
Introduction 

When a text is read or an image is scanned, the eyes 
jump from one location to the next in a sequence of sac-
cades. Between two saccades, the eyes usually fixate on 
what is being processed at that point in time (Yarbus, 
1967). As processing takes longer,  fixations will, on aver-
age, last longer; hence fixation duration was espoused for 
measuring information processes during reading, visual 
search,  object identification, scene viewing and other 
tasks. (See reviews by Henderson & Hollingworth, 1998; 
Inhoff & Radach, 1998; Rayner, 1998). 

To assess the difference in fixation durations between 
different processing conditions, preferably parametric 
statistical tests are applied, that require the data to be dis-
tributed approximately normally. Fixation durations are 
generally distributed asymmetrically. They could be un-
derstood as following either a Gamma distribution, if we 
regard them as intervals between random, stochastically 
independent saccades, an exponential distribution if sac-
cades are considered stochastic transitions between dis-
crete internal states, or yet another long-tailed distribution 
if the state transition depends on the time spent in the 
state itself (Engbert & Kliegl, 2001). In all these cases, a 
logarithmic transformation of the data would yield an 
approximately normal distribution. This transformation 

has been practiced widely in order to apply analyses of 
variance (ANOVA) or the General Linear Model (GLM).

Such analyses are meaningful only if fixation duration 
distributions are homogeneous. Homogeneity of the dis-
tribution, however,  cannot be taken for granted in fixation 
duration studies. Often the number of fixations to an ob-
ject differs and the distribution is a mixture of single and 
multiple fixation cases. In reading text, for example, 
whereas most words receive a single fixation only, 10 to 
30 % receive two or more subsequent fixations. The 
probability of such refixations depends on physical and 
cognitive factors, such as word length and frequency 
(Rayner, Sereno, & Rany, 1996; Yang & McConkie, 
2001). The duration of a first fixation is generally longer 
than that of a second one (O’Regan & Levy-Schoen, 
1987; Rayner, et al.,  1996; Sereno,  1992); therefore the 
overall fixation duration distribution will be multimodal 
(Feng, 2006; Velichkovsky, 1999).　

Multi-modality is not always an obstacle to compari-
son between conditions; when conditions yield consistent 
effects across first and subsequent fixations, aggregate 
measures such as gaze duration could be used; gaze dura-
tion is the sum of fixation durations made to a target re-
gion in succession, including single fixation cases. In 
reading/word recognition, cognitive factors such as word 
frequency consistently affected first fixations and refixa-
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tions; for instance, low frequency words were fixated 
longer than high-frequency ones in single fixation cases 
as well as in both the first and subsequent refixations of 
multiple fixation trials (Kennison & Clifton, 1995; Ray-
ner & Duffy, 1986; Raney & Rayner, 1995; Rayner, Ser-
eno, Morris, Schmauder & Clifton, 1989; Sereno, 1992).

Beyond reading tasks, it is presently unknown, how-
ever, if cognitive factors consistently influence first and 
subsequent fixation durations. De Graef, Christiaens, & 
d’Ydewalle (1990) propose to distinguish first and subse-
quent fixations to a target. They argue that whereas the 
first fixation duration reflects perceptual processing, later 
fixations predominantly reflect post-perceptual cognitive 
processes. Aggregate measures such as gaze duration, 
therefore, are non-preferred and, as a result, we need to 
face the multiple fixations problem. When the number of 
re-fixations is small, they could simply be excluded from 
analysis. When their number is large, each type of fixa-
tion needs to be analyzed separately.  In scene recognition, 
multi-fixations occurred about 30 % of the time when 
eyes fixated on an object (Nakatani & Pollatsek, 2002), 
which is too significant a proportion to discard.

In the present article we propose a simple method to 
deal with multi-modality in fixation durations. First we 
apply a logarithmic transformation to reduce the skew-
ness of the fixation duration distribution. Next, we sepa-
rate the transformed distribution according to fixation 
order within an object and investigate whether the bulk of 
the separated distributions offers a sufficiently good fit to 
the normal distribution, and, if so, with sufficiently simi-
lar variances to apply GLM directly to the transformed 
data. If this is not the case, we proceed with means,  as-
suming that these are normally distributed under the cen-
tral limit theorem. To warrant this, we need to investigate 
the separated distributions to see if they have finite　
means and variances. To this purpose probability density 
functions are fitted.

A consequence of fitting probability density functions 
is that it allows us to determine whether the separated 
distributions could reasonably be assumed to follow the 
same theoretical distribution,  with well-defined sample 
means and variances. If this is the case, experimental 
factors are used along with fixation order as predictors in 
fitting a GLM to averaged data. If no common probability 
density function could be found, averaged data from each 
fixation order are fed separately to a GLM, of which the 
predictors are the experimental factors.

