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Introduction

Eye movement is characterized by a series of quick

jumps or high velocity movements, known as saccades,

followed by fixations, which are periods of time in which
the eye is stabilized and remains relatively still.

Cognitive processing of a visual stimulus occurs during

fixations (Just and Carpenter, 1984) while saccades are
considered to be voluntary movements of the eye in order

to shift focus from one object of interest to another

(Duchowski, 2007).

During fixations, the eye is subject to different types
of low velocity movements, namely tremors, drifts and

microsaccades (Jacob, 1995; Engbert and Kliegl, 2003;

Martinez-Conde et al., 2004). Tremor is a periodic,
wave-like motion of the eyes with a typical frequency of

~90 Hz and an amplitude of 20'' (Martinez-Conde et al.,

2004) although occurrences with lower frequency (<40

Hz) and larger amplitude (~10) have been reported
(Leigh, J.R. and Zee, D.S., 1991), especially with
reference to certain health conditions (Kennard, 2004).

Drifts occur simultaneously with tremor and are slow

motions of the eye (0.1-0.5 deg/s) (Martinez-Conde et al.,
2004). High-frequency tremor is mostly super-imposed

on slow drift (see Martinez-Conde et al. (2004) for an

illustrative diagram). Fixational microsaccades are small

(~0.3), fast (~10 deg/s) eye movements that occur
involuntarily although they can be voluntarily suppressed

(Fiorentini and Ercoles, 1966; Winterson and Collewijn,

1976). They occur intermittently once or twice in a

fixation of 300 ms (Martinez-Conde et al., 2004). One of

the possible roles of microsaccades is to correct
displacements caused by drift, although non-corrective

microsaccades occur as well, possibly to prevent visual

fading during fixations (Engbert and Kliegl, 2004;
Martinez-Conde et al., 2006). A recent review by

Collewijn & Kowler (2008) reopens the 50 year old

debate about the role of microsaccades by concluding that
that microsaccades are neither essential to maintain a

stable line of sight, nor for keeping foveal images visible.

The fixation plays a vital role in the analysis of eye-
tracking data as it allows the analyst to determine where
the subject was looking at any given point. Because of

the continuous low-velocity eye movements during

fixations, fixations are described in terms of the mean x-y
coordinate of the gaze position when measured over a

minimum period of time during which the gaze does not

move further than a predefined maximum distance
(Eyenal, 2001). In other words, the so-called point of

regard (POR), which is the point in space observed by

eye gaze at a specific moment, must remain within a

specified area for a specified minimum time in order for
it to be regarded as part of a fixation.

Several algorithms exist that can be used to extract
fixations from the raw gaze data as reported by an eye-
tracker (Duchowski, 2007; Jacob, 1990; Jacob, 1993;
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Salvucci and Goldberg, 2000; Shic et al., 2008; Spakov

and Miniotas, 2007). Also, several tools exist that

employ these algorithms (Camilli et al., 2008; Eyenal,

2001; Gitelman, 2002; Heminghous and Duchowski,
2006; Salvucci, 2000; Spakov and Miniotas, 2007; Tobii,

2008). In this paper, the focus is on the I-DT dispersion-

based algorithm of Salvucci and Goldberg (2000). A
software tool has been developed that implements this

and several other algorithms.

It has been shown previously that the accuracy of
fixation identification algorithms depend heavily on the
parameters specified for minimum duration or maximum

area (Shic et al., 2008; Blignaut, 2009). Consequently,

results produced by different algorithms and parameter
settings can have wide-ranging differences (Spakov and

Miniotas, 2007). Also, various interpretations and

conclusions might be drawn from the same data
depending on the parameter settings chosen by the

analyst (Shic et al., 2008; Manor and Gordon, 2003).

Besides the accuracy of the scan paths, it was found in
a previous paper (Blignaut, 2009) that the number of
points of regard included in fixations and the spatial

dispersion of PORs within fixations also depend on the

threshold setting for a dispersion-based fixation detection
algorithm. Furthermore, the optimum threshold for such

an algorithm depends on the dispersion metric applied by

the algorithm (Blignaut, 2009). In this paper, the scan

paths that are returned by a dispersion-based algorithm

are compared with a benchmark scan path that is

considered to be a good approximation of the actual scan
path. Also, the relationship between the amount of

fixational eye movements and the optimum threshold and

accuracy of scan paths are investigated.

It is hypothesized in this paper that individuals differ
from one another with regard to the amount of fixational

eye movements and that these differences have an effect

on (i) the optimum threshold setting for a dispersion-
based fixation detection algorithm and (ii) the accuracy

with which fixations can be identified from raw gaze

data. If it can be proven that this hypothesis holds in all
respects, it is also hypothesized that a common dispersion

threshold is not optimal for all participants.

