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Introduction 

A Human Visual System (HVS) exhibits a variety of 
eye movements: fixations, saccades, smooth pursuit, op-
tokinetic reflex, vestibulo-ocular reflex, and vergence 
(Leigh and Zee, 2006). When a person is sitting in front 
of a computer screen, usually only fixations, pursuits, and 
saccades are present. Among those three eye movements, 
saccades are the fastest movements transitioning the eye 
between relatively stable fixation spots (Duchowski, 
2007). The fixations provide the highest quality picture to 
the brain, while HVS is blind during saccades (Duchows-
ki, 2007). Pursuits are rarely exhibited when a person is 
working in front of a computer screen, i.e. pursuits appear 
when a person looks at objects with translational motion. 

Quality of vision during pursuit varies. Two areas inside 
the Human Computer Interaction (HCI) domain - gaze 
contingent compression (GCC) systems (Duchowski and 
Çöltekin, 2007; Komogortsev and Khan, 2008b; Park-
hurst and Niebur, 2002; Reingold et al., 2003) and sys-
tems with direct eye gaze control (Huckauf and Urbina, 
2008b; Jacob, 1990; Kumar and Winograd, 2007; Zhai et 
al., 1999) - employ the characteristics of eye movements 
to make HCI systems more efficient and responsive. 

 Real-time GCC systems exploit the properties of the 
HVS where the area of the highest visual acuity is ap-
proximately 2° of the visual angle, while the quality of 
vision in the periphery is severely degraded (Irwin, 
1992). Real-time GCC systems have to accurately calcu-
late the location of the fixation spot estimated by an area 
called a Region of Interest (ROI). A challenge for any 
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GCC is to minimize the ROI size, without letting a user 
see artifacts introduced by the GCC compression. Net-
work transmission of the multimedia content while GCC 
is performed induces various transmission delays into the 
system. As a result of the delay, saccades can place a 
gaze on the low quality coded part of the image (Komo-
gortsev and Khan, 2008b).  Therefore, a real-time GCC 
system must have a saccade amplitude prediction algo-
rithm that allows placing a high quality coded ROI on top 
of the future fixation/pursuit movement to compensate 
for the delay effects (Komogortsev and Khan, 2008b). A 
quick amplitude prediction model can reduce the delay, 
therefore improving the performance of a real-time GCC 
system. The discussion section of this paper provides a 
theoretical validation of this claim. 

Today in the human computer interaction world, the 
mouse and the keyboard are the primary input devices. 
Recently eye-gaze aware interfaces, based on the eye 
tracker as an input device, have been gaining popularity 
in the HCI community (Huckauf and Urbina, 2008a; 
Huckauf and Urbina, 2008b; Istance et al., 2008; Kumar 
et al., 2007; MacKenzie and Zhang, 2008). The majority 
of the HCI systems use fixation duration (dwell time) as a 
trigger for interface actions (Kumar et al., 2007; Sibert 
and Jacob, 2000; Zhai et al., 1999). In such interfaces, the 
duration of the detected fixation triggers a “click”.  Fixa-
tion-based selection necessitates data buffering, and 
therefore, introduces a delay in the system. Pursuit-based 
selection is an unexplored topic in the HCI community. 
Nevertheless, the definition of the pursuit implies that its 
detection will require a certain amount of data buffering. 
Due to its speed saccade selection would seem to be the 
most appropriate in the applications where the quickness 
of the target selection is of the utmost importance. Sac-
cade’s characteristics would be employed to “click” a 
target even before the eye moves to the target’s location. 
Such a scheme would require that saccade’s amplitude 
and direction be predicted based on the first few or even 
one eye position samples belonging to the saccade trajec-
tory.  

We are aware of only two previously published works 
that discussed a prediction of the saccade amplitude. The 
first work was authored by Anliker (1976), where the 
author employed the fact that saccades in nature are bal-
listic (Leigh and Zee, 2006), i.e., once the peak velocity 
is detected, the remaining saccade trajectory resembles 
the trajectory before the peak. The second work authored 

by Komogortsev and Khan (2007) employed a two state 
Kalman Filter (TSKF) for saccade amplitude prediction.  

This paper’s aim is to create a quick saccade ampli-
tude prediction model based on the first position samples 
at the beginning of a saccade and test this model for re-
liability. The model that is proposed in this paper em-
ploys both a Kalman filter and regression analysis and is 
tested by 35 subjects with a stimuli designed to envoke 
saccades of various amplitudes.  

The structure of this paper is as follows: The follow-
ing section, “Human Visual System Modeling by a Kal-
man Filter” provides a brief description of the Kalman 
filter related eye movement research, outlines the mathe-
matical backbone of the Kalman filter framework, pro-
vides a Kalman filter-based model of the human visual 
system, and describes a chi-square test mechanism later 
employed for the amplitude prediction; the “Method” 
section describes the velocity-based amplitude prediction 
model proposed by Anliker (1976), provides the objective 
and the implementation details for the newly proposed 
saccade amplitude prediction model, and discusses two 
amplitude direction prediction models. It also provides 
the details of the experiment setup and the description of 
the evaluation metrics; the “Results” section provides the 
specific equation for the regression based prediction 
model and describes the performance details of every 
model; the “Discussion” section presents the discussion 
of the current challenges of amplitude prediction and 
provides theoretical evaluation of the amplitude predic-
tion on the gaze-contingent compression field; and the 
“Conclusion” section summarizes the results presented in 
the paper. 