To demonstrate the proposed method, fixation dura-
tions under six cognitive task conditions were recorded. 
The same set of stimuli,  (sequences of letters and digits) 
was used for each task to minimize variation due to 
physical differences between stimuli. As a result, they 
will share the same mandatory perceptual processing 
components. In a control　condition, the stimuli were 

presented without a task. A comparison between task-no 
task conditions will allow us to evaluate the consistency 
of cognitive, i.e. non-mandatory perceptual effects on 
fixation duration for different fixation types, distin-
guished according to fixation order. The tasks differ on 
whether they invoke categorical or spatial information, as 
well as on whether they require an immediate or deferred 
choice response. In other words, they differ in their post-
perceptual cognitive processing requirements. We exam-
ined whether task effects are consistent amongst the sepa-
rated fixation types.

Methods

Participants
Eight undergraduate and graduate students with nor-

mal, or corrected to normal vision (five women and three 
men, mean age: 20.0 years) from the greater Tokyo area 
were paid one thousand yen per hour for participation.

Stimuli
Eight letters (A, B, C, D, E, F, G, H) and eight digits 

(1, 2, 3, 4, 5, 6,  7, 8) constitute the stimuli,  sequences of 
which were presented in each task. Each stimulus fit 
within a 2º x 2º area, rendered in blue on a gray back-
ground. Each was presented at one of 16 positions of an 
invisible 4 by 4 square grid in the display. Centers of each 
position were approximately 3.5º apart. Starting from an 
arbitrary point on the grid,  the next stimulus was always 
presented at one of four adjacent locations, above, below, 
right or left of the current one, while on the edges of the 
grid the number of possible ‘next’  locations was reduced 
to three, and to two in the corners. For each individual 
participant, a new random sequence of 1024 letters and 
digits was generated, which was then uniformly used for 
presentation throughout all the different tasks (Figure 1, 
top row).

Design
There were six task variations and a control condition. 

The task conditions involve category (letter vs. digit) or 
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spatial location of the stimuli. There were three category 
tasks, a category-judgment task, a category-count task 
and a category-pattern task. In the category-judgment 
task, participants were instructed to press the right button 
of the button box each time a letter stimulus appeared and 
the left button for each digit. After the button press, the 
next stimulus appeared. This is done for all the 1024 
stimuli in the sequence. Thus, this task is expected to 
reflect the capacity to judge item category. In the 
category-count task, participants were asked to count the 
number of letters in the sequence. They pressed an arbi-
trary response button for continuation to the next item. 
After the presentation of the whole sequence, participants 
were asked if the actual count was greater or less than an 
arbitrary chosen number,  for instance 675, by pressing 
the right or left button (e.g.,  “Press right button, if the 
number of letters >= 675. Press left button, if the number 
of letters < 675”). This task in addition to judgment of 
item category reflects on the capacity to update memory. 
In the category-pattern task, participants were asked to 
detect whether the sequence contained a repeating pattern 
of 16 letters and digits (e.g., `letter - letter - digit - digit - 
letter - letter - digit - digit - letter - letter - letter - letter - 
digit - digit - digit - digit’). After the sequence, two pat-
terns were presented and one of them was chosen as the 
presented pattern.  (e.g., “Press right button, if repeated 
pattern was ‘digit-letter-digit-letter-digit-letter-digit-
letter-digit-letter-digit-letter-digit-letter-digit-letter’; press 
left if `letter - letter - digit - digit - letter - letter - digit - 
digit - letter - letter - letter - letter - digit - digit - digit - 
digit’“). This task, in addition to category judgment, and 
memory update for serial pattern matching was expected. 
In sum, judgment of item category was needed in all 
tasks. Each of these tasks is more complex than the pre-
vious one.

Location tasks comprised the following: a location-
judgment task, a location-count task and a location-
pattern task, which were similarly structured to those in 
the category tasks. In the location-judgment task, partici-
pants were asked to press the right button if a stimulus is 
presented in Rows 1 and 3. If the stimulus was presented 
in Rows 2 and 4, the left button was pressed.  This in-
volves a spatial judgment. In the location-count task, a 
participant counted the number of the stimuli presented in 
Rows 1 and 3. In the end of 1024 stimulus presentations, 
participants were asked to answer if the final count was 
equal or greater than an arbitrarily chosen number by 
pressing a button (e.g., “Press right button, if the number 
of letters >= 675. Press left button, if the number of let-
ters < 675”). In this task, in addition to a spatial judg-

ment, each stimulus requires an update of memory. In the 
location-pattern task, participants were asked to register 
how often,  relatively speaking an item was presented at 
each of the matrix locations. After the sequence, two sets 
of 16 square tiles (4 x 4) were presented in which a color 
code ranging with three intermediate steps from dark gray 
to bright blue indicated the relative item frequency at 
each location – the dark gray represents the lowest pres-
entation frequency and the bright blue indicated the high-
est presentation frequency. Participants responded to the 
correct pattern by pressing the right or left button. This 
task, in addition to spatial judgment and memory update, 
required the detection of a spatial sampling distribution. 