This paper is primarily aimed at practitioners who
apply eye-tracking for analysis of gaze behaviour during

observation of various kinds of stimuli, e.g. web sites and

advertising material. The paper does not intend to

contribute to the body of knowledge with regard to the
characteristics or physiology of eye movements. The use

of a low temporal resolution eye-tracker as was used in

this study is, therefore, representative of the typical
equipment that is used for, for example, usability analysis

of web sites.

Figure 1. (a) Points of regard of a participant with stable eye gaze (left) and (b) a participant with a large amount of fixational eye
movement (right).
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Individual differences in fixational eye
movements

Observed variability amongst individuals

As a secondary result from an experiment to test the

memory recall ability of chess players, it was observed

that individuals differ considerably with regard to the

stability of their eye gaze (Figure 1). In this experiment
32 participants were presented with an on-screen stimulus

showing a typical mid-game setup of a chess game for a

period of fifteen seconds. After the fifteen second

exposure, participants had to reconstruct the
configuration. The recall performance of participants is

beyond the scope of this study and only the eye-tracking

data that was captured during the fifteen seconds
exposure time was analyzed.

As an example, Figure 1 shows recordings of the raw
gaze data of two individuals with the chess pieces

removed for the sake of clarity. Figure 1a shows the
recording of an individual with stable eye gaze while the

recording of an individual with a large amount of

fixational eye movements is shown in Figure 1b. In
Figure 1a the PORs are clustered with a clear distinction

between fixations while it is far less obvious to identify

fixations from raw gaze data in Figure 1b.

Figure 2 shows the point-to-point distances of the first
200 PORs of the same two recordings as in Figure 1. The

peaks indicate saccades while the PORs in between are

parts of fixations. The average point-to-point distances
within fixations are much higher for the participant with

unstable eye gaze than for the one with stable eye gaze.

In order to determine if the observations in Figure 1 can
be generalized to all participants and expressed

quantitatively, the average point-to-point distance of

PORs within fixations were determined for each
participant. Figure 3 gives a graphical overview of the

results.
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Figure 3: Average point-to-point distance within fixations per
participant recording. The average point-to-point velocity can
be obtained by multiplying the distance with 50, i.e. the
frequency of the eye-tracker that was used.
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Figure 2. Point-to-point distances of the first 200 PORs of the same participant recordings of Figure 1
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With regard to the introductory part of the hypothesis
stated above, a one-way analysis of variance with

participant recording as categorical predictor and the

point-to-point distance of PORs within fixations as
dependent variable confirmed that people differ

significantly from one another with regard to the stability

of eye gaze (F(30,18172)=179.33, p<0.001).

Origin of individual differences

The eye is subject to degeneration with age similar to

other human organs. Specifically, the macula is a tiny

part of the retina and contains the central focusing spot,

known as the fovea. It is responsible for seeing details,
such as reading, and also for colour vision. Age-related

macular degeneration causes a measurable decrease in

fixation stability (Timberlake et al., 1986) and an increase
in the frequency of ocular tremor (Bolger et al., 2001).

Furthermore, the effects of aging cause reductions in light

sensitivity, colour perception, dynamic and static visual
acuity, and contrast sensitivity (Murata, 2006).

Besides age, several health conditions could be
responsible for fixational eye movements with larger-

than-normal velocities and duration (Kennard, 2004).
Typically, these conditions consist of a drift phase that

could last for 200 ms while covering a distance of

approximately 10 (velocity ~50 deg/s) followed by a
quick correcting saccadic movement that will cover the

same distance but in less than 50 ms (velocity >200
deg/s). Some of these conditions, e.g. peripheral

vestibular nystagmus and gaze-evoked nystagmus, are

fairly common (Dell'Osso and Daroff, 1999), the latter of
which requires no treatment as it rarely causes severe

visual problems (Kennard, 2004).

Individuals with Alzheimer’s disease are considered
to have abnormal fixations with individuals typically

fixating on a target and then glancing away and fixating

on the target again (Fletcher and Sharpe, 1986). In much

the same way, patients with Attention-Deficit
Hyperactivity Disorder (ADHD) invariably lack the

ability to suppress unwanted saccades and show less

ability to control fixations (Munoz et al., 2003).

Discussion of observed variability

Taking into account the spatial resolution of the eye-

tracker that was used, i.e. 0.25 (Tobii Technology AB,
2003), much of the point-to-point movement within

fixations could be ascribed to uncertainty due to

equipment limitations and not necessarily to fixational

eye movements. For example, the observed point-to-

point distances within fixations of the recording of Figure

2a falls well within this limit. For some of the
participants, however, the average point-to-point

distances were significantly more than could be attributed

to equipment limitations and can only be declared in
terms of fixational eye movements: tremor, drift and/or

microsaccades:

Tremor occurs with a typical frequency of about 90
Hz (Martinez-Conde et al., 2004), meaning that the eye-
tracker that was used in this study (Tobii 1750, 50Hz)

would be unable to pick up individual oscillations.