Human Visual System Modeling by  
a Kalman Filter 

The Kalman Filter has played an important role in eye 
movement related research. Sauter et al. (1991) has pro-
posed a mechanism for the detection of the saccade on-
set/offset based on the innovations generated by a Kal-
man Filter. Rewari and Chi-Sang (1993) have applied a 
general likelihood approach to improve detection for the 
saccades of small amplitudes Abd-almageed et al. (2002)  
proposed parameters that allowed trackers to more accu-
rately reconstruct a pursuit signal in cases when the sig-
nal was corrupted by noise. Komogortsev and Khan 
(2007) have applied a Kalman filter both in gaze contin-
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gent compression systems and in systems with direct eye 
gaze input. In these systems a Kalman Filter was em-
ployed as a predictor of visual attention and as a filter for 
eye position samples not detected by an eye tracker. A 
Kalman Filter incorporated with the Oculomotor Plant 
Mechanical Model was employed as a predictor of the 
eye movement trajectories in cases when saccade ampli-
tude was known (Komogortsev and Khan, 2008a; Komo-
gortsev and Khan, 2009). The specific focus of the cur-
rent work is quickness of prediction and evaluation of the 
accuracy of such prediction. 

Kalman Filter 
The Kalman filter is a recursive estimator that com-

putes a future estimate of the dynamic system state from 
a series of incomplete and noisy measurements. The 
Kalman Filter minimizes the error between the estimation 
of the system’s state and the actual system’s state. Only 
the estimated state from the previous time step and the 
new measurements are needed to compute the new state 
estimate. Many real dynamic systems do not exactly fit 
this model; however, because the Kalman filter is de-
signed to operate in the presence of noise, an approximate 
fit is often adequate for the filter to be quite useful 
(Brown and Hwang, 1997). 

The Kalman Filter addresses the problem of trying to 
estimate the state x ∈ ℜn  of a discrete-time controlled 
process that is governed by the linear stochastic differ-
ence equation (Brown and Hwang, 1997): 

𝑥𝑥𝑘𝑘+1 = 𝐴𝐴𝑘𝑘+1𝑥𝑥𝑘𝑘+𝐵𝐵𝑘𝑘+1𝑢𝑢𝑘𝑘+1 + 𝑤𝑤𝑘𝑘+1 (1) 

with the measurement 

𝑧𝑧𝑘𝑘 = 𝐻𝐻𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘  (2) 

The n-by-n state transition matrix Ak+1 relates the state at 
the previous time step k to the state at the current step 
k+1 in the absence of either a driving function or process 
noise. Bk+1 is an n-by-m control input matrix that relates 
m-by-l control vector uk+1 to the state xk. wk is an n-by-1 
system’s noise vector with an n-by-n covariance matrix 
Qk. 𝑝𝑝(𝑤𝑤𝑘𝑘)~𝑁𝑁(0,𝑄𝑄𝑘𝑘). The measurement vector zk con-
tains state variables that are measured by the instruments.  
Hk is a j-by-n observation model matrix which maps the 
state xk into the measurement vector zk. vk is a measure-
ment noise j-by-1 vector with covariance 
Rk. 𝑝𝑝(𝑣𝑣𝑘𝑘)~𝑁𝑁(0,𝑅𝑅𝑘𝑘). 

While Equations (1)-(7) provide the mathematical 
description of the process that is being modeled the actual 
state values 𝑥𝑥𝑘𝑘+1 are unknown and have to be estimated. 
The estimation of  𝑥𝑥𝑘𝑘+1  requires two distinct phases Pre-
dict and Update

Predict: 

 (Brown and Hwang, 1997).  

Equation (3) is used to predict the state vector ahead: 

𝑥𝑥�𝑘𝑘+1
− = 𝐴𝐴𝑘𝑘+1𝑥𝑥𝑘𝑘+𝐵𝐵𝑘𝑘+1𝑢𝑢𝑘𝑘+1 (3) 

The 𝑥𝑥�𝑘𝑘+1
−  is a future estimation of the modeled state 

without a measurement from the measurement instru-
ment. In the case of the eye movement prediction the 
value of 𝑥𝑥�𝑘𝑘+1

−  can be employed as a predictor of the fu-
ture gaze position. 

One of the Kalman filter goals is to minimize the er-
ror between the actual state value 𝑥𝑥𝑘𝑘+1 and the estimation 
of this value 𝑥𝑥�𝑘𝑘+1 (Equation (6)). For these purposes, the 
first estimate of the error covariance matrix is computed 
following mathematical representation of the modeled 
process: 

𝑃𝑃𝑘𝑘+1
− = 𝐴𝐴𝑘𝑘+1𝑃𝑃𝑘𝑘𝐴𝐴𝑘𝑘+1

𝑇𝑇 + 𝑄𝑄𝑘𝑘+1 (4) 

Update: 

The update phase improves the estimate of the mod-
eled process by considering the measurement from the 
measurement device. The update phase can be broken 
down into three distinct steps. 