All sequence presented had a 16-stimulus pattern cor-
responding to one of the response alternatives of the 
category pattern task.  This pattern was repeated 64 times 
in the sequence.  In addition, all the pattern had a spatial 
distribution corresponding to one of the response alterna-
tives in the location pattern task.

Figure 1. Schematic illustration of the tasks.　　　　　　　
Top row: After an initial fixation cross, a letter or a digit was 
presented in one of 16 display locations. In the end of the 
stimulus sequence, a question display was presented. Different 
questions were used depending on task conditions. In the figure, 
the question belonging to the category-count task is shown. 
Middle row: Participants were asked to follow each stimulus 
with eyes (fixations are represented as black circle), then 
pressed right or left buttons. Bottom row: The button presses 
were required to start the next stimulus; in the category-
judgment and location-judgment conditions, the button presses 
were categorization responses (See text for details of task 
conditions).

A no-task viewing condition was added as control 
condition. Participants viewed the sequence of 1024 let-
ters or digits were asked to fixate on each item and press 
an arbitrary button in order to continue to the next one.

Procedure
The experiment was performed in a light-attenuated 

experimental room, using an image-based eye-tracking 
system (EyeLinkI, SR Technologies, Ontario, Canada). 
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Participants wore a light-weighted headset with two CCD 
cameras and a head movement sensor, and held a button 
box in both hands while seated in front of a 21-inch CRT 
display. Participants were instructed to follow the stimu-
lus with their eyes while keeping the head still. Special 
instructions and practice sessions (32 stimuli) were given 
prior to each task condition. Feedback on performance 
was given at the end of the practice session in the 
category-count, category-pattern, location-count and 
location-pattern conditions. After the practice session, 
two experimental sessions were run with eye movement 
recording. Both eyes were tracked with sampling rates of 
250 Hz, but only right eye data were analyzed. In each of 
the experimental sessions, a sequence of 1024 items was 
presented. The next item appeared immediately after par-
ticipants had pressed a response button. Recalibration and 
drift correction were performed whenever needed to se-
cure measurement accuracy. Each participant performed 
all the tasks in counter-balanced order: half started with 
object conditions, the other half with spatial conditions. 
Within object and spatial conditions, one third started 
with the item, another third started with the count and one 
other third started with the pattern task. Due to the large 
number of trials, the experiment was performed over two 
subsequent days.

Results

Bad segments of eye movement record were removed 
prior to data analysis. The remaining data were analyzed 
using an eye-event filter to extract fixations. The three 
parameters of the filter,  velocity,  acceleration and motion 
of saccades were set to detect most of the saccades larger 
than 0.6 degrees and fixations longer than 100 ms, the 
regular range for cognitive psychological experiments. 
Out of the fixations detected, those started before the 
presentation of a stimulus were excluded. Those that 
ended after a button press was adjusted by truncating the 
period after the button press. Since a button press initiates 
next stimulus presentation, latency of saccade from one 
stimulus to another was excluded. As a result,  a total 
76142 of fixation durations were analyzed. 

A natural-logarithm distribution was applied here to 
all fixation durations. However, a Kolmogorov-Smirnov 

test showed the transformed distribution to differ signifi-
cantly from the normal distribution (p < .001). Figure 2 
shows that the transformed distribtuion is right skewed 
(skewness = -0.82, SE skewness = 0.01) and leptokurtic 
(kurtosis = 1.21, SE kurtosis= 0.02)1. Multiple peaks are 
in evidence in Figure 2: around 3.30 (27 ms), 5.50 (245 
ms) and 6.10 (446 ms). The first peak occurs for times 
faster than express saccades (80-100 ms, Fischer & Ram-
sperger, 1984; Fischer & Weber, 1993).  The second peak 
is in the normal range of fixation durations. The third one 
is slightly out of the ordinal range

.

Figure 2. Distribution of fixation durations　　　　　　
Fixation duration distribution across all conditions in natural-
logarithmic time units (upper x-axis) and ms (lower x-axis). The 
median of the distribution is 5.83 in ln ms, or 340 ms.

