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1Introduction 

For over a century eye movements have been used to 
study the time course of reading processes (Huey, 1908; 
Rayner, 1998, 2009). The time course is often 
conceptualized (e.g., Engbert, Nuthmann, Richter, & 
Kliegl, 2005; Reichle, Pollatsek, & Rayner, 2006) – and 
visualized (e.g., Dambacher & Kliegl, 2007; Sereno & 
Rayner, 2003) – as a timeline, on which key parameters 
such as the onset, offset, and duration of a process are 
marked. Estimating the time course is critical for 
understanding reading, but making reverse inferences 
from eye movements to reading processes is not 
straightforward. This paper introduces a new approach to 
estimate the time course of a process based on the 
distribution of fixation duration. I will begin by 
formalizing the metaphor of a time course, which, in turn, 
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is based on the dichotomy between fixations and saccades 
in reading.  

Fixations, Processes, and Popcorn 

During reading the eyes alternate between two states 
– fixations and saccades. Fixations are periods of time in 
which the eyes are relatively stationary and the retinal 
image is clear. Fixations are interrupted by saccades, 
which are fast, ballistic movements that bring the eyes to 
different words. This is, of course, an idealization. The 
distinction between fixations and saccades is often 
blurred by eye movements during fixations (Carpenter, 
1988; Engbert & Kliegl, 2003; Inhoff & Radach, 1998) 
and equipment limitations (Duchowski, 2003; McConkie, 
1981). These issues, however, do not diminish the 
importance of the fixation-saccade dichotomy in reading 
research (Rayner, 1998).  

Linking fixation duration and reading processes. The 
present study focuses exclusively on the duration of 
fixations, which is shown in numerous studies to reflect 
on-going reading processes (for reviews, see Clifton, 
Staub, & Rayner, 2007; Rayner, 1998). The basic linking 
hypothesis in reading eye movement research hardly 
needs any justifications: if a variable X, which is 
predicted to affect exclusively a sub-stage of reading, 
causes a statistically significant change in the average 
fixation duration, then the process is implicate in the 
reading. This logic is instrumental in the discovery of 
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numerous factors influencing reading processes and 
reading eye movement planning (Rayner, 1998).  

Questions arise, however, when mean fixation 
durations are used to estimate the time course of a 
process. In the simplest case, suppose a reading process X 
starts at time t1 and ends at t2, and its effect is to lengthen 
the fixation duration by T milliseconds. Because reading 
fixation duration varies from less than 100msec to well 
over 800msec, it is almost certain that some fixations are 
terminated before t1, some between t1 and t2, and others 
after t2. Consequently X has no influence in the first case, 
partial influence on the second, and full impact on the 
last. The outcome distribution becomes a mixture of the 
three distributions. The mean fixation duration, which is a 
weighted average of the three, bears no simple 
relationship with unknown parameters t1 and t2 and 
cannot be used to estimate either. What is missing is an 
explicit linking hypothesis about how events in mental 
processes are mapped to empirical distributional 
parameters.  

The problem is further complicated if t1 and t2 are 
allowed to vary randomly. The jittering creates a mixture 
of distributions that is generally difficulty to disentangle 
without knowing the distributions of t1 and t2 in the first 
place. Estimating even the central tendency of these 
parameters is not a trivial problem under this scenario. 
The proposal of this paper is to look at an alternative 
representation of the model – based on the hazard 
function – that will allow us to estimate the onset and 
offset of a mental process from the distribution function 
of empirical fixation duration.  

Before introducing the hazard function based 
approach, let us first look at how conventional linear 
statistical models such as the ANOVA deal with the 
aforementioned mixture problem. In a typical fixed-effect 
model, an observed fixation duration is the sum of three 
part – a grand mean (also known as the intercept), the 
unknown constant effect size T, and an error term that is 
zero mean and independent, identically distributed (i.i.d.) 
from one fixation to the next. The constant T can be 
estimated by comparing conditions that does and does not 
involve the psychological process of interest. Missing 
from this model, however, are parameters t1 and t2. 
Indeed, notions of the onset and offset of an effect have 
no place in ANOVA-type models. The reason is simple: 
in order to neatly partition variance (or the sum of 
squares), the “effect” and “errors” must be independent. 

This is implied in a fixed-effect model where the effect 
size is a constant. It is also guaranteed by the i.i.d. 
assumption in random-effect and mixed-effect models. 
An onset time, however, implies that the effect is 
nonexistent prior to t1 and non-zero after it. In other 
words, the size of the effect is now a function of the 
random error, in which case the ANOVA model falls 
apart. By forcing conventional linear models on fixation 
duration data, we make a compromise – we give up key 
concepts like the onset and offset of a process, in 
exchange for a simple, powerful, but possibly biased (see 
scenarios discussed above) estimator of the effect size T.  