Although typical drift movements last long enough
(minimum 200 ms) to be picked up by this eye-tracker,

the maximum reported drift speed of 0.5 deg/s (Martinez-

Conde et al. 2004; Engbert and Kliegl, 2004) is well
below the minimum average point-to-point velocity of

8.0 deg/s that was observed (Figure 3).

The observed velocity of point-to-point movements
ranged from 8 deg/s to 30 deg/s (avg 14.8 deg/s, sd=5.85)
which agrees with the typical speed of microsaccades, i.e.

~10 deg/s (Martinez-Conde et al., 2004). Furthermore,

the fact that the typical duration (25 ms) and amplitudes

(~0.3) of microsaccades are large enough to be captured

by the eye-tracker that was used in this study, suggests
that microsaccades could possibly explain the observed

point-to-point movements. However, microsaccades

normally occur only once or twice in a fixation of 300 ms
(Martinez-Conde et al., 2004) while our data shows more

frequent point-to-point movements of this order for some

individuals.

Therefore, based on the observed data, the
characteristics of fixational eye-movements and the

limitations of the equipment, the observed point-to-point

movements in excess of 0.25 can only be explained in
terms of atypical behaviour due to, for example, age or
health related conditions as discussed above. In fact,

although not enough data was available to do a reliable

correlation analysis, it was observed that the three

participants with the highest point-to-point velocity (>24
deg/s) were the only three participants over the age of 60.

For the purposes of this paper, it is, however, not
important as to why some individuals show atypical
behaviour as far as gaze stability is concerned, but rather

that there are differences from normal behaviour.
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Identification of fixations

Two basic conditions exist for a cluster of PORs to

constitute a fixation: The total duration must be long

enough and the PORs must be spatially close enough to
one another while forming a temporal sequence. These

conditions can be more precisely defined in terms of a

duration threshold and a distance or velocity threshold.

Existing algorithms for fixation detection

The algorithms that can be used to identify fixations
within raw gaze data can roughly be categorized in terms

of the way in which the above-mentioned conditions for

fixations and the corresponding thresholds are handled.
The velocity-threshold algorithm discussed by Salvucci

and Goldberg (2000) and Kumar et al. (2008) separates

fixation points (PORs belonging to a fixation) and
saccadic points (PORs that do not belong to a fixation)

based on their point-to-point velocities. The velocity of a

fixation point is less than a chosen threshold value while

a saccadic point has a velocity that is larger than or equal
to the threshold. Thereafter, consecutive fixation points

are collapsed into fixations and saccadic points are

discarded.

The dispersion-threshold algorithm was originally
proposed by Widdel (1984) while adaptations and

implementations thereof are discussed in Camilli et al.

(2008), Salvucci and Goldberg (2000), Shic et al. (2008)
and Urruty et al. (2007). The algorithm utilizes the fact

that fixation points, because of their low velocity, tend to

cluster close together. Fixations are identified as groups
of consecutive PORs within a particular dispersion or

maximum separation. Various metrics can be used for

dispersion, e.g. the distance between points in the fixation
that are the furthest apart (Salvucci and Goldberg, 2000),

the distance between any two consecutive points (Shic et

al., 2008; Spakov and Miniotas, 2007) and the distance

between points and the centre of the fixation (radius)
(Camilli et al., 2008; Shic et al., 2008).

Recently, two promising approaches towards fixation
detection were proposed: The mean shift procedure
proposed by Santella and DeCarlo (2004) searches for a

local maximum in a d-dimensional space by shifting each

point of the space towards higher density areas in order to
separate clusters until such movements involve a small

number of points. Urruty et al. (2007) proposed a

clustering algorithm in which clusters are formed in sub-

spaces of lower dimensionality which are then used to

identify clusters in the original dataset.

Importance of threshold values

One of the biggest restrictions of the available

algorithms for fixation detection is the fact that the
parameter settings are crucial. Karsh and Breitenbach

(1983) have shown that the different algorithms for

detecting fixations can lead to totally divergent results.
Shic et al. (2008) indicated that the mean fixation

duration is a linear function of the parameters chosen.

Shic et al. (2008) also showed that specific findings of an

eye-tracking analysis can be made insignificant or even
reversed by changing parameter settings.

If the duration threshold is set too low, false fixations
might be identified; if it is too high, actual fixations
might be missed (Camilli et al., 2008). Manor and

Gordon (2003) have also shown that significantly more

fixations are identified with a duration threshold of 100
ms than with a threshold of 200 ms.