One might wish to argue that the logarithmic trans-
form has been sufficient to enable a parametric analysis, 
even though there may be multi-modality in Figure 2 as a 
consequence fixation type, since adding this factor as a 
predictor to a GLM may take care of that.  To illustrate 
what could happen if we thus ignore the distribution is-
sue, we fitted a Linear Mixed Effect model (LME, Pin-
heiro & Bates, 2000) to the data, in which we included as 
predictors the most likely sources of multi-modality. 
These are: single fixation trials vs. multiple fixation trials, 

Journal of Eye Movement Research Nakatani, C. ＆ van Leeuwen, C. (2008)
1,(2):1, 1-12 Multi-modality and non-normality in fixation duration distribution

4

1 The criterion used here for non-normal skewness and leptokurticness was absolute value of skewness divided by the SE of the 
skewness, and absolute value of kurtosis divided by the SE of the kurtosis. When these ratios are more than two, it is judged that 
kurtosis or skewness differ significantly from those of normal distribution.

DOI 10.16910/jemr.1.2.2 ISSN 1995-8692This article is licensed under a
Creative Commons Attribution 4.0 International license.



task conditions,  location errors, individual differences 
and their interactions. Task effects may be another source 
of multi-modality in the pooled distribution. Location 
error was chosen because bad landing positions could 
invoke a correction saccade (Vitu, McConkie, Kerr, & 
O'Regan,  2001). The location error was computed as dis-
tance between the current fixation position and the center 
of the stimulus, and was dealt as random variable. Par-
ticipants were also a random variable,  and as the other 
variables were fixed, a mixed-effect model resulted. The 
model was implemented as part of the non-linear mixe-
d e f f e c t ( n l m e ) l i b r a r y o f R ( C R A N , 
http://www.R-project.org). Effects of random variables 
were estimated by restricted likelihood for the log-
transformed fixation durations. The results are summa-
rized in Table 1; Single vs. multiple fixation, task, and 
location error factors all showed highly significant effects 
on fixation duration. However, also several interactions 
were highly significant, some of which involve the single 
vs multiple fixation factor. In particular, the triple interac-
tion of Task, Fixation, and Location error causes worries. 
Should we take this analysis seriously, this analysis leads, 
possibly misleadingly, to the conclusion that task effects 
are not consistent across different types of fixations. 

One robust effect that cannot easily be ignored in Ta-
ble 1 is the effect of single vs multi-fixation trials.  This 
confirms that in our data the first fixations on a word in 
multi-fixation cases tend to be shorter than those in single 
fixation cases (Rayner et al.,1996; O'Regan, Vitu, 
Radach, & Kerr,  1994; O'Regan, 1992). Notwithstanding 
our concerns about the above analysis we will, therefore, 
proceed by separating the data according to fixation type. 
The number of single fixation trials was 37576. The fixa-
tions in the single-fixation cases are denoted as 1st/1-
fixation, hereafter. In most of multiple fixation trials, two 
to three fixations were made; the number of two-fixation 
trials was 13499,  yielding 26998 fixations. The first and 
second fixations in the two-fixation trials are termed 1st/
2-fixation, and 2nd/2-fixation, hereafter. The number of 
the three fixation trials was 2501, yielding 7503 fixations, 
and the first, second and third fixations are called 1st/3-
fixation, 2nd/3-fixation, and 3rd/3-fixation,  hereafter. 
Trials with more than three fixations were excluded from 
further analysis due to small number of occurrences, 
leaving 72077 fixations. Multiple fixation trials occurred 

about 30% of trials in single-character stimulus presenta-
tion2 

Table 1. Fitting results of the LME model

DF F-value p- value
(Intercept)    1, 76107 54617.53 <.0001

Task Conditions     6, 76107 58.05 <.0001
Single-fixation vs. 

Multi-fixation trials
1, 76107 22088.75 <.0001

Location Error  1, 76107 15.26 <.0001
Task Conditions
 * Single-Multi

6, 76107 23.86 <.0001

Task Conditions
 * Location Error   

6, 76107 15.12 <.0001

Single-Multi 
* Location Error

1, 76107 139.23 <.0001

Task Conditions
 * Single-Multi 

* Location Error

6, 76107 32.51 <.0001

Note. Degrees of freedom, especially denominator  DF, differ 
from those in a general linear model (GLM), because the mixed 
models use individual  data points. The interactions imply that 
cognitive effects are inconsistent across different fixation types. 
However, this result may be a misleading consequence of ignor-
ing the distribution.

Figure 3 shows that the distributions of the different 
fixation types nicely separate the peaks observed previ-
ously in Figure 2. The third peak in Figure 2 corresponds 
to the main peak of the1st/1-fixation, 2nd/2-fixation, and 
3rd/3-fixation; the second peak in Figure 2 to the main 
peak of the 1st/2, 1st/3 and 2nd/3 fixations. The first, 
early peak in Figure 2 corresponds to a minor peak in 1st/
2, 1st/3 and 2nd/3 fixations, around 3.50 in natural loga-
rithmic units (about 33ms). Descriptive statistics of each 
distribution are listed in Table 2.  In all the separated dis-
tributions, skewness and kurtosis differ from those of the 
normal distribution. This precludes application of the 
GLM directly to these data.

