the gaze velocity threshold to identify eye fixations and saccadic movements 
using the I-VT algorithm, a researcher may inadvertently select a gaze velocity threshold that may 
be too low or too high (Olsen 2012, Trabulsi et al., 2021).  

When the gaze velocity threshold is too low, gaze samples belonging to eye fixations can be 
misclassified as saccadic movements, which can lead to an eye fixation being erroneously split into 
separate eye fixations (Salvucci & Goldberg, 2000). In some cases, a threshold too low might even 
fail to identify that an eye fixation took place at all, as all the gaze samples belonging to that eye 
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fixations are classified as belonging to a saccadic movement. Consider the example presented in 
Figure 2. Using a threshold too low (Figure 2(b), left) identified the eye fixations B, E, F, G, H, and 
I carried out by the participant. However, eye fixation A was split into two eye fixations, while eye 
fixations C and D were not identified at all. As a result, the scan path sequence created with a thresh-
old contains the split eye fixation and does not contain the two missing eye fixations. In addition, it 
also indicates that the participant carried out eye movement transitions that never took place, such 
as eye fixation B followed by eye fixation E. 

On the other hand, when the gaze velocity threshold is too high, gaze samples belonging to sac-
cadic movements might be misclassified as belonging to an eye fixation. In such cases, it might be 
possible that two eye fixations separated by a saccadic movement could potentially be combined 
into a singular eye fixation. Furthermore, the combined eye fixation may also be placed at a location 
that the participant never actually observed (Blignaut, 2009). Consider the example provided in Fig-
ure 2. A threshold too high (Figure 2(b), right) combined multiple eye fixations together, such as 
eye fixations B and C into a single eye fixation (BC), as well as eye fixations F and G into a single 
eye fixation (FG). Lastly, the combination of multiple eye fixations impacted the location the eye 
fixations (BC) and (FG), placing them at a location that the participant never observed. 

However, somewhere in between the thresholds that are too low or too high exists a range of 
thresholds that lead to acceptable performance – those threshold values can accurately identify the 
eye fixations and saccadic movements carried out by participants, as can be observed in Figure 2(b, 
center). 

Figure 2 

Simplified example showcasing the impact of thresholds values on scan paths sequences. 

 
(a) 

 
(b) 
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Note: Figure 2(a) contains the visual scan path (and the scan path sequence) of a participant in-
structed to follow a dot (i.e., stimuli) moving in an ideal manner back and forth across the display; 
Figure 2(b) showcases simple examples of visual scan paths (and the scan path sequences) created 
at thresholds too low, acceptable, and too high. 

As mentioned previously, one potential approach to determine whether a threshold may be too 
low, acceptable, or too high is to systematically compare scan path sequences created at each thresh-
old to an ideal scan path sequence based on their string edit distance (Blignaut & Beelders, 2009; 
Hareżlak & Kasprowski, 2014). The string edit distance between two scan path sequences is defined 
as the number of insertions, deletions, and substitutions needed to convert one scan path sequence 
into the other sequence, normalized by the length of the largest sequence (Privitera & Stark, 2000). 
The string edit distance can be converted into a similarity measure by subtracting 1 from the distance 
value (Privitera & Stark, 2000). Prior studies that have carried out this systematic approach, com-
paring visual scan path sequences to an ideal scan path sequence (Blignaut & Beelders, 2009; 
Hareżlak & Kasprowski, 2014), have showcased that the relationship between threshold values and 
the string edit distance to an ideal scan path sequence, depicted in Figure 3 as the equivalent simi-
larity value, appears to increase at low thresholds, remain stable for a range of thresholds, after 
which it begins to decrease. 

Figure 3 

Example visualization of the relationship between threshold values and string edit similarity to an 
ideal scan path sequence. 

 
However, in many instances, an ideal scan path sequence is not readily available for researchers 

to compare with in order to evaluate thresholds. To address this challenge, the following section 
introduces two methods to approximate the relationship between thresholds and string edit similarity 
to facilitate the selection of accurate threshold values. 

Between-participant comparisons 
Under controlled experimental conditions, such as those containing participants with similar 

characteristics, such as expertise (Underwood, 2007), given the same task and set of instructions 
(DeAngelus & Pelz, 2009; Borji & Itti, 2014), participants might carry out scan path sequences that 
are very similar to each other. Under such circumstances, it might be possible to attribute some 
differences in scan path sequences between participants to the thresholds values selected. Accurate 
threshold values might lead to higher similarities between scan path sequences of participants, while 
thresholds too low or too high might have lower similarities due to missing eye fixations, split eye 
fixations, as well as the presence of unlikely transitions in scan path sequences. 