The question is whether this tradeoff gets us closer to 
an understanding of the time course of reading processes. 
It appears the dominant linear statistical models are 
fundamentally unequipped to estimate key elements of a 
time course, and thus leave a large gap between data and 
theory. There are ways to get around this problem. One 
approach is to identify the time course using alternative 
methodologies such as the ERP (see Dambacher & 
Kliegl, 2007; Sereno & Rayner, 2003). Another is to 
impose theoretical constraints on the timing and duration 
of processes, a successful example of which is the E-Z 
Reader model (Reichle, Rayner, & Pollatsek, 2003; 
Reichle, Warren, & McConnell, 2009). This paper 
provides a third alternative, which estimates the time 
course from the distribution function of eye movements. 
An analogy may help to illustrate the gist of the proposal 
here.  

Popcorn. Suppose we have two popcorn makers, an 
old one that heats at a constant rate and a new one that 
boasts a time-varying heating program – i.e., its power 
output changes at predestinated times – but its average 
wattage output is identical between the two machines. 
With only an unlimited supply of popcorn, how can we 
verify the “time-varying” claims of the new machine? 
Comparing the average cooking time says nothing about 
whether or when the heating function changes over the 
time course. But listening to the popping noise may. 
Intuitively, the rate at which popcorn pops should be a 
function of the instantaneous wattage output.  

Though promising, the idea has a number of issues to 
resolve. First, the intensity of the popping noise may have 
a nonlinear relationship with the heating function. In this 
case one can compare the two machines: where the 
intensity is higher, there must be more heat. But less 
noise does not always imply less heat. If the new machine 
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cooks faster than the old one, at some point its popping 
noise will become sparse, simply because there is not 
much unpopped corn left. A fair comparison requires a 
relative intensity index, one that scales the noise by how 
much corn is still unpopped in the machine. Related, this 
method becomes be less reliable as time goes on, when 
popping noises will be few and far between. These and 
other methodological issues will be addressed in this 
paper. 

In this example, the intensity of popping noises is 
analogous to the rate at which saccades are generated, 
and the variable heating program stands for the unknown 
time course of some underlying reading process. If an on-
going reading process influences the instantaneous rate of 
saccade generation, intuitively one should be able to 
estimate the onset, duration, and strength of the process 
by examining the distribution function of fixation 
duration. This intuition is formalized in the next section.  

A Distributional Model of the Time Course of 
Reading Eye Movements  

The gist of the linking hypothesis is straightforward: 
if a reading process, X, is engaged between t1 and t2, one 
should observe changes in the intensity of saccades 
between δ+ t1

and δ+ t 2 , and the variation in intensity 

should correspond to the time-varying effect of X. The 
symbol δ is the inherent delay of the oculomotor system, 
which for the moment is assumed to be an empirical 
constant and will be revisited in Discussion. The term 
intensity of saccades is left vague here intentionally 
because it is the key to the present model. I will define it 
after laying out the basic notations.  

A symbolic sketch. Let λ(t) be a baseline saccadic 
intensity function, where )(0,t ∞∈  is the fixation 

duration, and λ*(t) be the saccadic intensity when the 
process X is engaged. For the sake of identifying the time 
course of X, we wish to have a simple relationship 
between X and λ, such that λ is affected when – and only 
when – X is engaged. In other words, 
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To simplify the notion, let us re-

define )()( δλλ +← tt  for the rest of this paper, i.e., 

the saccadic intensity function λ(t) is time-shifted by δ to 
removed it from the formula. The desired intensity 
function now has the form  
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If such a λ function does exist, estimating the time 
course of X is straightforward. The onset and offset of X 
correspond to the region where λ(t) and λ*(t) differ. The 
time-varying strength of X is a function of the amount of 
changes in the saccadic intensity; this could be measured 
by )()()( ttt *λλγ −=  (the "additive hazards model," see 

Aalen, 1989, 1993), )(/)()( ttt *λλγ =  (the "proportional 

hazards model," Cox, 1972), or some combination of 
both (see Martinussen & Scheike, 2006).  

Assuming a λ function satisfying (2) exists, the new 
linking hypothesis allows us to estimate (a) if X has any 
effect, (b) when its effect starts and ends, and (c) how its 
strength varies with time. If the assumption of 
conventional linear models holds, i.e., when the onset and 
offset times span the full range of the distribution, the λ 
functions will differ throughout the whole range of 
fixation duration, too, in which case there are no 
meaningful t1 and t2 to be identified. A key difference 
between the new proposal and traditional linear models is 
in the assumption of the amount of jittering of t1 and t2 – 
the λ function works when distributions of t1 and t2 are 
narrow compared to the distribution of fixation duration. 
This is consistent with predictions of major theories of 
reading eye movements (e.g., Engbert, et al., 2005; 
Reichle, Rayner, & Pollatsek, 1999; Reichle, et al., 2003; 
Yang & McConkie, 2001) and is supported by 
electrophysiological evidence (see Dambacher & Kliegl, 
2007; Sereno & Rayner, 2003).   

Choosing the λ(t) function. The intensity of saccades 
is measured by the probability of saccade per unit of 
time. I will compare two candidate functions – the 
probability density function (pdf) and the hazard function 
– and present an empirical example to illustrate the pros 
and cons of the two options.  