Compute the Kalman gain: 

𝐾𝐾𝑘𝑘+1 = 𝑃𝑃𝑘𝑘+1
− 𝐻𝐻𝐾𝐾+1

𝑇𝑇 (𝐻𝐻𝑘𝑘+1𝑃𝑃𝑘𝑘+1
− 𝐻𝐻𝑘𝑘+1

𝑇𝑇 + 𝑅𝑅𝑘𝑘+1)−1 (5) 

Update the estimate of the state vector with a mea-
surement zk+1: 

𝑥𝑥�𝑘𝑘+1 = 𝑥𝑥�𝑘𝑘+1
− + 𝐾𝐾𝑘𝑘+1(𝑧𝑧𝑘𝑘+1 − 𝐻𝐻𝑘𝑘+1𝑥𝑥�𝑘𝑘+1

− ) (6) 

Update the error covariance matrix: 

𝑃𝑃𝑘𝑘+1 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘+1𝐻𝐻𝑘𝑘+1)𝑃𝑃𝑘𝑘+1
−  (7) 

The choice of Kalman filter gain 𝐾𝐾𝑘𝑘  allows minimiza-
tion of the estimate error covariance 𝑃𝑃𝑘𝑘 = 𝐸𝐸[(𝑥𝑥𝑘𝑘 −
𝑥𝑥�𝑘𝑘)(𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘)]. A more detailed description of Kalman 
filter mechanics is beyond the scope of this paper and can 
be found in (Brown and Hwang, 1997; Kalman, 1960). 
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Human Visual System 
The approach that we use in this paper is to model an 

eye as a system with two states: position and velocity, 
with acceleration modeled as white noise with known 
maximum acceleration. Next we apply a Kalman filter 
framework to this eye representation creating a Kalman 
filter with two states, which we will call a Two State 
Kalman Filter (TSKF). To complete the description of 
this filter we describe our choice for the state vector 𝑥𝑥𝑘𝑘 , 
control vector 𝑢𝑢𝑘𝑘 , transition matrix Ak, and control matrix 
Bk. It is also necessary to derive a covariance matrix Qk 
for the system’s noise 𝑤𝑤𝑘𝑘  and covariance matrix Rk defin-
ing the measurement noise 𝑣𝑣𝑘𝑘 . Additionally, to map the 
actual system’s state vector xk to the measurement vector 
zk, the observation matrix Hk is required. A detailed de-
scription is provided below. 

Note that 2D eye movement parameters (position, ve-
locity, acceleration) can be broken into the vertical and 
horizontal components, because essentially they are com-
posed of superposition of their respective orthogonal 
components (Kohler, 1997).  Therefore, we create two 
instances of the TSKF filter: the first is responsible for 
the horizontal component of movement and the second 
one is responsible for the vertical. As a result, an eye is 
represented as a system which has two state vectors xk 
and yk. 

𝑥𝑥𝑘𝑘 = �𝑥𝑥1(𝑘𝑘)
𝑥𝑥2(𝑘𝑘)� 

(8) 

where 𝑥𝑥1(𝑘𝑘) is the horizontal coordinate of the gaze posi-
tion and 𝑥𝑥2(𝑘𝑘) is the horizontal eye-velocity at time k. 

𝑦𝑦𝑘𝑘 = �𝑦𝑦1(𝑘𝑘)
𝑦𝑦2(𝑘𝑘)� 

(9) 

where 𝑦𝑦1(𝑘𝑘) is the vertical gaze position and 𝑦𝑦2(𝑘𝑘) is the 
vertical eye-velocity at time k. 

The state transition matrix for both horizontal and 
vertical states is: 

𝐴𝐴 = �1 ∆𝑡𝑡
0 1 � 

(10) 

where t∆ is the eye-tracker’s eye-position sampling 
interval. 

The observation model matrix for both state vectors 
is: 

𝐻𝐻 = [1 0] (11) 

By definition, the covariance matrix for the measure-
ment noise is 𝑅𝑅𝑘𝑘 = 𝐸𝐸[(𝑣𝑣𝑘𝑘 − 𝐸𝐸(𝑣𝑣𝑘𝑘))(𝑣𝑣𝑘𝑘 − 𝐸𝐸(𝑣𝑣𝑘𝑘))𝑇𝑇]. Be-
cause only the eye position is measured, 𝑣𝑣𝑘𝑘  is a scalar 
making𝑅𝑅𝑘𝑘 = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑣𝑣𝑘𝑘] = 𝛿𝛿𝑣𝑣2, where 𝛿𝛿𝑣𝑣 is the standard 
deviation of the measurement noise. In this paper, it is 
assumed that the standard deviation of the measurement 
noise relates to the accuracy of the eye tracker and is 
bounded by one degree of the visual angle. Therefore 𝛿𝛿𝑣𝑣 
was conservatively set to1°. In cases when the eye tracker 
fails to detect eye position coordinates, the standard devi-
ation of measurement noise is assigned to be 𝛿𝛿𝑣𝑣 =
120°.The value of 120° is chosen empirically, allowing 
the Kalman Filter to rely more on the predicted eye posi-
tion coordinate𝑥𝑥�𝑘𝑘−.  

The TSKF is initialized with zero valued initial vec-
tors𝑥𝑥�0, 𝑦𝑦�0 and an identity error covariance matrix P0. 