Leveraging this assumption, we adapt the between-participant comparisons similarity metric, 
commonly used in prior eye tracking research (Duchowski et al., 2010, Anderson et al., 2015), to 
evaluate the string edit similarity between participants’ scan path sequences. In our implementation, 
the between-participant comparisons similarity is calculated across all threshold values explored, 
rather than at a singular fixed threshold as done in prior studies.  
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The calculation of between-participant comparisons similarity at each threshold is as follows. 
Let 𝑋! = #𝑥", 𝑥#, … , 𝑥$ 	(	1	 ≤ 𝑗 ≤ 𝑝, 𝑗 ∈ ℕ}, where 𝑋! contains the set of scan path sequences at the 
𝑖th threshold for all 𝑝 participants and 𝑥$ represents the scan path sequence of the 𝑗th participant. 
From the set 𝑋!, one can define all 𝑚 two-scan path sequence combinations between participants at 

the 𝑖th threshold as 𝑊! = 3𝑋!2 5 = #6𝑥$ , 𝑥%7(	1 ≤ 𝑗 < 𝑘 ≤ 𝑝, 𝑗 ∈ ℕ, 𝑘 ∈ ℕ}. For all combinations, the 

average string edit similarity ℎ;! at the threshold 𝑖th between all participants can then be calculated 
using equation (3). 

ℎ"! =
1
𝑚 & 𝑆(𝑥" , 𝑥#)

$%&,%''	∈	*(

				∀	𝑖 ∈ {1,2… , 𝑡} (3) 

Figure 4(a) showcases an example of the between-participant comparisons similarity calculated 
for the scanpath sequences created at two thresholds (1 and 2) carried out by three participants (P1, 
P2, and P3). Equation (3) is applied in Figure 4(b) to compare all possible combinations of two-scan 
path sequences among participants. The results indicate that the threshold with the highest average 
string edit similarity between participants would be threshold 2 (0.716 at threshold 2 vs 0.666 at 
threshold 1). 

Figure 4 

Example of between-participant comparisons calculations for three participants who were in-
structed to follow the ideal movement of a blue dot on a display.  

 
                                                (a)                                                                               (b) 

Note: Figure 4(a) contains the visual scan paths of participants at each threshold defined by yellow 
circles (i.e., eye fixations) indexed in alphabetical order connected with black arrows (i.e., the sac-
cadic movements). The movement of the blue dot is denoted by transparent blue circles connected 
with blue arrows. The letter assigned to each eye fixation is based upon whether the eye fixation 
took place within the corresponding blue dot. There are a total of 3 combinations possible between 
participants at each threshold (i.e., (P1, P2), (P1, P3), and (P2,P3)). Figure 4(b) showcases the 
calculations of the average string edit similarity between participants at the 𝑖th threshold using 
equation (3).  
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Within-participant comparisons 
Another way to identify accurate thresholds might be to compare the scan path sequences created 

at one threshold to the scan path sequences created at every other threshold.  

Scan path sequences created at a threshold too low or too high might have a lower similarity to 
a scan path sequence created at an accurate threshold. As mentioned previously, scan path sequences 
created at threshold too low or too high might have missing eye fixations, contain unlikely transi-
tions between eye fixations, or even split one eye fixation into multiple eye fixations. On the other 
hand, scan path sequences created at an accurate threshold might contain fewer errors (e.g. missing 
eye fixations) or none at all. Therefore, one might expect that the similarity between the scan path 
sequences created at an accurate threshold, and one created at threshold too low or too high, ought 
to be lower than the similarity between scan path sequences created at accurate thresholds. 

Based on this assumption, we propose the within-participant comparisons similarity metric to 
calculate the average string edit similarity of the scan path sequence of one threshold to the scan 
path sequences created at every other threshold. Comparing the scan path sequence created at a 
threshold to the scan path sequences created at every other threshold might serve as a way to ap-
proximate the relationship shown in Figure 3. 