If the dispersion threshold for a dispersion-based
algorithm is too low, the algorithm might exclude

fixations of people with a large amount of fixational eye
movements. If the dispersion threshold is too high,

intermediate PORs that are actually part of saccades

might be mistaken to be part of a fixation or else separate
fixations could be merged.

Duchowski (2007) indicates that parameters may be
determined empirically and refers also to Tole and Young
(1981) who suggested an adaptive approach to overcome

the criticality of threshold values by recalculating the

thresholds based on recently observed noise. It might

also be possible to personalize the threshold for
individual users in order to accommodate individual

differences with regard to fixational eye movements

(refer to Figure 1a and Figure 1b).

The threshold values for fixation duration and
dispersion that are normally used during research are

motivated from physiological characteristics. Depending

on the nature of the task, it is normally recommended that
the threshold for minimum fixation duration is 100-200

ms (Manor and Gordon 2003) while the dispersion

threshold should include a visual angle of 0.5 to 1, i.e. a

radius of 0.25 to 0.5 (Camilli et al., 2008; Eyenal, 2001;
Jacob and Karn, 2003; Salvucci and Goldberg, 2000).

For stimuli that contain mostly pictures, Tobii
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Technology (2008) recommends a fixation radius of 50

pixels (1.6 on a 17" eye-tracker with 1024×768 screen
resolution at 600 mm viewing distance).

Blignaut (2009) argues that the above-mentioned
recommendations are mostly too low and found a radius

threshold of between 0.7 and 1.3 to be optimal, i.e.

leading to the most accurate identification of scan paths.
In this study these results are taken a step further: it was

investigated whether individual differences with regard to

gaze stability affect the value of the optimum threshold.

Methodology

A software tool was developed to identify fixations

from raw gaze data. The tool allows the analyst to

choose from several algorithms and set the relevant
parameters. The tool also allows the manual

identification of fixations from raw data.

For the purposes of this paper the dispersion-threshold
algorithm for fixation identification (I-DT) of Salvucci

and Goldberg (2000) was used. Six metrics were applied

one after the other as a measure of the dispersion of

PORs within a fixation. For each metric, a scan path
(fixation sequence) was generated for each threshold

value in a range of values between 0.2 and 3.0 at

regular intervals, e.g. 0.20, 0.25, 0.30, ... , 2.95, 3.0.

For each participant, the average point-to-point
distance of PORs within a fixation is used as indicator of

the amount of fixational eye movements. Accuracy of
fixation identification is expressed in terms of the

difference between (i) the scan path as identified by the

dispersion based algorithm with a specific metric /

threshold combination and (ii) the benchmark scan path
as identified manually from the raw gaze data.

Details about the participants, stimulus, equipment,
the algorithm and metrics used, the procedure to
determine the benchmark scan paths as well as the

procedure to measure the difference between two scan

paths, are discussed below.

Participants and stimulus

As mentioned above, the results for this study are

taken from an experiment that was originally intended to

test the memory recall ability of chess players. The

stimulus that was presented to chess players for fifteen
seconds is shown in Figure 4.

The chess players were approached between rounds of
a chess tournament and participation was voluntary. All

participants had normal or corrected-to-normal vision.

The sample included 28 males and 4 females with
average age 31.0 (sd=13.2). One of the male participants

could not be calibrated; hence his data was excluded from

the subsequent analysis.

Chess expertise was expressed in terms of the ELO
rating – a system that was developed by Arpad Elo as a

means to measure and rate the average playing ability of

chess players (Elo, 1978). The expertise of participants
in this study varied from novice (rating 1000) to expert

(rating 2400) with an average ELO rating of 1880

(sd=445). Although chess expertise could have an
influence on scan paths, it was not considered to impact

on fixation identification.

Equipment

Data was captured with a Tobii 1750 eye-tracker.
The eye-tracker has a frequency of 50 Hz which means

that the PORs were captured and written to the

underlying database every 20 ms. The spatial resolution

or frame-to-frame variation of the recorded PORs (also

referred to as "noise") of the eye-tracker was about 0.25
(Tobii Technology AB, 2003).

The eye-tracker had a 17" screen and the stimuli were
displayed with a resolution of 1024×768 on an eye-screen

distance of 600 mm. Therefore, 1 of visual angle is

Figure 4: Stimulus presented to participants
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equivalent to about 33 pixels or 10.5 mm. The individual

squares of the chess board spanned about 20 mm (2)

while each piece was displayed at about 7×8 mm (<1).

Calibration was done by displaying five dots at
known positions in the same area where the stimulus was

displayed.

Determination of benchmark scan paths

As a specific feature of the software tool that was
developed for this study, a selection of contiguous PORs

can be highlighted manually (see Figure 5 for an

example) and the corresponding dots on the stimulus are
then displayed in blue (square d3 in the example).