A slight skew and leptokurtic tendency can be ob-
served in all fixation categories. The non-normality poses 
a practical problem for analyzing cognitive effects across 
fixation types using parametric tests such as ANOVA. 
The problem can be circumvented by applying the analy-
sis to the mean fixation durations, of which the distribu-
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tion may be assumed to be normal based on the central 
limit theorem. This is possible if the data follow theoreti-
cal distributions that have defined means and variances. –
This precaution is necessary as some distributions (e.g. 
the Cauchy distribution) can be leptokurtic without hav-
ing a well-defined mean. A set of 40 probability density 
functions were fit to log-transformed fixation duration 
using a commercial package (EasyFit 4.0, MathWorks). 
Each of the models was fit to each type of fixation of 
each participant in each condition, except for cases with 
less than 50 fixations. As a result, the number of fit in 1st/
3, 2nd/3 and 3rd/3 fixations was 40 % less than that of 
others. Probability density functions fit were ranked 
based on Kolmogorov-Smirnov test results.  Average rank 
was computed for each fixation type over conditions and 
participants.

A typical example of model fits is shown in Figure 4. 
Fitting results in all fixation types are summarized in 
Table 3. In all but 2nd/2 fixation, the Wakeby distribution 
fits the best. This distribution, which is rarely encoun-
tered in psychology, has five parameters: location, shape 
and scale parameters for left tail, and separate shape and 
scale parameters for the right tail. Separate parameters for 
each tail made the distribution flexible enough to ac-
commodate the very short (~30 ms) fixations, which our 
method had failed to separate off.  Because of the loss of 
uniqueness resulting from the use of five parameters, we 
forgo on a process interpretation of this fit. Let it be said 
that this distribution has well-defined, finite, population 
means and variance, which enables the envisaged appli-
cation of the GLM to sample means.

Figure 3. Fixation durations distributions in ln ms units plotted 
for six types of fixations　　　　　　　　　　　　　　　
From top to bottom: 1st/1-fixation, 1st/2-fixation, 2nd/2-
fixation, 1st/3-fixation, 2nd/3-fixation and 3rd/3-fixation 
distributions, where nth/m-fixation means the n-th fixation from 
those trials in which m fixations to an object were made.
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Table 2. Statistics of six fixation types

Note.  Median and mean durations are also presented in  ms. The symbol ‘#’ indicates  that |skewness/SE skweness| >2 and | 
Kurtosis /SE kutosis| > 2, which is the criterion used for a non-normality.

The generalized logistic distribution (three parame-
ters; location, scale and shape) was ranked as second or 
third best in all fixation types. For the 2nd/2 fixation the 
log-logistic distribution was the best fitting. The log-
logistic, which belongs to the generalized logistic family, 
also mostly comes second or third, and first in the 2nd/2 
fixation type. Like the Wakeby distribution, ithe general-
lized (log) logistic distribution has finite population 
means and variances, which enables application of the 
GLM to the sample means.

The generalized logistic distribution has only a single 
shape parameter and is therefore less flexible than the 
Wakeby distribution, of which two shape parameters can 
be adjusted for right and left tails independently. Based 
on this observation, we may conclude that the generalized 
logistic distribution is the most plausible candidate as the 
theoretical distribution of all the separated fixation dura-
tions. The theoretical implications of this will be men-
tioned in the discussion; for now it is of importance that 
the conclusion of a uniform distribution means that the 
data are homogeneous and can jointly be evaluated by a 
single statistical model.

Mean fixation duration was computed for each fixa-
tion type for condition in each participant. Mean and SD 
(in parenthesis) of the means in each fixation over all 
conditions were, 6.08 (0.24), 5.08 (0.24), 5.81 (0.17), 
4.82 (0.30), 4.85 (0.32),  and 5.70 (0.22) for 1st/1, 1st/2, 
2nd/2, 1st/3,  2nd/3 and 3rd/3 fixations, respectively. On 
the other hand, mean (and SD) of the means in each con-
ditions over the fixation types were; 5.47 (0.52), 5.43 
(0.54), 5.48 (0.50), 5.48 (0.54), 5.48 (0.51), 5.09 (0.60) 
and 5.26 (0.60) for category-judgment,  category-count, 
category-pattern, location-judgment, location-count, 

location-pattern task and control conditions, respectively. 
Condition means in each fixation type are shown in Fig-
ure 5.  We tested whether task effects were significant and 
consistent across fixation types by fitting a linear mixed 
effect (LME) model. Fixation types and task conditions 
were within-subject factors, thus within-subject covari-
ance is a potential  cause of  Type - I error.  The LME                                                                              