The calculation of the proposed within-participant comparisons similarity for a single participant 
is as follows. Let 𝐹 = {𝑓", 𝑓#, … , 𝑓! 	|	1	 ≤ 𝑖 ≤ 𝑡, 𝑖 ∈ ℕ} represent the set of scan paths sequences cre-
ated at each threshold, where 𝑓! represents the scan path sequence created at the 𝑖th threshold, and 𝑡 
the total number of thresholds. The average string edit similarity 𝑣! of the scanpath sequence at 
threshold 𝑖 to the scan path sequence at every other threshold can be calculated using equation (4). 

𝑣! =
1

𝑡 − 1 & 𝑆(𝑓! , 𝑓")
+

",-;!/"

							∀	𝑖 ∈ {1,2 … , 𝑡} (4) 

Where 𝑆 represents the string edit similarity function (explained in detailed below in the methods 
section), 𝑓! and 𝑓$ the scan path sequences at thresholds 𝑖 and 𝑗 in the set 𝐹. Note that the average is 
calculated by dividing 𝑡 − 1, instead of simply 𝑡, as there is a total of 𝑡 − 1 similarity calculations. 
The similarity between one scan path sequence to itself is never calculated (i.e., 𝑖 ≠ 𝑗). 

In addition, when considering multiple participants, the outputs of equation (1) can be averaged 
across participants to identify the threshold that creates the most similar scan path sequence for all 
participants. Let 𝑉 = #𝑣!$ 	(	1 ≤ 𝑖 ≤ 𝑡, 1 ≤ 𝑗 ≤ 𝑝, 𝑖 ∈ ℕ, 𝑗 ∈ ℕ} contain the set 𝑉 of average string 
edit similarity 𝑣!$ at the 𝑖th threshold for the 𝑗th participant, where 𝑝 represents the total number of 
participants. Afterwards, the average string edit similarity �̅�! at threshold 𝑖 across participants can 
be calculated using equation (5). 

�̅�! =
1
𝑝&𝑣!"

0

",-

							∀	𝑖 ∈ {1,2 … , 𝑡} (5) 

Figure 5(a) shows an example of the within-participant comparisons similarity being calculated 
for the scan path sequences at three thresholds (1, 2, and 3) carried out by two participants (P1 and 
P2). Equation (4) is applied in Figure 5(b and c) to calculate the threshold that creates the scan path 
sequence most similar to the scan path sequences at every other threshold for each participant. 
Lastly, equation (5) is applied in Figure 5(d), showcasing that the threshold with the highest average 
similarity to every other scan path sequence among the two participants would be threshold 2 (0.59 
at threshold 2 vs 0.565 at threshold 1 and 0.525 at threshold 3).  
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Figure 5 

Representative example of the calculation of the average string edit similarity at each threshold 
across two participants who were instructed to follow the ideal movement of a blue dot on a display.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

Note: Figure 5(a) contains the visual scan paths of participants at each threshold defined by yellow 
circles (i.e., eye fixations) indexed in alphabetical order connected with black arrows (i.e., the sac-
cadic movements). The movement of the blue dot is denoted by transparent blue circles connected 
with blue arrows. The letter assigned to each eye fixation is based upon whether the eye fixation 
took place within the corresponding blue dot. Figure 5(b and c) showcases the calculations of the 
average string edit similarity at the 𝑖ththreshold for each participant using equation (4). Figure 5(d) 
contains the calculation of the average string edit similarity at each threshold across two partici-
pants using equation (5).  

Evaluation  
The two approaches proposed in the previous chapter were applied to the Random Saccade 

(RAN) task in the GazeBase dataset (Griffith et al., 2021). The task consisted of participants fixating 
and following the movement of a bullseye target that changed locations throughout a computer dis-
play. The GazeBase dataset and the RAN task were selected as an ideal scan path sequence is readily 
available for each participant (i.e., the movement of the bullseye target participants were instructed 
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to follow), allowing us to evaluate the performance of both methods, as we assume that we do not 
know what the ideal scan path sequence is. 

In this section, we first briefly introduce key elements of the Gazebase dataset, summarized from 
the original work of Griffith et al (2021), to facilitate comprehension of the present work. For addi-
tional details regarding Gazebase, we encourage readers to visit their original work (Griffith et al., 
2021). Afterwards, the steps taken to process the eye movement data are explained, including defin-
ing the ideal scan path sequences and the calculation of string edit similarity. Lastly, the data analysis 
procedure is described. 