Although extremely time consuming, this technique can

be used to manually identify fixations, i.e. groups of

PORs that belong together both spatially and temporally.
In this way, a scan path can be compiled through

discretionary selection of a subset of PORs that can be

used as benchmark against which the accuracy of fixation
detection algorithms can be measured.

Using the tool, each one of the 31 recordings was
manually analyzed through visual inspection in order to
determine the most probable temporal sequences of PORs

to constitute fixations. A rule was implemented that any

cluster of PORs should consist of at least six points, i.e. a

cluster of PORs should at least represent a minimum
duration of 100 ms to be considered a fixation. The scan

paths that were identified in this way were regarded as a

good approximation of the actual scan paths against
which the scan paths identified by the various metrics

could be evaluated.

This way of fixation identification is, strictly

speaking, also applying a dispersion threshold, but it is

not bound to any specific threshold value. The threshold

that is applied is variable and based on the discretion of a
human observer who has an overview of the entire set of

PORs and uses the clustering of PORs as guideline.

Although this way of approximating the actual scan
paths could be regarded as subjective and subject to error,

the error is believed to be minimal in terms of the number

of fixations that were identified (31 participants, 1642

fixations, avg=52.97, sd=8.33).

With reference to Figure 5, it should be noted that
fixations on empty squares are not unusual since chess

players, especially better players, would look at empty
squares to examine possible moves.

Algorithm and metrics

For the purposes of this paper the dispersion-threshold

algorithm for fixation identification (I-DT) of Salvucci
and Goldberg (2000) was used (Figure 6). This algorithm

is quite robust with regard to identified fixation

sequences as opposed to other algorithms, e.g. velocity-

based algorithms, which may produce inconsistent results
at or near threshold values (Salvucci and Goldberg 2000)

or at slow eye movements (Urruty, 2007). Furthermore,

the I-DT algorithm is simple and easy to implement and
end users have little difficulty comprehending the

meaning of the parameters and relating them to published

recommendations. The algorithm is also used commonly
in analysis tools (Tobii, 2008; Camilli et al., 2008;

Gitelman, 2002; Salvucci, 2000). The algorithm is,

however, very sensitive to parameter settings (Salvucci

and Goldberg, 2000) which necessitates the need to
establish the optimum settings.

The algorithm is based on the supposition that

Figure 5: Stimulus with PORs. A selection of PORs that
constitutes a single fixation is highlighted.

1. points <- All PORs in recording
2. while there are still points
3. Initialize window over first points to

cover duration threshold

4. if dispersion of window points  threshold
5. Add points to the window as long as

dispersion <= threshold
6. Note a fixation at the centroid of the

window points
7. Remove window points from points
8. else
9. Remove first point from points

10. end while

Figure 6: The I-DT algorithm of Salvucci and Goldberg (2000)
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fixation points tend to cluster around the same point as a

direct consequence of their low velocity. Therefore,

PORs that are situated within the dispersion threshold are

classified as a fixation. Essentially, the algorithm uses a
moving window that spans a minimum number of

consecutive data points while inspecting the dispersion of

points in the window. If the dispersion is less than a
threshold value, the points constitute a fixation. Points are

added to the fixation provided that the dispersion is less

than the threshold value. When the dispersion is no

longer below the threshold a new fixation is identified
and the process is repeated until there are no more points.

In this study, six metrics were used to measure the
dispersion of PORs within a fixation. The metrics were
compared with one another in terms of the accuracy of

the scan paths that they return and the criticality of the

dispersion threshold. The metrics used were:

(i) the maximum horizontal and vertical distance
covered by the PORs in a fixation. i.e. ( (Max X –

Min X) + (Max Y – Min Y) ) / 2  Threshold
(Salvucci and Goldberg, 2000) (hereafter referred to

as the Salvucci metric),

(ii) the distance between points in the fixation that are
the furthest apart (DD) (Salvucci and Goldberg,

2000),

(iii) the distance between any two successive points
(P2P) (Shic, et al. 2008; Spakov and Miniotas,

2007),

(iv) the distance between points and the centre of the
fixation (Radius) (Camilli et al. 2008; Shic et al.,

2008),

(v) the average (Avg) and

(vi) standard deviation (SD) of the distances of all points
from the centre of a fixation (Anliker, 1976; Eyenal,

2001).

Figure 7 shows seven consecutive PORs with the DD,
DT, Radius and Salvucci measures of dispersion

indicated. The distance between points 4 and 7 is the

largest of all the inter-point distances while the distance
between points 5 and 6 is the largest of all differences

between two consecutive points.

For all metrics of the I-DT algorithm, the duration

threshold was set at 100 ms to ensure comparability with
the benchmark scan paths. This minimum duration is

also in line with Manor and Gordon (2003) who found
100 ms to be a useful and practical balance between the

theoretical minimum and maximum limits of fixation

duration.