The pdf, often denoted by f(x), is defined as  

t
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The pdf should not be confused with the sample 
histogram function: while the latter is a probability and is 
always smaller than 1, the pdf may be larger than 1. By 
definition, the area under the pdf curve must always be 

one, i.e., 1)(
0

=∫
∞

dxxf . This turns out to be a serious 

limitation for the present application: it implies that if X 
increases the saccadic pdf prior to t2, the pdf thereafter 
must be lower, just like the more efficient popcorn maker 
eventually makes less noise because most corn is already 
popped.  Unfortunately, this violates the third condition 
in (2), where )()( * tt λλ =  for t>t2; in other words, we 

cannot estimate the offset of the process X from the pdf. 
Another problem stems from the same constraint: 
because the pdf approaches zero for very long fixations, 
comparing the right tails of distributions becomes 
difficult (see Chechile, 2003; Luce, 1986; Van Zandt, 
2000; Van Zandt & Ratcliff, 1995). For these reasons the 
pdf does not have the properties we sought in (2). 

The hazard function, also known as the hazard rate, is 
a conditional index of intensity. It is defined as the pdf 
divided by the proportion of fixations that have not yet 
been terminated,  
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where f(t) is the pdf and 
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)(1)Pr()(  is the survival function 

of X. The hazard rate λ(t) can be seen as f(t) with its right 
tail magnified by a factor of 1/S(t). The two functions are 
closely connected: 

∫−⋅=
t
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0
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Nevertheless, there are important differences between 
them. Unlike the pdf, there are no inherent constraints on 
the shape of the hazard function, provided 

that ∞=∫
∞

dtt
0

)(λ  (i.e., the “lifetime” risk of saccade is 

infinity, to avoid “eternal fixations”). Figure 1 shows the 
pdf’s and hazard functions of three familiar distributions 
– the normal distribution, gamma distribution, and 
lognormal distribution – with the same means and 
standard deviations. All three distributions have been 

used as models of reading fixation duration (Feng, 2006; 
Reichle, Pollatsek, Fisher, & Rayner, 1998; Reilly & 
O'Regan, 1998). Despite similar shapes of the pdf’s, the 
hazard functions show distinct trajectories, especially at 
the right tail.  

 

Figure 1. Hazard Functions of Normal, Lognormal, and 
Gamma Distributions with the Same Means and Standard 
Deviations 

The hazard function λ(t) is an ideal candidate for (2). 
It measures the instantaneous risk of an event (e.g., a 
saccade) at time t, given that it has not yet occurred 
(Chechile, 2003; Hosmer & Lemeshow, 1999; Lawless, 
1982). Thus the hazard function is conditionally 
independent from the history prior to t. This “memory-
less” property of the hazard function satisfies (2): λ*(t) 
goes back to the baseline at t2 as soon as the effect of X 
goes away. The hazard function also allows us to 
compare the right tails of fixation duration distributions: 
it is easy to see that λ(t) ≥ f(t) because S(t)≤1. The 
magnification is greater for longer fixations, as S(t) 
approaches zero.  

Researchers of response time distributions have long 
recognized the advantages of the hazard function over the 
pdf (Chechile, 2003; Luce, 1986; Van Zandt, 2000; Van 
Zandt & Ratcliff, 1995). Its primary drawback is that it 
requires a large sample size, particularly for estimating 
the right tail. Fortunately, large eye movement corpora 
are not difficult to obtain, and some are publically 
available to researchers (e.g., Kennedy & Pynte, 2005). 

An empirical example. Figure 2 shows a typical pdf 
(bottom curves) and the corresponding hazard function 
(top curves) of a reading fixation duration distribution. 
The data came from the Dundee Corpus (Kennedy & 
Pynte, 2005; Pynte & Kennedy, 2006), which includes 
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over 400,000 fixations collected from 10 adult English 
readers reading newspaper stories. More details of the 
data and estimation methods can be found in the Methods 
section. 

 

Figure 2. Hazard Function and the Probability Density 
Function: The Dundee Corpus 

A number of observations are noteworthy in Figure 2. 
Numerically, the hazard function is always larger than the 
pdf, and the two functions become increasingly 
disassociated: whereas the pdf approaches zero after 300-
400 msec, the hazard function remains substantially 
above zero and shows an unambiguous trend. 

The hazard function in Figure 2 is a unimodal 
function, with a peak at approximately 250msec. It is also 
well captured by a piecewise linear regression model with 
three changepoints at approximately 130, 180, and 
250msec. These parameters turn out to be common 
characteristics of most hazard functions examined in this 
paper. The second half of this paper investigates the 
shape and parameters of this function. 

Finally, Figure 2 shows peculiar spikes every 41 or 
42msec (or approximately 24Hz). The magnitude of the 
spikes is nearly twice of the expected hazard rate, 
suggesting a possible rounding artifact whereby fixations 
in nearby bins were combined. These artifacts must be 
removed, but the consequence of artifact removal differs 
for the pdf and the hazard function. With the pdf, simply 

removing the spikes would result in 1)(
0

<∫
∞

dxxf , because 

some probability mass is discarded. To ensure a proper 
pdf, one must re-norm the function, which will elevate 

the entire function (shown as the green line in Figure 2). 
In contrast, the hazard function is not subject to the same 
constraint. The piecewise linear regression in Figure 2 is 
estimated with artifacts simply removed. The less jagged 
black line is a smoothed version (using the 3RS3R 
algorithm; see Tukey, 1977) of the cleaned-up hazard 
rate, demonstrating the fit of the linear function.  