Figure 4. Fitting probability density functions to an em-
pirical fixation-duration distribution. Distribution histo-
gram of the 1st/2 fixations (N=509) of Participant 2 in 
the category-count condition is given as a representative 
example. The top-three best-fitting probability density 
functions are given: Wakeby, generalized logistic,  and 
log-logistic,  plus the normal distribution. The empirical 
data were statistically indistinguishable from each of the 
top three distributions (p > .1 on Kolmogorov-Smirnov 
tests), but different from the normal distribution (p < .01)
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Type of fixation 1st / 1-fixation 1st / 2-fixation 2nd /2-fixation 1st / 3-fixation 2nd / 3-fixtion 3rd / 3-fixation
No. of fixation 37576 13499 13499 2501 2501 2501

Median 6.09, ~444 ms 5.19, ~180 ms 5.84, ~344 ms 5.02, ~152 ms 5.12, ~168 ms 5.76, ~318 ms
Mean 6.04 , ~420 ms 5.12, ~167 ms 5.83, ~339 ms 4.92, ~137 ms 4.99, ~147 ms 5.74, ~310 ms
SD 0.54 0.59 0.55 0.69 0.76 0.62

Variance 0.29 0.35 0.31 0.47 0.58 0.38
Skewness (SE) -1.00 (0.01)# -0.61 (0.02) # -0.81 (0.02) # -0.38 (0.05) # -0.43 (0.05) # -0.91 (0.05) #

Kurtosis (SE) 4.16(0.03) # 1.25 (0.04) # 3.84 (0.04) # 0.36 (0.10) # -0.04 (0.10)  2.75 (0.10) #
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Table 3. Average rank order of fitted distributions 

Note. Top three distributions are listed for each fixation type. Their average rank is shown in parenthesis. 

model is able to estimate unknown covariance, such as 
individual differences (Pinheiro & Bates, 2000). The 
model also accommodates differences in the number of 
means per cell. These occurred since some participants 
did not show the triplet of fixations, 1st/3, 2nd/3 and 3rd/
3, in each of the conditions.  In addition, some segments 
of eye movement data were omitted due to bad quality of 
recording. The best fitting MSE model was tested using 
the F-statistic

The fixed factors of the LME model were fixation 
types (6) and conditions (7; the six task conditions and 
the control condition), while participants constituted a 
random variable. Effects of random variables were esti-
mated by restricted likelihood method. Main effects of 
both fixation types and tasks are highly significant, F(5, 
185) = 290.73, p < .0001 and F(6, 185) = 20.26, p < 
.0001,  respectively. But the interaction of the two was not 
significant, F(30, 185) = 0.98, p > .1. The absence of an 
interaction indicates the consistency of the task effects on 
fixation duration across fixation types. 

Post-hoc tests were performed, in which participants 
were the only random variable. Thus, we mention only 
the fixed variables of each LME model, hereafter. The 
number in parenthesis after each variable indicates its 
number of levels in the model; p-values are uncorrected. 
The difference between the task and control conditions 
was evaluated by a model including fixation types (6) by 
six pooled task conditions vs. the control condition (2). 
The main effect of task vs. control condition was signifi-
cant,  F(1, 215) = 14.08, p < 0.001; as shown in Figure 5 
longer in the task than in the control condition. This result 
signifies that fixation durations differ according to non-
mandatory perceptual,  i.e. cognitive processes. Effects of 
fixation type also occurred in this analysis, but no interac-
tion with task effects occurred. This means that percep-

tual processes consistently affected the fixation durations, 
irrespective of fixation type. Visual inspection of　Figure 

5 suggests,  moreover, that fixation durations in the 
location-pattern condition were shortest amongst the task 
conditions. Secondly, therefore,  a post-hoc analysis com-
pared this condition with the other five task conditions; a 
model was fit including fixation types (6) by location-
pattern vs. the other five pooled task conditions (2). The 
main effect of task was significant,  F(1, 179) = 102.34, p 
<.0001; the location pattern task yielded shorter fixations 
than all the other task conditions. Interestingly, the loca-
tion pattern task yielded fixation durations at the level of 
the control condition, or even marginally shorter F(1,48) 
= 3.67, p < .1. Most likely, therefore, in this task condi-
tions, visual inspection is minimized. On the other hand, 
a model including fixation types (6) by the remaining five 
task conditions (5) failed to yield a significant effect, F(4, 
131) = 1.64,  p > .1. This, despite the difference in post-
perceptual processing demands between these tasks.  To-
gether,  these analyses indicate that fixation durations dif-
ferentiate according to (non-mandatory) perceptual proc-
essing demands, but not according to post-perceptual 
demands.  In all these post-hoc tests, fixation type effects 
occurred, but none of them yielded an interaction with 
task conditions; all Fs < 1.4, p > .1. The results showed 
that task-related, i.e.  cognitive, perceptual processing 
demands influenced fixation duration, but that post-
perceptual cognitive factors did not. These results were 
consistent in log-transformed units of duration across all 
fixation types.