By definition, the process noise covariance matrix is 
𝑄𝑄𝑘𝑘 = 𝐸𝐸[(𝑤𝑤𝑘𝑘 − 𝐸𝐸(𝑤𝑤𝑘𝑘))(𝑤𝑤𝑘𝑘 − 𝐸𝐸(𝑤𝑤𝑘𝑘))𝑇𝑇], where 𝑤𝑤𝑘𝑘  is a 
1x2 system’s noise vector 𝑤𝑤𝑘𝑘 = [𝑤𝑤1(𝑘𝑘) 𝑤𝑤2(𝑘𝑘)]𝑇𝑇. The 
TSKF simple model assumes that variables 𝑤𝑤𝑖𝑖(𝑘𝑘) are 
uncorrelated between each other (velocity is independent 
of eye position), i.e.,  𝐸𝐸[(𝑤𝑤𝑚𝑚(𝑘𝑘)𝑤𝑤𝑛𝑛(𝑘𝑘)] =
𝐸𝐸[(𝑤𝑤𝑚𝑚 (𝑘𝑘)]𝐸𝐸[𝑤𝑤𝑛𝑛(𝑘𝑘)]  for all 𝑛𝑛 ≠ 𝑚𝑚 
and 𝑝𝑝(𝑤𝑤1(𝑘𝑘))~𝑁𝑁(0, 𝛿𝛿1

2), 𝑝𝑝(𝑤𝑤2(𝑘𝑘))~𝑁𝑁(0, 𝛿𝛿2
2). These 

assumptions generate the following system noise cova-

riance matrix: 𝑄𝑄𝑘𝑘 = �𝛿𝛿1
2 0

0 𝛿𝛿2
2�.  This simple model as-

sumes that the standard deviation of the eye position 
noise 𝑤𝑤1(𝑘𝑘) is connected to the characteristics of the eye-
fixation movement. Each eye fixation consists of three 
basic eye-sub-movements: drifts, small involuntary sac-
cades and tremors (Yarbus, 1967). Among those three 
movements, involuntary saccades have the highest ampli-
tude—about a half degree of the visual angle; therefore, 
𝛿𝛿1 is set conservatively to 1°. The standard deviation 
value for eye velocity was selected to be 𝛿𝛿2 = 1°/s. 

Chi-square Test & Saccade Amplitude 
The Chi-square test was originally employed by Sau-

ter (Sauter et al., 1991) to detect the onset and the offset 
of a saccade. The Chi-square test monitors the difference 
between predicted and observed eye velocity:  

𝜒𝜒𝑖𝑖2 = �
�𝑥𝑥�2

−(𝑖𝑖) − 𝜃̇𝜃𝑖𝑖�
2

𝛿𝛿2

𝑝𝑝

𝑖𝑖=1

 (12) 

DOI 10.16910/jemr.3.1.1 ISSN 1995-8692This article is licensed under a
Creative Commons Attribution 4.0 International license.



Journal of Eye Movement Research Komogortsev, O., Ryu, Y. S. & Koh, D. (2009) 
1(3):1, 1-13 Quick Models for Saccade Amplitude Prediction 
 

5 

where 𝜃̇𝜃𝑖𝑖  is the observed eye velocity and 𝜃̇𝜃𝑖𝑖− = 𝑥𝑥�2
−(𝑖𝑖) is 

the predicted eye velocity computed by Equation (3). It is 
important to note that Equation (3) can be computed as a 
result of the Kalman filter framework presented by Equa-
tions (1)-(7) and specifically defined by equations (8)-
(11). Komogortsev and Khan (2007) have suggested a 
function that connected the value of 𝜒𝜒𝑖𝑖2 to the amplitude 
of the corresponding saccade (2007). They suggested that 
the development of such a function is possible due to the 
fact that HVS uses phasic (fast) eye-muscle fibers with 
high motoneuronal firing rate for large saccades and tonic 
(slow) eye-muscle fibers with a lower motoneuronal fir-
ing rate for the saccades of lesser amplitude (Bahill, 
1980). Such mechanism ensures different rate of rise of 
eye-muscle force for the saccades of various amplitudes 
providing higher acceleration to the eye globe during 
saccades of higher amplitude. Larger amplitudes produce 
larger eye velocity values therefore increasing the value 
for 𝜒𝜒𝑖𝑖2. The next section provides a description of the chi-
square based amplitude prediction model. 

Method 

Saccade Amplitude Prediction: Velocity Model 
As a comparison model, we would like to employ a 

saccade prediction model proposed by Anliker (Anliker, 
1976). Anliker’s model uses the fact that saccadic move-
ment is ballistic—i.e., a saccade trajectory is predeter-
mined and cannot be altered once the movement starts, 
and the saccade trajectory resembles a bell curve. Once 
the peak velocity is reached, the rest of the saccade 
movement mirrors the movement prior to the peak. In our 
implementation of Anliker’s model, the velocity peak is 
detected when a consecutive eye position point has a 
lesser absolute velocity value than the previous one. The 
saccade amplitude is made equal to double the distance of 
the path traveled, prior to the velocity peak. 