A. Gazebase dataset 
A total of 322 college students (171 self-identifying as male, 151 as female; average 21.99 years 

of age, SD: 4.22) at Texas State University completed the RAN task. A representative visualization 
of the task can be observed in Figure 6. Participants were instructed to fixate and follow a bullseye 
target. Participants were shown 100 bullseye targets, each appearing on the display for 1 second, 
after which it would disappear and re-appear on another location on the display. The locations bull-
seye targets appeared were randomly selected across participants, with the exception of the starting 
and ending locations, which were both at the center of the display. 

Figure 6 

Example visualization of the RAN task carried out by participants in the GazeBase dataset. 

 
Note: A total of 100 bullseye targets were shown to participants. The location of the targets was 
different for each participant. This image was created based on the example included in the Gaze-
Base dataset. 

During the task, monocular eye movements of the left eye were collected using the EyeLink 
1000 at a sample rate of 1000 Hz (SR Research, Ottawa, Ontario, Canada). Participants were seated 
550 mm away from a 1680 x 1050 pixels (474 x 297 mm) computer monitor. The participants’ heads 
were stabilized using a chin and forehead rest. The eye tracker was calibrated to the participants eye 
movements following a 9-point calibration procedure. Afterwards, a validation procedure was con-
ducted to ensure the accuracy of the eye movement data. The collected gaze samples and target 
bullseye positions were converted to degrees of visual angle (dva) based on the recording set-up 
(e.g., distance the participant was seated from the computer). 

B. Processing eye movement data 
Participants with more than 10% of gaze samples missing, which may be missing as a result of 

blinking or partial occlusions of the eye as described by the authors of GazeBase (Griffith et al., 
2021), were removed from the analysis. Only 10 participants met the more than 10% missing sam-
ples criteria. As a result, only eye movements from 312 out of 322 participants were included in the 
final analysis. 

The I-VT algorithm was applied to identify eye fixations and saccadic movements from the par-
ticipant’s eye movements. A minimum eye fixation duration of 60 milliseconds (ms) was used, the 
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default value in the Tobii implementation of the I-VT algorithm (e.g., Olsen, 2012). As the goal of 
the present work was to identify the range of acceptable gaze velocity thresholds, the I-VT algorithm 
was applied using a range of gaze velocity thresholds between 10 °/s and 400 °/s in increments of 
10 °/s. Prior studies investigating the impact of the gaze velocity threshold have used similar thresh-
old ranges. For instance, Larsson (2010) used a range between 0 °/s and 400 °/s while Komogortsev 
et al. (2010) used a range between 5 °/s and 300 °/s. 

Although the I-VT algorithm identifies eye fixations and saccadic movements, additional pro-
cessing is needed to determine whether an eye fixation took place on a bullseye target at the time it 
appeared on the screen. To achieve this, areas of interest (AOIs) were created for each bullseye-
target (resulting in a total of 100 AOIs) and eye fixations were mapped to AOIs. The mapping pro-
cess consisted of aligning eye fixations and AOIs temporally (i.e., if the eye fixation took place 
during the time a particular AOI was visible) and spatially (i.e., if the eye fixation took place on the 
AOI) (e.g., Kang et al., 2016). The shape of each AOI was defined as a circle to match the circular 
shape of the bullseye targets, with a radius of 2 dva. The radius of 2 dva was selected to account for 
the maximum validation error as described in GazeBase (Griffith et al., 2021), with the exception 
of outliers. The validation error was defined as the Euclidean distance between the position the 
participant was instructed to look at and the position the eye tracker reported they were looking at.  

To create the scan path sequences for each participant, AOIs were included in the participant’s 
scan path sequence if the mapping procedure indicated that an eye fixation took place within the 
AOI. Consider the scan path sequence of participant 1 at threshold A shown in Figure 4(a). In this 
example, one eye fixation was determined to have taken place in AOIs A, B, D, and G (denoted by 
the blue AOI at the location of the stimuli). As such, they are included in the scan path sequence of 
the participant in the order they were fixated on (i.e. ABDG). However, other AOIs that appeared 
in the environment are not included, as no eye fixations appeared to have taken place on the AOI at 
that gaze velocity threshold value.  