Relation with Other Distributional Models 

To summarize, the distribution of fixation duration 
carries rich information about underlying reading 
processes that can be recovered using the hazard function 
analysis. Here I focus on its relation with existing 
mathematical models of fixation duration distributions, 
and address other relevant issues in Discussion. It is 
important to remember, however, that diverse stochastic 
processes may result in the same distribution (e.g., 
Johnson, Kotz, & Balakrishnan, 1994). Thus a successful 
distributional model cannot identify the underlying 
mechanism. Nevertheless, it helps us narrow down the 
search for the true model, by rejecting processing models 
that make wrong distributional predictions.  

Early attempts to model the pdf of fixation duration 
(Harris, Hainline, Abramov, Lemerise, & Camenzuli, 
1988; Suppes, 1990; Suppes, 1994; Suppes, M. Cohen, R. 
Laddaga, Anliker, & Floyd, 1983) were met with limited 
success, in part because the choices of mathematical 
models were hardly informed by empirical distributions. 
More recently, Engbert and Kliegl (2001) proposed a 
semi-Markov model in which the hazard function for 
saccade generation varies with time. They nonetheless 
limited the hazard rate to a linear function (i.e., a Weibull 
distribution; see Johnson, et al., 1994), which is 
inconsistent with empirical data (see Figure 2).  

A few recent models took advantage of empirical 
hazard functions. McConkie and colleagues (McConkie 
& Dyre, 2000; McConkie, Kerr, & Dyre, 1994) observed 
that the hazard function of reading fixation duration 
typically show three phases – a slow rising stage until 
approximately 100msec, and a fast rising stage to 
approximately 180msec, followed by a relatively flat tail. 
The three phrases could be modeled by a piecewise linear 
function. This motivated McConkie et al to derive a 
number of mathematical models, all of which fit an 
empirical distribution well. However, these models may 
not be able to account for the falling right tail of the 
hazard function observed in Figure 2, because they 
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assume a serial processing model that includes a wait 
time distribution independent of other processes. 
Mathematically, this translates to a convolution of 
distributions with increasing hazard functions, which will 
always result in a rising hazard function (Barlow, 
Marshall, & Proschan, 1963; Marshall & Olkin, 2007). In 
search for a more flexible model, Feng (2006) reported 
that a mixture of three lognormal distributions can 
achieve good fit to diverse pdf’s of adult and child 
readers. Figure 1 and 2 illustrate the qualitative similarity 
between the hazard function of the lognormal distribution 
and that of the empirical distribution. Both of these 
aforementioned models estimate the pdf, which becomes 
less informative as it approaches zero at the right tail. 
Few studies have directly modeled empirical hazard 
functions, with the noticeable exception of the 
Competition/Interaction theory (Yang, 2006; Yang & 
McConkie, 2001). 

One of the most influential distributional models 
today, LATER (Linear Approach to Threshold with 
Ergodic Rate; Carpenter & Williams, 1995; Carpenter, 
1999, 2000; Carpenter & McDonald, 2007; McDonald, 
Carpenter, & Shillcock, 2005; Reddi, Asrress, & 
Carpenter, 2003) conceptualizes saccade generation as a 
linear accumulation of information toward a fixed 
threshold. Assuming the speed of increase is normally 
distributed, the fixation duration follows a reci-normal 
distribution (Carpenter & Williams, 1995; Robert, 1991), 
which generally fits the cumulative distribution function 
of reading eye movements (Carpenter & McDonald, 
2007; McDonald, et al., 2005, with an additional 
component for short fixations). The reci-normal 
distribution is a special case of the generalized inverse 
normal distribution (see Johnson, et al., 1994; Robert, 
1991). Except for some pathological cases, its hazard 
function is unimodal, with a fast rising phase followed by 
a slow descent, similar to Figure 2. Nonetheless, it 
appears that the reci-normal hazard function is not 
flexible enough to simultaneously account for both the 
fast rising and the slow falling phases of the empirical 
hazard function; it typically requires two functions to fit 
the whole distribution. Recent extensions of the LATER 
model (Moscoso Del Prado Martin, submitted; Nakahara, 
Nakamura, & Hikosaka, 2006) may help to improve its 
fit.  

This brief survey underscores two observations. First, 
there is little consensus on how to infer the time course of 

cognitive processes from distribution functions. Second, 
more flexible mathematical tools are needed to capture 
the diversity in empirical distributions. The suggestion 
here is that the hazard function can serve as a bridge 
between empirical distribution functions and theoretical 
construes such as the time course of a cognitive process. 
Whether or not this particular proposal is successful, 
there is clearly a need for a more informative set of 
linking hypotheses.   

The Empirical Study 

The empirical part of the paper has two aims. The first 
is to illustrate the feasibility of the proposed hazard 
function analysis. More importantly, I will estimate ways 
in which the hazard function is influenced by a variety of 
reading-related factors, including language, age, and a 
number of processing variables. Since all of them have 
proven to have significant and differential influences on 
the mean fixation duration (Rayner, 1998), a 
straightforward hypothesis is that these diverse factors 
will show different time courses.  