Saccade Amplitude Prediction: Chi-square 
Regression Model 

Objective & Evaluation 

The aim of the quick saccade amplitude prediction 
model is to predict the saccade’s amplitude as quickly as 
possible with amplitude predicted within the first two or 
even one eye position samples at the onset of a saccade. It 
is important to assess theoretically how much quicker 

such models are, when they are, than the base Velocity 
Model.  For simplicity sake, we call the First Sample 
model the model that requires just one eye position sam-
ple at the onset of a saccade for the amplitude prediction, 
and we call the Two Samples model the model that uses 
the first two eye position samples at the onset of a sac-
cade for prediction. The time required for prediction for 
the First Sample model is constant 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1/𝑓𝑓 (𝑓𝑓 is 
the frequency of the eye tracker equipment measured in 
Hz). For the Two Samples model the time of prediction is 
𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 2/𝑓𝑓. The Velocity Model requires peak ve-
locity identification that occurs at the point representing 
the middle of the saccade plus an additional point re-
quired for velocity peak verification, making prediction 
time: 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 _𝑑𝑑𝑑𝑑𝑟𝑟/2 + 1/𝑓𝑓 were saccade 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠 _𝑑𝑑𝑑𝑑𝑑𝑑  
represents a saccade duration measured in ms. Saccade 
duration can be estimated with the formula (Carpenter, 
1977) 

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 _𝑑𝑑𝑑𝑑𝑑𝑑 = (2.2𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 _𝑎𝑎𝑎𝑎𝑎𝑎 + 21)/1000 (13) 

were 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 _𝑎𝑎𝑎𝑎𝑎𝑎  is an amplitude of a saccade measured in 
the degrees.  

The amount of time saved by a prediction model when 
compared to the other model can be estimated by the 
formula: 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 _1 − 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 _2. Figure 1 provides 
the estimate of time saved for the First Sample model and 
the Two Samples model vs. the Velocity Model. 

 
Figure 1. Amount of prediction time saved when First Sample 

and Two Samples models are compared to Velocity model  

Figure 1 indicates that prediction time saved amounts 
to 12 ms for First Sample model and 3 ms for Two Sam-
ple model in case of 1° saccade. In case of 30° saccade 
the savings become 44 ms and 35 ms, respectively. 
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Implementation 

We have selected a non-linear regression model with 
Gauss-Newton method to create the amplitude prediction 
model for the First Sample and Two Sample scenario. 
Nonlinear regression is widely employed as a powerful 
tool for analyzing scientific data, especially in physiology 
(Motulsky, 2001). Specifically, non-linear regression is 
more effective for curve-fitting than linear regression 
(Motulsky and Christopoulos, 2004). The proposed Chi-
square Regression Model was created as a result of the 
analysis of the 𝜒𝜒𝑖𝑖2 data recorded with saccade evoking 
experimental setup. Chi-square test values were calcu-
lated by equation (12) for every eye gaze position sample 
with saccade parameters such as amplitude, onset, and 
offset detected by the Velocity Threshold model (I-VT). 
The I-VT model is considered a de facto standard by the 
eye tracking community, the description and parameters 
of the I-VT we employed can be found in (Komogortsev 
and Khan, 2009). Chi-square test values recorded at the 
onset of a saccade and the following eye position model 
created the data for the Chi-square Regression Model. 
The model was implemented using SAS software (SAS, 
2009). 

Saccade Direction Detection Model 
This paper focused on only saccades with horizontal 

amplitude. Quick direction detection of this movement 
was not as easy as it might appear due to equipment 
noise. Quick direction detection schemes are prone to 
generate errors. In the next two paragraphs, we present 
two methods for the horizontal saccade’s direction detec-
tion 

First Sample Model 

The direction of movement was connected to the sign 
of the velocity of the recorded signal. A positive sign of 
the velocity signal at the first eye position sample indi-
cated a rightward direction of a saccade, and a negative 
velocity indicated a leftward direction of the saccade. 

Two Samples Model 

The first two velocity samples of the saccade trajecto-
ry were evaluated. The rightward saccade was predicted 
if both velocity samples had positive values. The leftward 
saccade was predicted if both velocity samples had nega-
tive values. In cases when velocity samples had different 
signs, the saccade direction was selected to be the same 

as the sign of the velocity point with the highest absolute 
value. 

Experimental Setup 

Equipment 

The experiments to collect data to generate saccade 
amplitude prediction and direction detection models were 
conducted with the Tobii x120 eye tracker, which is 
represented by a standalone unit connected to a 19 inch 
flat panel with a resolution of 1280x1024. The flat panel 
screen has its width as 37.8cm and its height as 30.2cm. 
In terms of degrees, the display has 30.22° as its width 
and 24.2° as its height. The distance between subjects and 
the screen is 70cm.This eye tracker performs binocular 
tracking with the following characteristics: accuracy 0.5°, 
spatial resolution 0.2°, and drift 0.3°. The sampling fre-
quency for the eye tracker is 120Hz. Tobii x120 model 
allows 300x220x300 mm freedom of head movement.  
Nevertheless a chin rest was employed for higher accura-
cy. 

Stimulus Presentations 

A saccade inhibition stimulus was presented as a 
ramp stimulus (Leigh and Zee, 2006) where a dot ap-
peared at the random horizontal location on the screen 
(vertical coordinate was fixed to the center of the screen). 
First, the dot flashed for 1000 ms.; then it disappeared; 
then, immediately a new dot appeared at the new, random 
location within the screen boundaries. The minimum dis-
tance between two consecutive dots was 2°.  The maxi-
mum distance was 30° (approximately the width of the 
screen). Average presented distance amounted to 10°. 
Each subject was presented with a sequence of 30 dots. 