In addition, multiple consecutive eye fixations on the same AOI were reflected in the partici-
pant’s visual scan path sequence. If a participant appears to fixate on AOI A two consecutive times, 
such as when an eye fixation on an AOI is erroneously split into two, the scan path sequence would 
include the AOI A twice (i.e., AA) rather than only once (i.e., A). We note this distinction as a pre-
processing step when creating scan path sequences in some eye tracking studies is to group consec-
utive eye fixations on the same AOI together (e.g. Goldberg & Helfman, 2010; Eraslan, Yesilada, 
& Harper, 2016). Furthermore, note that in the current study, due to the presence of 100 AOIs, the 
AOIs were represented by double digit names (i.e., 00 for the first bullseye target, 01 for the second 
bullseye target, etc.). Lastly, the ideal visual scan paths were created based on the order the bullseye 
targets participants were instructed to follow appeared. More specifically, the ideal sequence created 
for each participant was: 00, 01, 02, … 98, 99 (separated by commas for legibility). 

Finally, to calculate the string edit similarity between the ideal scan path sequences and the scan 
path sequences, the approach described in Privitera & Stark (2000) was used. Here, the total number 
of insertions, deletions, and substitutions needed to convert one string into another was divided by 
the length of the longest sequence to calculate the string edit distance, which was then subtracted by 
1 to calculate the similarity. However, given the high number of AOIs defined in the study, and their 
two-digit naming convention, the insertion, deletions, and substitutions were carried out at the two-
digit level. Consider the following example scan path sequences containing two-digit AOIs: 
01,02,03,04,05 (separated by commas for legibility) and 03,04,05. To convert the latter scan path 
sequence to the former, two AOIs must be inserted into the scan path sequence: 01 and 02. Thus, 
the string edit similarity between these two scan path sequences would be calculated as 1 − 32 5H 5 =
0.6. In other words, the two scan paths sequences are 60% similar to each other. 
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C. Data analysis 
The between-participants and within-participants comparisons were applied for all participants 

across multiple gaze velocity thresholds ranging from 10 °/s and 400 °/s in increments of 10 °/s.  

In addition, the string edit similarity of the scan path sequences at each gaze velocity threshold 
to the ideal scan path sequence participants were instructed to follow was calculated. Gaze velocity 
thresholds that create scan path sequences with higher string edit similarity to the ideal scan path 
sequence are considered to be more accurate. In other words, said gaze velocity thresholds create 
visual scan paths that more accurately represent the eye movements participants were instructed to 
carry out (i.e. follow the movements of a target on a computer screen). As a result, the ‘ideal’ string-
edit similarity values serves as a benchmark that can be used to compare the string-edit similarity 
values calculated by applying the between and within comparison methods. 

Spearman’s rank correlations (𝑟)) were calculated to evaluate the strength of the association be-
tween the string edit similarity values at each proposed method, and the string edit similarity values 
to the ideal scan path sequence. A significance level of α = 0.05 was used for the statistical test to 
evaluate whether the correlations were statistically significant. 

Accurate gaze velocity thresholds were identified by visually observing the plots created for the 
two methods  and the ideal scan path sequences. More specifically, the thresholds were identified 
by visually observing a high and stable region of similarity values, which both researchers agreed 
upon. The upper and lower bounds of the range of acceptable thresholds identified by each method 
were compared to those found for the ideal scan path sequence. 

Lastly, the gaze velocity threshold values at which the highest string edit similarity occurs when 
applying within-participant and between-participant comparisons were identified. The accuracy of 
these gaze velocity threshold values was compared to the accuracy of a 30 °/s benchmark threshold 
value, a default value used in some implementations of the I-VT algorithm (Olsen, 2012). A poten-
tial threshold value a researcher might find and use in their implementation of the I-VT algorithm 
without verifying its accuracy, an issue highlighted in prior eye tracking research (Komogortsev & 
Karpov, 2013; Orquin & Holmqvist, 2018). 

     Results   
The average string edit similarity values for between-participants comparisons (𝑟) = 0.86, p-

value < 0.01) and within-participants comparisons (𝑟) = 0.99, p-value < 0.01) were highly correlated 
with the ideal similarity values (Figure 7(b)). In addition, the average string edit similarity values of 
both methods were highly correlated with each other (𝑟) = 0.89, p-value < 0.01). 

The within-participant comparisons similarity and the ideal similarity values followed similar 
trends across threshold values (Figure 7(a)). In more detail, the similarity values continuously in-
crease until a maximum value is reached, after which the similarity values begin to decrease. Both 
trends reached a maximum similarity value (0.719 for within-participant comparisons similarity and 
0.833 for ideal similarity) at the same gaze velocity threshold (220 °/s).  