Difference between scan paths

The difference between two scan paths can be

expressed in terms of the Levenshtein distance (LD)

between them. Specifically, the Levenshtein difference

between the benchmark scan path and an estimated scan
path as returned by a fixation identification algorithm can

be used as indication of the accuracy of fixation

identification: The higher the LD, the higher the error in
the estimated scan path.

The Levenshtein distance between two character
strings is given by the minimum number of operations,
defined as insertion, deletion or substitution, needed to

transform one string into the other (Levenshtein, 1966).

The LD has no cost function and every operation has

equal weight. The metric has been applied previously in
eye-tracking research in the comparison of scan paths of

different participants (West et al., 2006), the scan paths of

a participant viewing the same stimuli repeatedly
(Foulsham and Underwood, 2008) and the comparison of

scan paths returned by an algorithm with a benchmark

(Blignaut, 2009). This study follows the latter approach
in the sense that scan paths that were returned from

different metric / threshold combinations were compared

with the benchmark scan path for a specific recording.

Other metrics for comparison of scan paths exist, but it
was found that they produce similar results (Foulsham

and Underwood, 2008) and it was therefore decided that

the Levenshtein difference would suffice.

Scan paths were indexed according to the squares on
the chess board, a technique that resembles that of

Foulsham and Underwood (2008) who divided the

Figure 7: Seven consecutive PORs with different measures of
dispersion indicated
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stimulus in a 5×5 grid of squares with dimensions

6.4×4.8 (compared with 2 squares in this study). For
example, if the benchmark scan path is d4,c4,c6,f6,g7,g5

and a sequence d4,c4,c6,f6,g7,g5 was reported by a

specific metric at a specific threshold, the difference
between the sequences would be 2 (one substitution and

one deletion). In order to compare the Levenshtein

distances of the various recordings, it was expressed as a

percentage of the length of the longest sequence. For the
above-mentioned example, the LD would thus be 33.3%.

The average length of the scan paths in this study was

52.97 (sd=8.33), meaning that if such a scan path
contained 5 missing or misplaced fixations or fixations

that were wrongly inserted, the LD would be 9.4%.

The optimum threshold for a specific metric would be

a value where the Levenshtein distance between the
estimated scan path and the benchmark scan path is a

minimum. The best metric would be the one that returns

the lowest minimum Levenshtein distance.

It is possible that an identified fixation might consist
of a different subset of PORs than the corresponding

fixation in the benchmark scan path, therefore having
different coordinates for their centres. These fixation

centres could be in the same or adjacent squares in the

grid, meaning that the displacement can either be

reflected in the Levenshtein distance between the scan
paths or not. Inspection revealed that this uncertainty

occurs only for fixations that are located right on the

edges of squares and when a POR that is quite some
distance from the centre of the fixation falls in the

adjacent square. The frequency of occurrence of this

scenario is, however, very low.

Results

The effect of threshold and individual differences
on the accuracy of scan paths

It was found that the accuracy with which scan paths
can be identified differs from one individual to the other

as well as with regard to the threshold value that is used.

Also, the minimum Levenshtein difference is different for
different individuals and these minima occur at different

thresholds.

As an illustration, Figure 8 shows the Levenshtein
distance (LD) against the threshold value for four
participant recordings after application of the Radius

metric for fixation identification. Each data point

represents the LD for a specific participant at the
respective threshold.

Comparison of metrics and identification of an
optimum per-metric threshold

Instead of a separate data point for each recording as
in Figure 8, Figure 9 shows the average LD of all

recordings against threshold. Curves for all metrics are

combined on the same graph. The minimum of the

average LDs and corresponding threshold values are
given in Table 1 along with a range of threshold values

where the LD is below 20%.

The Radius metric has the lowest minimum average
Levenshtein distance (11.93%). The threshold at

minimum LD (0.84) agrees with the recommendation by
Blignaut (2009) and it is also clear that, at least for the

type of stimuli that were used in this study, the 0.5
threshold that is sometimes recommended (Salvucci and

Goldberg, 2000; Hornof and Halverson, 2002) is too low.

In fact, looking at the slope of the various portions of the
curves in Figure 11, it is clear that it is less critical to err

with a threshold that is too high than having it too low.

The DD metric also has an LD which is quite low
(12.57%) but it has a wider range of threshold values

where LD is less than 20%. The P2P metric has a much

higher minimum LD (16.35%) with a narrow range of
acceptable threshold values. The Avg and SD metrics

have extremely narrow ranges of acceptable threshold
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Figure 8: Levenshtein distance (LD) between benchmark and
estimated scan paths against threshold for four participant
recordings after application of the Radius metric for fixation
identification.
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values. The Avg and SD metrics have extremely narrow
ranges of acceptable threshold values. Taking all this

into account, it seems that the DD and Radius are the

preferred metrics for the I-DT algorithm.