Participants 

Thirty five college students were recruited in under-
graduate courses at Texas State University.  Participants 
were compensated for their participation with extra credit 
in courses within the Departments of Psychology and 
Computer Science. All materials and procedures were 
approved by the Institutional Review Board at Texas 
State University, and informed consent was obtained 
from all participants prior to the testing session. On aver-
age, participants were 20.62 years of age [SD = 2 years; 
range = 18-25].  Of the 35 participants tested, 85% were 
male, 69% were of European-American descent. 
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Quality of the Recorded Data 

Prior to the experiment, participants were screened for 
the actual accuracy and noise levels of the eye-tracker 
hardware using software developed in the Human Com-
puter Interaction Laboratory at Texas State University 
(Komogortsev and Gowda, 2008). Participants with re-
ported calibration error of more than 1° and a noise level 
of more than 16% were excluded from the analysis of eye 
movement data. The noise level is defined as the percen-
tage of eye position samples for which the eye tracker 
failed to report the eye position scoordinates. Some re-
cording failures of the eye tracker occurred, due to condi-
tions such as squinting and excessive moisture of the eye.  
In eye-tracking experiments, noise level parameters are 
rarely reported, but they serve as a major validation me-
tric that should be specifically stated to verify the validity 
of the results. 

Evaluation Metrics 

The Root Mean Squared Error (RMSE) between the 
predicted 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 _𝑝𝑝𝑝𝑝𝑝𝑝  and the actual saccade amplitude 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠  
determines the accuracy of the saccade prediction algo-

rithm. 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀 = �∑ �𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 −𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 _𝑝𝑝𝑝𝑝𝑝𝑝  �
2

𝑁𝑁
𝑁𝑁
𝑘𝑘=1  . M is the mod-

el’s name. The ideal saccade prediction model will have 
an RMSE of 0º. 

Direction Prediction Error (DPE) represents the 
amount of erroneously detected saccade direction predic-
tion—i.e., the rightward saccade was predicted as left-
ward saccade and vice-versa. The perfect scheme would 
have an error rate of 0. 

Both metrics were computed in the following way. 
Out of 35 recordings, 25 were randomly selected to create 
functions connecting the Chi-square test value to the sac-
cade amplitude according to the heuristic of each predic-
tion model. The remaining 10 recordings were employed 
to compute the RMSE and DPE metrics. 

Results 

Amplitude Prediction Model 
Equation (14) shows the chi-square regression model 

created for the Two Samples scenario, p<0.001. The at-
tempt to develop a reliable regression model for the First 
Sample scenario did not succeed due to the failure to pro-
vide significant terms in the model, p>0.7201.  

 
𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 _𝑝𝑝𝑝𝑝𝑝𝑝 = −107 ∙ 10−13 ∙ (𝜒𝜒1

2)5 + 1.848
∙ 10−8 ∙ (𝜒𝜒1

2)4

− 0.00001 ∙ (𝜒𝜒1
2)3

+ 0.000266 ∙ (𝜒𝜒1
2)2

− 0.3008 ∙ (𝜒𝜒1
2) − 179

∙ 10−15 ∙ (𝜒𝜒2
2)5 + 5.36

∙ 10−10 ∙ (𝜒𝜒2
2)4 − 4.8

∙ 10−7 ∙ (𝜒𝜒2
2)3

+ 0.000084 ∙ (𝜒𝜒2
2)2

+ 0.0586 ∙ (𝜒𝜒2
2)

+ 9.1502 

 

(14) 

Asac _pre  is the amplitude of the predicted saccade, χ1
2 

represents the chi-square test value detected at the onset 
of a saccade, and χ2

2 represents the chi-square test value 
recorded at the next eye gaze position after the onset of a 
saccade. 

Amplitude Prediction Error  
The Velocity Model yielded average RMSE of 3.38°. 

We hypothesize that these errors were due to high noise 
in the eye tracker. For example, spatial resolution of 0.2° 
results in a velocity noise of 24°/s without an eye effec-
tively moving anywhere. For each subject in remaining 
10 recordings, the average RMSE for the Two Sample 
chi-square regression model was 5.26°. However, RMSE 
for the Velocity Model was significantly lower than that 
for the chi-square regression model, F(1,9)=15.07, 
p=0.0037. 

 
Figure 2. Saccade amplitude prediction errors by the two 

models based on average RMSE 

Also, the scatter plots of actual saccade amplitude vs. 
predicted saccade amplitude by each of the two predic-
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tion models are illustrated (Figures 3 and 4). These plots 
provide information on prediction error distribution ac-
cording to the magnitude of saccade amplitude.  

To quantify how close the distribution of predicted 
amplitude by each model is to the distribution of actual 
amplitude, Kullback-Leibler (KL) divergence was meas-
ured by assuming saccade amplitude as a discrete random 
variable. The results are: 

𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝||𝑞𝑞𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 )=0.5483 

𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝||𝑞𝑞𝑐𝑐ℎ𝑖𝑖−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 )=0.5261 

The values are not greatly different, thus it is hard to 
state which distribution is closer to the distribution of 
actual amplitude using KL divergence. 