Post-hoc testing of the differences among fixation 
types started off by comparing the duration of the last 
fixation (i.e., 1st/1, 2nd/2 and 3rd/3) with that of the ear-
lier ones (1st/2, 1st/3 and 2nd/3). A model with the last 
vs.
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Rank 1st / 1-fixation 1st / 2-fixation 2nd /2-fixation 1st / 3-fixation 2nd / 3-fixtion 3rd / 3-fixation
1 Wakeby 

(1.69)
Wakeby 
(2.23)

Log logistic (3.23) Wakeby 
(1.29)

Wakeby 
(2.76)

Wakeby 
(2.00)

2 Generalized 
logistic (3.49)

Generalized 
logistic (4.73)

Wakeby 
(3.48)

Generalized logis-
tic (3.88)

Generalized 
logistic (6.70)

Log logistic (3.88)

3 Log Logistic (3.97) Log Logistic (6.38) Generalized 
logistic (3.60)

Log Logistic (5.65) Generalized extreme 
value (6.76)

Generalized 
logistic (4.64)

DOI 10.16910/jemr.1.2.2 ISSN 1995-8692This article is licensed under a
Creative Commons Attribution 4.0 International license.



Figure 5. Mean fixation duration in task and control conditions in six fixation types. Mean of log-transformed fixation durations were 
plotted for each fixation type; from the left ,1st/1-fixation, 1st/2-fixation, 2nd/2-fixation, 1st/3-fixation, 2nd/3-fixation and 3rd/3-
fixation, where nth/m-fixation means the n-th fixation from those trials in which m fixations to an object were made. Vertical lines 
indicate SD.

earlier fixations (2) by conditions (7) was fit. As ex-
pected, the last fixation was significantly longer than the 
earlier fixations,  the main effect of the last vs. the earlier 
yielded F(1, 213) = 879.69, p <.0001. To test within the 
last fixations: one model tested 1st/1 vs. 2nd/2 (2) by 
conditions (7); the main effect of fixation type was F(1, 
57) = 58.83, p <.0001; 1st/1 was longer than 2nd/2 fixa-
tions. Analogously, a second model tested 1st/1 vs.  3rd/3 
(2) by conditions (7), yielding that 1st/1 were signifi-
cantly longer than. 3rd/3 fixations, F(1, 57) = 72.60,  p 
<.0001, and a third model tested 2nd /2 vs. 3rd/3 fixations 
(2) by conditions (7), showing that 2nd /2 were longer 
than 3rd/3 fixations, F(1, 57) = 7.84, p < 0.01. To test for 
differences among the first fixations,  a model included 
1st/2 vs. 1st/3 fixations (2) by conditions (7),  1st/2 fixa-
tion was longer than 1st/3 fixations, F(1, 57) = 31.33, p 
<.0001. Analogously, between second fixations, 1st/2 and 
2nd/3 fixations (2) by conditions (7), and former were 
longer than the latter, F(1, 57) = 23.00, p <.0001. How-
ever, duration of 1st/3 and 2nd/3 fixations were not sig-
nificantly different; the F value for the main effect of 
fixation type reached only F(1, 57) = 0.31, p >.1. Notice 
that in all these post-hoc tests, there are effects of task; 
however, interactions between fixation type and task 
where nowhere obtained. All fixation types, therefore, are 
equally affected by task conditions.  This, even though 

some fixation durations may include a manual response 
component (the last fixations: 1st/1, 2nd/2 and 3rd/3), 
whereas the others did not. This indicates that even 
though manual responses may have an effect on fixation 
durations, this does not affect the differences between 
task (and control) conditions.

Discussion

We compared six different task conditions (and a con-
trol condition) all using the same visual stimuli, and stud-
ied the patterns of eye-fixation, to see if measures of fixa-
tion duration could meaningfully be applied across these 
tasks. The visual stimuli in the current experiments were 
simple ones, yet fixation patterns were not simple. It was 
confirmed that the order and number of fixations given to 
an object was of predominant importance to fixation du-
ration. This observation is in line with a common finding 
in reading tasks. Here, the effect of order and number of 
fixations outweighs that of task differences, and therefore 
that of cognition. It is therefore important to see if the 
effects of task,  c.q. cognition are consistent across fixa-
tion types. 