The effect of fixational eye movements on the
accuracy of scan paths

Fig. 10 shows a graph with a linear regression line of

the minimum LD against average point-to-point distance
for the 31 individual participants after application of the

Radius metric for fixation identification.

The significance of the linear regressions for all

metrics is given in Table 2. Since r² is significant for all

the metrics, the hypothesis as stated above can be
confirmed: the differences amongst people with regard to

fixational eye movements have an effect on the accuracy

with which fixations are identified from raw gaze data.

The less stable the eye gaze, the less accurate the fixation
identification is.

The effect of fixational eye movements on optimum
threshold

Figure 11 shows a graph with a linear regression line

of the optimum threshold (the threshold where LD is a

minimum for the specific participant) against the average
point-to-point distance of PORs within fixations for the

Radius metric for each individual participant. The

significance of the linear regressions for all metrics is

given in Table 3.

There is a significant (p<0.001) positive correlation
between the optimum threshold values for each of the

metrics and the average point-to-point distance within
fixations for individual participants. With regard to the

hypothesis stated above, it is thus confirmed that the

differences amongst people with regard to fixational eye
movement also have an effect on the optimum dispersion

threshold for the various metrics. The less stable the eye
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Figure 10: Minimum Levenshtein difference against average
point-to-point distance within fixations per participant after
application of the Radius metric for fixation identification

Table 2. Significance of linear regressions of minimum
Levenshtein difference against average point-to-point distance
per participant for each of the metrics

Metric r² p

DD 0.3699 <0.001

P2P 0.5451 <0.001
Radius 0.4574 <0.001

Salvucci 0.3827 <0.001
SD from centre 0.4714 <0.001
Avg from centre 0.4778 <0.001
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Figure 9. Average Levenshtein distance for all participants
against threshold value

Table 1. Minimum average Levenshtein distance and
corresponding threshold value

Method Min avg
LD (%)

Threshold at min
avg LD (deg)

Threshold range
where avg LD ≤ 20%

DD 12.57 1.34 0.87 – 2.20
P2P 16.31 0.86 0.72 – 1.28

Radius 11.93 0.84 0.54 – 1.48
Salvucci 13.12 1.00 0.70 – 1.56

SD 12.85 0.255 0.145 – 0.390
Avg 14.11 0.41 0.28 – 0.59

● Avg
● DD
● Radius
● P2P
● SD
● Salvucci
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gaze, the higher the optimum dispersion threshold that

should be used in the fixation identification algorithm.

Applicability of a common per-metric threshold to
all participants

Table 4 shows the average and standard deviations of

the average Levenshtein distances that were obtained

with the two possible sets of threshold settings along with

the results of an analysis of variance. For all the metrics,
the average LD based on the optimum threshold per

participant is significantly (p<0.05) lower than the

average LD based on the generic optimum threshold for
the specific metric. Therefore, it is clear that a generic

threshold for each metric is not optimal for all

participants. However, since it is not practical to have a
separate threshold for each participant and because it is

not easy to determine the optimum threshold for each

participant beforehand, this is the only viable solution.

Fortunately, if the threshold is chosen with care, the

results can still be acceptable with an average error of

less than 20%.

Table 4. Average Levenshtein distances (sd in brackets)
between the benchmark scan path and the scan paths as
returned by the various metrics and threshold settings

Avg and SD of LDs per group Anova

1* 2* F(1,60) p

DD 7.44 (4.66) 12.57 (8.38) 8.85 <0.01

P2P 11.06 (7.48) 16.31 (11.15) 4.81 <0.05
Radius 7.73 (4.72) 11.93 (6.92) 7.80 <0.01

Salvucci 7.99 (5.05) 13.12 (7.13) 10.73 <0.01
SD from centre 8.40 (5.53) 12.85 (7.06) 7.63 <0.01

Avg from centre 8.31 (6.08) 14.11 (9.52) 8.19 <0.01

*1: A different threshold for each participant, i.e. the threshold
at which the LD is a minimum for the respective participant
2: The generic optimum for a specific metric as given in Table 3

Summary and Conclusions

Cognitive processing of a visual stimulus occurs
during fixations – a period of time in which the eye

remains relatively still. During fixations, the eye is

subject to different types of low velocity movements,
such as tremors, drifts and microsaccades. The challenge

to identify fixations from raw gaze data is, therefore,

subject to two basic sources of error:

(i) The amount of fixational eye movement. It was
hypothesized that individuals differ from one another

with regard to the amount of fixational eye movement

and that these movements have an effect on the optimum
threshold setting for a dispersion-based algorithm as well

as the accuracy with which fixations can be identified

from raw gaze data. An inevitable consequence of this
hypothesis is that a common dispersion threshold is not

necessarily optimal for all participants.

(ii) The algorithm used for fixation identification.