An accurate estimation of the hazard function, 
particularly at the right tail, requires a large sample of 
fixations. The present study includes large eye movement 
corpora from adult readers of four different languages 
(English, Chinese, Japanese, and Korean) and developing 
readers from two countries (US and China). Altogether 
more than one million eye movements were collected in 
four different labs around the world, using three different 
models of eye trackers. The size and the diversity of the 
data reduce the chance of random fluctuations and 
methodological artifacts.  

Methods 

Corpora of Reading Eye Movements 

The eye movement data used in this study came from 
262 readers from three age groups and five countries. 
Data were collected in four different labs around the 
world using three different eye tracking systems. Table 1 
summarizes key features of the databases. It is worth 
noting that there was no data censoring, i.e., no fixations 
were discarded because it is too short or too long. This is 
crucial for distributional analyses because the common 
practice of excluding long fixations – a form of right 
censoring (Le, 1997) – can dramatically inflate the 
hazard function.  
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Table 1  

Summary of characteristics of the datasets used in the study. 

  Language N  Participants Materials Eye-tracker # Fixations 

Dundee Corpus 

 English 10 
English-speaking 
adults from UK 

20 News articles, approximately 2800 words 
each.  Dr. Bouis 1 407356 

       

Cross-linguistic Adult Reading Corpora 

 English 25 

University 
students from 

NC, US 

Short stories (7,500 words): "The Ransom of 
the Red Chief" by O. Henry, and "Shooting an 

Elephant" by G. Orwell EyeLink II 2 168790 

 Japanese 26 

University 
students in 

Tokyo, Japan 

Short stories (16,000 words, or 25,000 
characters): “Kamuikotan-no Hagoromo” by 
Bin Konno, and “Kagonuke” by Motohiko 

Fuma EyeLink II 182824 

 Chinese 23 

University 
students in 

Beijing, China 

Short stories (9,833 characters): "Bu Shuo 
Huang de Ren" by Lao She, and "Ri Gui" by 

Wang Zenqi EyeLink II 66927 

 Korean 19 

International 
students and 

spouses in the US 
Short story (3,339 words, 10,066 hangul 

characters)"Hang Yer Yeong" by Yang Gwija  EyeLink I 3 59652 

       

Cross-linguistic Developmental Reading Corpora 4 

 English 23 
3rd Grade (9.1 

yrs) Short Stories (3rd Grade) EyeLink I 45995 

 English 30 
5th Grade (11.2 

yrs) Short Stories (5th Grade) EyeLink I 57015 

 English 26 Adults Short Stories (3rd & 5th Grade) EyeLink I 40478 

       

 Chinese 25 
3rd Grade (9.4 

yrs) Short Stories (3rd Grade) EyeLink I 40136 

 Chinese 25 
5th Grade (11.4 

yrs) Short Stories (5th Grade) EyeLink I 34943 

 Chinese 30 Adults Short Stories (3rd & 5th Grade) EyeLink I 43767 

Total 262       1147883  
       

Notes:  

1. Dr. Bouis System: sampling rate at 1000Hz, with a bite bar; approximate accuracy of 1 character; 5-point calibration every 3 
screens; custom clustering algorithm for saccade detection (Kennedy & Pynte, 2005). 

2. EyeLink II: sampling rate at500Hz; accuracy approximately 1 character; 9-point carlibration at the beginning of the session and 
repeated as necessary; saccade detection was based on a an acceleration threshold of 9500°/s2 and a velocity threshold of 30°/s. 

3. EyeLink I: same as EyeLink II but at 250Hz 

4. For more details see (Feng, Miller, Shu, & Zhang, 2009) 

The Dundee English Corpus. The Dundee corpus is a 
publicly available dataset that has been studied 
extensively by various research groups (Carpenter & 

McDonald, 2007; Kennedy & Pynte, 2005; Pynte & 
Kennedy, 2006). Eye movements were recorded using a 
Dr. Bouis system with a sampling rate of 1000Hz. 
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Fixations were detected using a custom-developed 
algorithm that clusters and merges samples of gaze 
locations into fixations (see Kennedy & Pynte, 2005). 
The algorithm differs from those in the EyeLink systems, 
and as we will see it may have caused some systematic 
differences in the rate of brief fixations. Further 
information about the corpus can be found in Kennedy 
and Pynte (2005; see also Pynte & Kennedy, 2006). I will 
focus on this dataset in a number of analyses because its 
size, quality, and availability.  

Cross-linguistic Story Reading Studies. The cross-
linguistic reading corpora include data from four 
languages: English, Chinese, Japanese, and Korean. 
Native-speaking adults were asked to read authentic 
novels in their own languages and answer multiple-
choice questions after each story. Eye-movements were 
recorded with either the EyeLink I (the Korean study) or 
the EyeLink II (all other studies) eye tracking system, a 
head-mounted infrared system with typically accuracy of 
0.5 visual degrees. A chin rest was used in conjunction 
with the built-in head movement compensation 
mechanism. Data from the right eye were used whenever 
available.  