To test the consistency, fixation duration distributions 
had to be separated according to fixation type, natural-log 
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transformed, and investigated for their theoretical distri-
bution,  before the effect of task could be examined. Ef-
fects of task-related perceptual demands on fixation dura-
tion,  in log units, were observed to be consistent for all 
fixation types. Fixations were generally longer in task 
than in control conditions, but in the location-pattern task 
they were equal,  or even shorter, than in the control con-
dition. The location task does not require inspection of 
individual targets, as only their locations matter,  so it is 
likely that the non-mandatory aspects of the perceptual 
process are minimized in this condition.　There was no 

difference in duration amongst the remaining tasks. We 
may conclude that the fixation durations are insensitive to 
post-perceptual processing demands imposed by our 
tasks. Interestingly,  this was equally the case for all fixa-
tion types. This conclusion runs counter to de Graef et al. 
(1990), who argued that perceptual and post-perceptual 
processes differentially affect first and subsequent fixa-
tions. Difference in method could be one of the reasons 
for this discrepancy, as the analysis in our Table 1 might 
suggest. Alternatively, we may consider a difference in 
stimuli: In De Graef's et al (1990) study, semantically rich 
scenes were used. Nevertheless, the consistency across 
fixation types observed in the present study underpins the 
use of fixation duration to estimate perceptual processing 
demands,  at least for a category of relatively simple stim-
uli.

Number and order of fixation are large sources of 
variance; the proposed procedure to factor them out will, 
therefore, yield greater power to detect effects of cogni-
tive process of interest. The proposed analysis failed, 
however, to separate short fixations (latency around 30 
ms); they may be held responsible for the right-skewness 
of the separated log-fixation durations. This might 
correspond to the duration of micro-saccades (cf. Engle, 
2008 for review), of which investigation requires eye 
movement record with higher spatial precision than our 
current one. We were able to monitor, and factor out, the 
fixations where a manual response occurred.  This hap-
pened, by definition, in the last fixation. On the other 
hand, the consistency of the task effects across all fixa-
tions types, including those which contained manual re-
sponses, means that these did not interfere with task-
related effects on fixation durations.

The Wakeby distribution renders overall the best fit-
ting probability function. The Wakeby distribution is 
widely used in hydro-engineering to model flood level/ 
extreme rainfall, which is highly variable (Houghton, 
1978). The ability of these models to accommodate 

asymmetry due to the short fixations is offset by the need 
to have two extra parameters,  compared to the next-best 
distribution. Therefore,  from the point of model unique-
ness, and because of the insignificance, from a cognitive 
point of view, of the short fixation durations,  we prefer a 
distribution, which was ranked as the second: the general-
ized logistic distribution. This distribution has an interest-
ing theoretical implication. It is known as the distribution 
of the maxima of finite samples, with variable size, taken 
from an exponential distribution (Galambos, 1978; 
Gnedenko, 1982; Voorn, 1987). This would imply that 
fixation duration reflects the waiting time for a set of N 
simultaneous processes to complete, each of which has a 
fixed probability of terminating per unit of time. Note 
that these are logarithmic units; in linear units, these 
processes would follow a power-law. Such an interpreta-
tion of fixation durations is intuitively plausible, and a 
natural extension of the idea that they are based on a sin-
gle stochastic transition between discrete internal states 
(Engbert & Kliegl, 2001). Instead of a single transition, 
the eye-movement waits for the slowest of N transitions 
to be completed. Instead of stochasticity, the power-law 
distribution might suggest some form of determinism. We 
cannot tell at this point, whether this “waiting” is under 
the executive control, but this would certainly be an in-
teresting issue to pursue.

For studies in which the relative effect of visuo-
cognitive factors on fixation duration is the main interest, 
our procedure provides a pragmatic solution; fixations 
should be separated by its number/order in a region of 
interest, log transformed, and their distributions investi-
gated. Depending on the outcome of these tests, paramet-
ric models can be applied directly to the data (if they are 
normally distributed), to their means (if they are not, but 
can reasonably be assumed to follow the same theoretical 
distribution, with well-defined means and variances),  or 
be analyzed separately for different fixation types.

Beyond such procedural issues,  identification of fixa-
tion duration distribution has a more fundamental signifi-
cance as well. In the current study, we propose that the 
duration reflects waiting time for completion of multiple 
processes, of which the processing time follows a power-
low distribution. Power-low distributions have a long 
right tail. Thus it is natural for long fixation durations to 
occur and such large variability does not constitute a rea-
son against using fixation duration as a measure of cogni-
tive processes (cf. Viviani, 1990). Adequate models of 
fixation duration distributions will help us to further to 
understand the underlying processes behind.
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