Depending on the nature of the algorithm, the choices
made and parameters chosen have an effect on the

accuracy of the scan paths that are identified. This paper

focused on the dispersion threshold algorithm and the
various metrics for dispersion as described in Salvucci

and Goldberg (2000). The nature of the various metrics

for this algorithm is such that each metric has a different
optimum threshold (Table 1).

A graph of the average Levenshtein difference of all
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Figure 11. Optimum radius threshold against average point-to-
point distance within fixations per participant after application
of the Radius metric for fixation identification

Table 3. Significance of linear regressions of optimum
threshold against average point-to-point distance per
participant recording for each of the metrics

Metric r² p

DD 0.6436 <0.001

P2P 0.6471 <0.001
Radius 0.5286 <0.001

Salvucci 0.6627 <0.001
SD from centre 0.5651 <0.001
Avg from centre 0.7227 <0.001
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participant recordings against threshold was used to

determine a generic optimum threshold value for each

metric (Figure 9). Visual inspection of this graph

revealed that the Radius and distance dispersion (DD)
metrics return the most accurate scan paths while the

correct threshold settings are not as crucial as for the

other metrics.

The average point-to point distance of PORs within
fixations was used as indicator of fixational eye

movement of a specific participant recording. Using this

indicator, it was confirmed statistically that individuals
differ from one another with regard to the amount of

fixational eye movement during fixations (Figure 3).

A software tool was developed to identify fixations
from raw gaze data. Six metrics of dispersion were

applied one after the other. For each combination of

participant and metric, a scan path was generated for each

threshold value in a range of values between 0.2 and

3.0 at regular intervals. The accuracy of these scan
paths was expressed in terms of the number of edit
operations that would be necessary to transform them to

the respective benchmark scan paths (the so-called

Levenshtein difference). The optimum threshold for each

recording was considered to be the dispersion value
where the Levenshtein difference is a minimum.

The hypothesis as stated was found to hold in all
respects. A regression analysis of error in the scan path
(minimum LD) against fixational eye movement proved

that the latter has an effect on the accuracy with which

fixations are identified from raw gaze data (Table 2).

The less stable the gaze is, the less accurate the fixation
identification is. This holds for all metrics of the

dispersion algorithm.

A regression analysis of the threshold at which the
minimum LD was attained against fixational eye

movement also proved that fixational eye movements

have an effect on the optimum dispersion threshold for
each one of the metrics (Table 3). The less stable the

gaze, the higher the optimum dispersion threshold that

should be used in the fixation identification algorithm.

The average Levenshtein difference of all participant
recordings at the generic per-metric optimum threshold

was significantly higher than the average Levenshtein

difference if the optimum threshold as applicable for each
individual was applied (Table 4). Unfortunately, it is

generally not feasible to have a separate threshold for

each participant, essentially because it is difficult to

determine what the unique threshold should be.

Therefore, it is of utmost importance that the generic

threshold should be chosen with care, especially if the
participants are not homogeneous with regard to gaze

stability. Homogeneity in this regard can be improved by

ensuring that nobody has health problems that can affect
gaze stability such as Alzheimer's disease or ADHD and

that the participants are of the same age group as far as

possible.

It is acknowledged that the errors induced by the
subjective method to approximate the actual scan paths

and the uncertainty with regard to the centre coordinates

of fixations on the edges of a square could have had
minor influences on the numeric values of the

Levenshtein differences and the F-values for the

respective Anova tests. It is believed, however, that the
influences are not large enough to impact on the

significance of the F-values. This means that although

the magnitude of the effects might be uncertain, the

general trends of the above-mentioned findings still hold.

Future research

Although the result that PORs that are further apart

require a higher threshold in order to aggregate them into

fixations could have been expected, it is a principle that
has been widely neglected by commercial eye-tracking

applications to date. Currently, most commercial eye-

tracking applications recommend the same threshold
setting for all participants and do not provide a way of

analysing the amount of fixational eye movements or

distinguishing between participants.

This paper now formalizes the principle that
individuals differ with regard to the density of PORs

within a fixation and provides motivation for further

research on ways to adapt the threshold to individual
differences easily and dynamically. It is suggested that

commercial eye-tracking systems should provide for

some kind of pre-test (possibly as part of calibration) in
order to recommend a personalised threshold setting for

individual participants.

The technique that was used in this paper to identify
benchmark scan paths against which the accuracy of the

fixation detection algorithm was measured, was

subjective in the sense that it relied on the discretion of a

human observer to identify clusters of PORs that
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designate a fixation. A future experiment could be

devised in which the participants are instructed to

specifically look at certain elements of a stimulus so that

the exact positions of fixations are known.

The effect of the uncertainty with regard to the centre
coordinates of fixations on the edges of a square could be

examined by studying the same data set on grids that vary
in size and/or position.
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