The studies also involved a gaze-contingent 
manipulation irrelevant to the present purpose. At the 
onset of every 8th-12th saccade, texts on the screen were 
shifted to the left or the right by approximately 1-3 
character spaces. The shifts were designed to resemble 
naturally occurring oculomotor noises; effects of these 
screen shifts will be reported elsewhere. Here we focus 
on the majority of fixations that were not affected by the 
occasional screen shifts. Most of the screen shifts 
(94.5%) were imperceptible because the changes 
occurred during saccades or within 8msec after fixation 
onset; visual perception is suppressed during this period 
(Matin, 1974; Rayner, 1998; Wolverton & Zola, 1983). 
Fixations immediately after screen shifts were also 
excluded from analyses, even though they were not 
significantly affected by the manipulation. 
Approximately 4-12% fixations were excluded for these 
reasons for each reader.  

Cross-linguistic Developmental Reading Studies. The 
next six sets of studies were designed to investigate 
developmental changes and orthographic effects in 
reading (Feng, et al., 2009). Participants were third- and 
fifth-grade students and adult readers in the US and 
China. They read two sets of short stories. One set 

included stories targeting the specific culture and reading 
level of the children. They were chosen from popular 
third- and fifth-grade extracurricular reading series 
published in each country. The other set, referred to as 
the “anchor stories,” included two stories with parallel 
versions in each language and allowed direct 
comparisons between languages. Feng et al. (2009) did 
not find significant differences between the two sets of 
stories, and data were pooled together in this paper.  

Data Analysis 

A series of analyses examine the effects of language, 
age, individual differences, word frequency, word length, 
and type of subsequent saccades. In each study, empirical 
hazard rates are estimated. Because most empirical 
hazard functions follow the same fast-rising-slow-falling 
profile, a flexible piecewise linear regression model is 
used to quantify the empirical curves. Key parameters 
such as the changepoints and slopes are then compared 
across conditions. Parameters of the piecewise regression 
model will be summarized in the final analysis. 

Estimation of the hazard function. The hazard rate 
was estimated in one of two ways, depending on the 
sampling frequency of the data. When only the Dundee 
corpus (1000Hz) was involved, the Kaplan-Meier 
product-limit estimator (Le, 1997) was used. The hazard 
rate and the standard error were estimated using the 
kphaz function in the muhaz package (v1.2.3; Hess & 
Gentleman, 2008) of the R language (v. 2.7.2; R 
Development Core Team, 2008). Due to their lower 
sampling rates, data recorded with EyeLink I (250Hz) or 
II (500Hz) systems were effectively grouped into 2 or 4 
msec bins, in which cases the actuarial method was more 
appropriate (Le, 1997). The SURVIVAL command in 
SPSS version 15.0 was used for this purpose. A 20msec 
bin width was chosen so that there were generally 30 or 
more “surviving” fixations in each bin. Following this 
procedure, the upper limit of the analysis was typically 
400 to 600msec, depending on the size of the corpus.  

A stable estimation of the empirical hazard function, 
particularly at the right tail, requires a large sample size. 
With exceptions of large corpora such as the Dundee 
Corpus, typical reading eye movement studies do not 
afford reliable individualized hazard rate estimates 
beyond three hundred milliseconds or so. Individual 
differences in the hazard rate will be examined with the 
Dundee database, whereas in other cases data are pooled 
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across individuals. Using group data can potentially 
introduce biases, however (Ratcliff, 1979; Van Zandt, 
2000). While this concern cannot be fully resolved in this 
study, there are reasons to believe the current approach is 
useful. Mathematically speaking, the pooled data are a 
mixture of individuals’ distributions. The hazard rate of 
the pooled distribution is a complex weighted average of 
hazard rates of individual distributions at a particular 
time. In principle, the right tail of the group hazard rate 
could be dominated by a few slow readers who have 
drastically different hazard rates from the rest of the 
group. The concern may be lessened, though not 
eliminated, by results reported below: readers in the 
Dundee corpus do not vary substantially in the hazard 
rate in the right tail; even 3rd grade students do not differ 
much from adult readers in the right tail of the hazard 
function. The robustness of the hazard function is 
interesting in itself – see Discussion – and it suggests the 
bias of group-data-based hazard rate estimation is likely 
to be small. This issue will be revisited in Discussion, and 
readers should keep potential problems of the procedure 
in mind.  

Estimating changepoints. Prior research has shown 
that the empirical hazard function of reading fixation 
duration has a number of distinct phases and can be 
approximated by a piecewise linear function (McConkie 
& Dyre, 2000; Yang & McConkie, 2001). The segmented 
package for R (v 0.2-4; Muggeo, 2008) was used to fit a 
piecewise linear regression model to empirical hazard 
rates. Segmented differs from generic piecewise linear 
regression models in that it requires broken segments to 
be connected at changepoints (Muggeo, 2008). This 
constraint is important because we assume the underlying 
hazard rate of saccade generation is continuous.  