 
Figure 3. Scatter plots between actual saccade amplitude and 

predicted amplitude by the velocity model 

 
Figure 4. Scatter plots between actual saccade amplitude and 

predicted amplitude by the chi-square regression model 

Direction Prediction Error  
Average error rate for the First Sample model for all 

35 recordings was 5.27%. The Two Samples model per-
formed significantly better by reducing average error rate 
to 1.54%, F(1,34)=25.87, p<0.01. 

 
Figure 5. Direction prediction error rates for First Sample and 

Two Samples models. 

 

To investigate the relationship between the magnitude 
of saccade amplitude and the frequency of direction error, 
the direction error distribution is provided (Figure 6). The 
distribution shows that direction error occurred more fre-
quently for the saccades of smaller amplitudes. The prob-
able reason for this type of behavior is that saccades of 
smaller amplitudes are distorted more by the eye tracking 
equipment noise than saccades of larger amplitudes.  

 
Figure 6. Direction error distribution according to saccade 

amplitude  
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Discussion 

Prediction Accuracy Challenges 
Average amplitude prediction error of 5.26° seems to 

be large for the average saccade amplitude of 10°. We 
hypothesize that the reason for this is the high amount of 
noise provided by the eye tracking equipment. Therefore, 
additional research is required to find noise reduction 
algorithms to reduce the effects of noise in the recorded 
data and thereby increase the accuracy of prediction. 

It is worth mentioning that, in previous research, Ko-
mogortsev and Khan (Komogortsev and Khan, 2007) 
proposed the following equation for saccade amplitude 
prediction. 
𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 _𝑝𝑝𝑝𝑝𝑝𝑝 = −24 ∙ 10−6 ∙ (𝜒𝜒2)3 + 536 ∙ 10−4

∙ (𝜒𝜒2)2 + 1.5 (15) 

 
When this equation was applied to the data collected in 
the experiments described in this paper, the recorded av-
erage RMSE was more than 35° (larger than the monitor 
size). One possible reason for such low accuracy of pre-
diction to the different frequency of eye position sam-
pling recording in our experiments and in experiments 
presented in Komogortsev and Khan (2007). The fre-
quency employed in their experiment was 50Hz and fre-
quency employed in our experiments was 120Hz. The 
other possible issue is that the function presented in Equ-
ation (15) was derived empirically from only one record-
ing of one subject.  

Applications 

Quick models for saccade amplitude prediction have 
potential to benefit the area of gaze-contingent-
compression, by reducing the amount of lag created by 
sensing, processing, and transmission delays. Delay re-
duction allows achievement of higher levels of compres-
sion (Komogortsev, in press; Komogortsev and Khan, 
2004). Specifically an amplitude prediction model would 
provide the location for the high quality ROI region that 
would be placed at the coordinates of the offset of a sac-
cade. The quickness of the saccade’s amplitude predic-
tion would result in delay reduction. Below we provide a 
mathematical evaluation of the First Sample and Two 
Sample Chi-square regression models assuming that each 
of the models accurately predicts a saccade’s amplitude 
(amplitude prediction error of 0°). In our analysis, we 
also fix eye position sampling interval to be 120 Hz, the  

same as the sampling interval employed in our experi-
ments. 

The amount of delay reduction each model provides 
depends on saccade’s duration and the amount of time 
each model requires to predict the saccade’s amplitude. 

𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 _𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 _𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  (16) 
Formulas for 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 _𝑑𝑑𝑑𝑑𝑑𝑑  and 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  were discussed in the 
“Method” section above. 

Once delay reduction is estimated, it is possible to as-
sess the amount of compression savings the models 
would provide for a GCC system. To provide such an 
estimate we have taken GCC performance results re-
ported by Komogortsev (Komogortsev, in press). Table 1 
provides a summary of the results. 
 
Table 1. Average Perceptual Resolution Gain achieved with 
corresponding delay. 

Delay 0 ms 20 ms 500 ms 1000 ms 2000 ms 
APRG 2.6 2.2 1.6 1.5 1.4 

 
Average Perceptual Resolution Gain (APRG) is a quanti-
ty that indicates the amount of compression a gaze-
contingent approach provides given the value of the delay 
(Komogortsev and Khan, 2004). It is possible to provide 
a logarithmic approximation of APRG given the delay 
values  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = −0.176 ln�𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 � + 1.5 (17) 
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  represents the amount of delay in the GCC system 
measured in seconds. In this approximation, lowest value 
for 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  is assumed to be 0.001 ms. While Equation 
(17) provides the APRG estimation for the “Original” (no 
delay compensation) type of GCC system, the GCC sys-
tem’s performance aided by the amplitude prediction 
model can be presented as:  
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 = −0.176 ln�𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 _𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �

+ 1.5 
(18) 

In cases when expression �𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 _𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 � ≤ 0 the 
value for 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚  is computed with value of 
�𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 _𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �=0.001. 
The resulting compression increase (CI) can be estimated 
as  

𝐶𝐶𝐶𝐶 = 100(1 −
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚

) (19) 
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were 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚  is the compression value provided as a 
result of delay compensation. 