On the other hand, the between-participant comparisons similarity and the ideal similarity values 
showcased slightly different trends. More specifically, the between-participant comparisons trend 
contains a set of thresholds (60 °/s to 100 °/s) where the similarity values increase at a very small 
rate (an average increase of 0.00186 at each threshold), which is not present in the ideal similarity 
trend nor in the within-participant comparisons similarity trend. Afterwards, the between-participant 
comparisons similarity values continuously increase until a maximum similarity value (0.716) is 
reached at 210 °/s, close to the threshold value (220 °/s) at which the ideal similarity trend reached 
its maximum value. 
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Figure 7 

Plot of the string edit similarity over the range of thresholds evaluated (10 °/s to 400 °/s) for the 
between-participant comparisons (red line), within-participant comparisons (blue line), and the 
ideal scan path sequence string edit similarities (black line), as well as the Spearman correlations 
between the trends. 

 
(a) (b) 

The accurate gaze velocity threshold values identified using between-participant and within-par-
ticipant comparisons largely overlapped with the threshold values identified when comparing to the 
ideal scan path sequence (Figure 8). The threshold range selected for the between-participant com-
parisons ranged from 180 °/s to 240 °/s, while the threshold range for the within-participant com-
parisons ranged from 160 °/s to 280 °/s, with both ranges having an average similarity value of 0.70 
or higher. The range of thresholds for both methods largely agreed with the thresholds identified for 
the ideal similarity values, which ranged from 170 °/s to 270 °/s, with an average similarity of 0.80 
or higher. 

Figure 8 

Plot of the string edit similarity over the range of thresholds values evaluated (10 °/s to 400 °/s) 
for each approach. The accurate threshold ranges identified for each approach are highlighted in 
gray, while the threshold at which the maximum similarity value occurs is denoted as a yellow circle. 

 
The gaze velocity threshold values identified by applying between-participant and within-par-

ticipant comparisons had a string-edit similarity value of 0.78 or higher on the ideal trend (Table 1). 
In more detail, the thresholds range identified by the within-participant had 0.787 (160 °/s) and 0.789 
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(280 °/s) average similarity scores in the ideal trend. For the thresholds range identified via the 
between-participants method, the average similarity scores in the ideal trend were 0.812 (180 °/s) 
and 0.828 (240 °/s). 

Lastly, the gaze velocity threshold values with the highest average string edit similarity identified 
using the within-participant and between-participant comparisons outperformed the 30 °/s bench-
mark threshold. More specifically, the 210 °/s and 220 °/s threshold values identified by applying 
the between-participant and within-participant comparisons had an average string edit similarity of 
0.831 and 0.833 on the ideal trend, respectively. On the other hand, the 30 °/s benchmark threshold 
had an average string edit similarity of 0.415 on the ideal trend. 

Discussion 
We were able to identify and select gaze velocity threshold values for the I-VT algorithm to 

accurately classify eye fixations and saccadic movements for a bullseye-target tracking task. More 
specifically, two computational approaches, within-participants and between-participants compari-
sons, were introduced and applied to identify the accurate gaze velocity threshold values without 
using information regarding the ideal visual scan paths of participants (i.e. the movements of the 
bullseye target they were instructed to follow). The contribution of these two computational ap-
proaches might help other researchers to select gaze velocity threshold values for the I-VT algorithm 
to accurately identify eye fixations and saccadic movements in their respective applications. 

A. Approximating scan path sequence similarity to select accurate thresholds 
The within-participants and between-participants approaches were capable of approximating the 

trend between thresholds values and ideal scan path sequence similarity values. More specifically, 
statistically high Spearman rank correlations were observed for both the within-participant (𝑟) = 
0.99) and between-participant (𝑟) = 0.86) similarity values to the ideal similarity values. A possible 
reason behind the observable differences among the within-participant and between-participant 
comparison trends is that the latter can be more influenced by individual participant differences, as 
it directly compares the scan path sequences of multiple participants. For instance, participants re-
quiring a larger threshold than other participants to identify (or combine) eye fixations might have 
resulted in the relatively stable region observed between 60 °/s to 100 °/s. 