The piecewise linear regression is only a heuristic tool 
for estimating the changepoints and slopes of empirical 
hazard functions, so that hazard rates can be compared 
across populations and conditions. It does not imply that 
the underlying biological mechanism has a linear hazard 
rate or goes through discrete phases during a fixation. 
Models based on continuous hazard functions provide 
more sophisticated explanations (e.g., Feng, 2006), 
though often at the cost of more assumptions about 
reading and oculomotor processes. A decision was made 
to stay closely to the data in this study and avoid 
unnecessary theoretical assumptions. For the purpose of 
comparing two empirical hazard functions, the segmented 

linear regression appears to be a straightforward 
descriptive tool. It is noteworthy, however, that a non-
linear model is required to capture a hazard function with 
a falling tail, because the falling linear regression line 
will eventually cross the x-axis and becomes negative. 
Nevertheless, the piecewise linear regression seems to 
suffice as a descriptive model for most of the analyses 
presented here.  

It is currently not possible to automatically determine 
the optimal number of segments (Muggeo, 2008). The 
algorithm requires a manual specification the number of 
changepoints and initial guesses of where they are. 
Unless otherwise stated, the initial values were set to 100, 
180, and 250msec (see Figure 2). Taking the initial 
values, the algorithm iteratively estimates the 
changepoints using a re-parameterized linear regression 
model (Muggeo, 2008). The solution depends more on 
the data than on the initial values, although occasionally 
the model can fail to converge due to poor initial 
specifications. The most common cause of failures to 
converge was that more changepoints were specified than 
the algorithm could find in the data. In this case the 
model was initialized to a 2-changepoint model (e.g., 100 
and 250msec only).  

Because the segmented regression model has not been 
used for empirical hazard functions, two Monte Carlo 
studies were conducted to illustrate statistical properties 
of this procedure. Appendix A examines the potential 
bias in estimating a changepoint in the hazard function. A 
piecewise-Weibull distribution was derived, which has a 
“segmented” linear hazard function with one known 
changepoint at 1.0. One thousand random samples of size 
5,000 were drawn from the distribution, and the 
“segmented” algorithm (Muggeo, 2008) was applied to 
estimate the changepoint. To be conservative, the Monte 
Carlo sample size 5,000 is smaller than samples used in 
the empirical studies. Based on the 1000 samples, the 
mean estimated changepoint is at 0.9970, with 95% 
confidence interval between 0.9317 and 1.0742. There is 
little evidence of bias in this example. 

Appendix B investigates the potential bias of the 
reported SE. Ten thousand random samples of size 5,000 
were drawn (with replacement) from the dataset for 
Figure 7, which includes approximately 1,000,000 
fixations by adult readers. For each sample, the hazard 
function was estimated and the segmented regression was 
performed with the initial changepoints set at 100, 180, 
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and 250msec. The procedure was identical to that in the 
empirical studies. Data suggest that the SE estimation 
reported by the Segmented algorithm is biased, but it errs 
on the conservative side. That is, the true SE of the 
changepoint estimation is likely to be smaller than 
reported by the Segmented algorithm.  

Results 

The analyses to be reported fall into three groups. The 
first compares hazard functions among different readers, 
including (1) skilled readers of different languages, (2) 
children and adult readers, (3) individual readers reading 
the same materials. The second set of analyses explores 
how fixation duration is modulated by perceptual, 
cognitive, and other processing variables. To this end we 
will look at effects of (4) word frequency, (5) word 
length, and (6) types of subsequent saccades (forward, 
regression, or refixation). The final analyses will estimate 
the hazard function from all adult data and summarize 
estimated slopes and changepoints from previous steps.   

Language, Age, and Individual Differences 

Language.  The data for this analysis include the 
Dundee corpus and the cross-linguistic studies, involving 
adult speakers of English, Chinese, Japanese, and Korean 
reading authentic texts in their native languages. Hazard 
rates were estimated using the actuarial method based on 
20msec bins and are shown in Figure 3. In addition, a 
piecewise linear regression analysis was conducted for 
each language using the segmented package for R 
(Muggeo, 2008); see Figure 3. The line segments near the 
bottom of the figure mark the 95% confidence interval of 
the estimated changepoints, centered at the estimated 
values (the dots).  

The hazard functions follow a stereotyped time 
course: it rises to a peak at approximately 250msec, and 
then gradually falls. Compared to the near linear 
decrease, the slope of the rising curve is uneven. It rises 
slowly before approximately 100msec. Between 100msec 
and 180msec, the rate increases drastically. From 
180msec, the hazard function rises at a slower speed until 
reaching its peak near 250msec. The locations of 
estimated changepoints are consistent across languages. 
In most cases the estimates are within confidence 
intervals of each other, with the exception of the first 
changepoint of the Dundee data. This is likely due to 

differences in saccade detection algorithms in different 
eye trackers. 

 

Figure 3. Hazard Functions by Language 

Despite the stable timing of the changepoints, the 
hazard function varies by language. There is relatively 
little language difference in the initial phase (before 
100msec) or in the decline phase (after approximately 
250ms). Differences emerge during the short time 
window between approximately 100 and 180msec. The 
two English datasets show similarly steep slopes, 
compared to the three East Asian languages. 
Interestingly, by the time when most hazard functions 
take a downturn at around 250msec, the hazard rates of 
all studies have converged to close to 0.015.  