Figures 7 and 8 present comparison results created by 
two scenarios defined by the average amplitude of the 
exhibited saccades. The first scenario considers average 
saccade amplitude of 5°,  and the second scenario consid-
ers average saccade amplitude of 10°. 
 

 
 

Figure 7. Compression increase provided by the amplitude 
prediction models. Average Saccade Amplitude is 5°. 

 

 
 

Figure 8. Compression increase provided by the amplitude 
prediction models. Average Saccade Amplitude is 10°. 

Average saccade amplitude of 5°:

The performance of the Two Samples model mimics 
the performance of the One Sample model when com-
pared to the Original and Velocity aided compression. 
Two Sample model provides the peak of compression 
savings of 18% in the 15-16 ms delay range when com-
pared to the Original compression and the improvement 
peak of 13% in case of the 15-16 ms delay when com-
pared to the Velocity aided compression. The savings in 
compression are lower for both cases when the delay val-
ues are increased. The biggest gain in compression saving 
(15%) occurs at the 25 ms delay mark when the First 
Sample model is compared to the Two Samples model. 

 the results indi-
cate that the Velocity model would provide a 14% com-
pression improvement for the delay of 9 ms. There is a 
steep reduction in performance after this value, e.g., delay 
of 50 ms achieves an improvement of performance of just 
1%. The First Sample model increases the effective range 
of delay compensation, providing the highest compres-

sion increase (21%) for the delays of up to 25 ms. There 
is a steep reduction in performance after that e.g., delay 
of 50 ms. reduces CI value down to 5% and delay of 100 
ms. reduces the performance increase down to 2%. When 
performance of the First Sample model is compared to 
the performance of the Velocity model, the performance 
of both models is the same up to the 8 ms mark (the tim-
ing of the first interval); after this point we can see a con-
stant rise of the performance until the point of 23-25 ms 
where performance reaches the value of 18%. There is a 
slow reduction of performance after this point.  

Average saccade amplitude of 10°:

The Two Samples model provides the peak of com-
pression savings of 21% in the 24-27 ms delay range 
when compared to the Original compression and the im-
provement peak of 17% at 26-27 ms delay when com-
pared to the Velocity model. The savings in compression 
are lower for both cases when the delay values are in-

 Larger saccades 
provide an opportunity to increase the compression im-
provement benefits and the effective delay compensation 
range produced as a result of saccade amplitude predic-
tion. Considering average saccade amplitude of 10° the 
performance of the Velocity and One Sample models are 
the same up to 14 ms. After this point the Velocity model 
performance degrades, going down to 3% at the level of 
50 ms., and the performance reaches the mark of 1% or 
less at the point of 85ms. The peak of performance im-
provement (23%) occurs in the 33-36 ms interval for the 
First Sample model, going down to the mark of 9% at the 
50 ms. delay interval and 4% at the 100 ms delay inter-
val. When the First Sample model is compared with the 
Velocity model, the peak of performance improvement 
occurs at the interval of 34-36 ms providing an improve-
ment of compression by 20%, and the performance im-
provement decreases after this value.  
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creased. The biggest gain in compression saving (15%) 
occurs at the 36 ms delay mark when the First Sample 
model is compared to the Two Samples model. 

We have provided a theoretical evaluation of the im-
pact that quick saccade amplitude prediction models 
would have on the gaze-contingent compression domain. 
The actual implementation of such models in a real-time 
GCC system might change the estimated compression 
results. For example such factors as delay jitter, targeted 
amount of eye-gaze samples required to be contained by 
a GCC system (Komogortsev, in press), changes of the 
eye tracker’s sampling frequency and prediction error 
compensation mechanisms were not considered in our 
evaluation. The detailed empirical evaluation of these 
factors is beyond the scope of this paper. 

Conclusion 

This paper has introduced a new saccade amplitude 
prediction model and compared it to the published work 
of Anliker (Anliker, 1976). The new model was based on 
a non-linear regression model using the chi-square test 
values computed by a two state Kalman filter implemen-
tation of the Human Visual System.  

The results indicate that the Velocity model (Anlik-
er’s) was the most accurate producing a 3.46 degree error 
on average, but the model required that the middle of a 
saccade be reached, therefore reducing the potential bene-
fit of saving time. The proposed regression model pro-
duced a higher saccade amplitude prediction error, but it 
predicted saccade amplitude in a constant amount of 
time. The regression model based on the data from just 
one eye position sample at the beginning of a saccade did 
not provide significant terms. The regression model aided 
by the data from the second position sample had signifi-
cant terms with average amplitude prediction error of 
5.26° (average amplitude of exhibited saccades was ap-
proximately 10°).  

The saccade’s direction prediction heuristic, presented 
in our paper, allows prediction of saccade direction with 
the success rate of 95% based on the data from just one 
eye position sample at the beginning of a saccade. Given 
the data from the second consecutive sample, the heuris-
tic increases the success rate to 98.46%.  

We have provided a theoretical evaluation of the ben-
efits that saccade amplitude prediction can bring to the 

realm of real-time gaze contingent compression.  The 
result indicates that in the case using the two-eye position 
sample prediction model, the benefit of using the ampli-
tude prediction model would be 21% of additional com-
pression savings for the short network delays. For the  
case of the one eye-position sample model the compres-
sion savings would increase to 23%.   
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