Using both computational approaches, we were able to identify and select accurate thresholds 
capable of adequately classifying eye fixations and saccadic movements without using the ideal 
visual scan paths. More specifically, the threshold values identified by both methods, 160 °/s to 280 
°/s for within-participants and 180 °/s to 240 °/s for between-participants, resulted in average string 
similarity values over 78% similarity in the ideal trend. Furthermore, the optimal thresholds identi-
fied by both methods, 220 °/s (83.3% in ideal trend) for within-participants and 210 °/s (83.1% in 
ideal trend) for between-participants, outperformed the 30 °/s benchmark threshold (41.5% in the 
ideal trend). In addition, the threshold values identified by the proposed computational approaches 
closely match with the 200 °/s gaze velocity threshold identified by Komogortsev et al. (2010) on a 
similar bullseye target-tracking task. 

Thus, the proposed computational approaches expand upon prior research efforts (Blignaut, 
2009), which might help researchers identify accurate thresholds without the need to manually iden-
tify the eye movements of participants, or defining them from the task or environment, which may 
not always be possible. 

B. Impact of threshold values on scan path sequence similarity 
The results show that the impact of thresholds values on scan path sequence similarity to an ideal 

scan path sequence appears to follow a similar trend in other environments and tasks. More 
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specifically, a trend where similarity values continuously increase at low thresholds until a maxi-
mum value is reached, after which the similarity values continue to decrease. Such a trend can be 
observed in prior research using a dot-tracking task (Hareżlak & Kasprowski, 2014) and a chess-
board memory recall task (Blignaut & Beelders, 2009), where the eye fixations and saccadic move-
ments were identified using the I-DT algorithm. Our results expand upon these prior research efforts 
by identifying a similar trend using the I-VT algorithm on a bullseye-target tracking task.  

The fact that the impact of threshold values on scan path sequence similarity appears to follow 
a general trend across multiple tasks and eye movement detection algorithms is important. Although 
future research is needed, it might be possible that between-participant and within-participant com-
parisons might be applicable for other eye movement detection algorithms, such as the I-DT algo-
rithm, as well as to other tasks and environments.  

C. Limitations & future research 
Although the proposed methods used the string edit algorithm compare scan path sequences to 

select accurate thresholds, it’s important to note that there are multiple different procedures to com-
pare visual scan paths. In addition, the string edit algorithm contains some limitations, such as not 
considering the duration of eye fixations that took place when computing the similarity between 
scan path sequences (Fahimi & Bruce, 2021). Thus, future research ought to explore applying the 
proposed within-participant and between-participant comparisons using scan path comparison algo-
rithms such as MultiMatch (Jarodzka, Holqmvist, & Nyström, 2010; Dewhurst et al., 2012) or Scan-
Match (Cristino et al., 2010). These particular algorithms consider eye fixation duration when cal-
culating the similarity between scan path sequences, which could potentially increase the perfor-
mance of the proposed computational approaches.  

In addition, the proposed computational approaches were applied to a simple bullseye-target 
tracking task. Future research should seek to investigate whether the two methods are applicable to 
more complex tasks that might elicit very different eye movements from participants, such as 
healthcare professionals inspecting an x-ray image. In such a complex task, each healthcare profes-
sional might fixate on the same AOI multiple times or even have multiple eye fixations on the same 
AOI. These type of behaviors might impact the performance of the proposed methods. For example, 
if two healthcare professionals (e.g. a novice and an expert) apply completely different visual scan 
paths, the underlying assumption of the between-participants method that observers apply similar 
visual scan paths might not be met, resulting in very low similarities across threshold values for that 
method. 

Similarly, the proposed methods were only applied to eye movement data collected from one 
eye tracker – the EyeLink 1000 used by the authors of GazeBase (Griffith et al., 2021). As a result, 
additional research is needed to evaluate whether the performance of the proposed methods is similar 
for eye movement data collected from eye trackers with varying sampling rates. For instance, some 
researchers have described how eye trackers with low sampling frequencies might not provide suf-
ficient data for accurate saccade classification (Olsen & Matos, 2012; Leube, Rifai, & Wahl, 2017). 
In turn, affecting the visual scan path sequences that can be created, used by both within-participant 
and between-participant comparisons to identify accurate threshold values. 

Lastly, in the present study, the focus was on identifying an accurate gaze velocity threshold 
value for the I-VT algorithm. However, additional parameters are commonly used in the I-VT algo-
rithm (e.g. Olsen, 2012), such as a minimum eye fixation duration (also used in the present study). 
However, other parameters exist, such as a minimum window length to calculate velocity or whether 
adjacent eye fixations ought to be merged based on time and angle (Olsen, 2012). Future research 
should explore whether the proposed methods can be used to accurately identify threshold values 
for multiple parameters simultaneously. 
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