Age/reading expertise. Figure 4 compares 3rd- and 5th-
grade children and adult readers from the US and China, 
reading authentic children’s stories in their own 
languages. Despite the ease of reading materials, adults’ 
hazard functions are similar to those in Figure 3. Hazard 
functions of developing readers also show three 
distinctive stages. This is confirmed by the segmented 
regression analysis. Estimated changepoints are 
consistent across ages and languages. The pivotal points 
are, again, approximately 100, 180, and 250msec.  

Developmental differences are equally salient. 
Compared to adults, children have lower hazard rate 
before 100msec, although there does not appear to be a 
difference between 3rd- and 5th-grade students in either 
country. However, the three age groups diverge between 
100 and 250msec, where after 180msec hazard functions 
of adult readers continue to increase but those of children 
are virtually flat. After 250msec, hazard rates for children 
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decrease at a much slower pace than those of adults. 
Having lower hazard rate in the right tail means children 
make more long fixations than adults, a finding consistent 
with Feng (2006).  

 

Figure 4. Developmental Comparison of Hazard Functions 

Individual differences. Using group data in 
distributional analyses raises two concerns. Individual 
readers may have idiosyncratic distributions that may be 
masked in group analyses. In addition, the group 
distribution could be dominated by slow readers because 
they make more fixations. To address these concerns, 
Figure 5 shows estimated hazard functions of all 10 
readers in the Dundee corpus. Each reader made between 
29,000 and 47,000 fixations. The mean fixation duration 
ranges from 173 to 230msec. For all readers the initial 
parameters for the piecewise regression were set to 100, 
180, and 250 msec. The segmented algorithm failed to 
converge for 3 readers (sd, se, and sj), because it could 
not detect a changepoint at around 180msec. Indeed these 
readers’ data suggest a linear increase from 100 to 
250msec. In these cases their regression lines were based 
on initial values of 100 and 250msec. The thick straight 
line segments represent the estimated piecewise 
regressions, and the thin jagged lines are smoothed (using 
the 3RS3R algorithm; see Tukey, 1977) empirical hazard 
rates.  

The timing of changepoints is largely consistent 
across readers, at approximately 130, 180, and 250msec. 
Without exceptions, the hazard function begins with a 
slow rising phase, followed by a fast rising phase 
between 130 and 250msec, and a slow decline phase 
afterwards. Most readers also show a deceleration of the 

hazard function between 180 and 250msec. The first 
changepoint is 30msec later than estimates from other 
datasets; this is likely attributable to how different eye 
trackers handle brief fixations. Estimates of the 
changepoint at around 250msec tend to have large 
confidence intervals, reflecting increased noise levels in 
the right tail.   

Individual differences exist in all phases of the hazard 
function. For example reader se made a large number of 
express saccades (shorter than 130msec), but otherwise 
showed a typical hazard function. Reader si had virtually 
no express saccades but the steepest rise between 130 and 
180msec, and therefore had the shortest average fixation 
duration overall. Readers sb and sh, on the other hand, 
show hazard functions resembling those of children in 
Figure 4. Nonetheless, the differences are mostly in the 
rate of changes in the hazard function, not when changes 
happen. Another important finding is that individuals’ 
hazard functions tend to converge toward the right tail. At 
around 400msec the hazard rates are generally between 
0.010 and 0.015, consistent with the estimate from the 
pooled data (see Figure 3).  

 

Figure 5. Individual Differences in Hazard Function: 10 Adult 
Readers from the Dundee Corpus 

Modulation of Hazard Function by Processing 
Variables  

The next three analyses focus on variables that are 
known to influence moment-to-moment reading 
processes. They are based on the Dundee corpus, which 
has the largest sample size among all corpora. 

Word frequency. The Dundee corpus includes as a 
variable the frequency of occurrence of each word in its 
text base. The frequency was discretized into eight 
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classes according to the natural logarithm of the 
frequency. Only words that occurred between 3 to 3,000 
times were included in this analysis; very rare words and 
extremely frequent words (such as “the” and “of”) were 
excluded. In addition, to lessen the correlation between 
word frequency and word length, the data were further 
constrained to only words 4 to 7 letters long. Only the 
first fixation on a word was used in this analysis. The 
sample size varied across frequency categories, ranging 
from over 49,000 fixations (frequency 8-20) to 4,884 
fixations (for frequency 1000-3000). As expected, the 
mean fixation duration show a linear decrease from 
202msec in the lowest frequency category to 189msec in 
the highest frequency category. The focus of this 
analysis, however, is on distributional properties that 
underlie the frequency effect. 

 

Figure 6.  Effects of Word Frequency on Hazard Function of 
Fixation Duration (Dundee corpus) 

Figure 6 shows the estimated hazard function for each 
frequency category. When the initial values of 
changepoints were set to 100, 180, and 250msec., the 
segmented regression failed to converge for the two 
highest frequency categories because of the lack of a 
changepoint around 250msec. Instead, initial values 100 
and 180msec were used for these two categories. The 
thick lines on Figure 6 represent estimates of piecewise 
linear regressions, whereas the corresponding jagged 
lines are empirical hazard rates, smoothed using the 
3RS3R algorithm (Tukey, 1977).  

Across the board, there is no evidence that the timing 
of the changepoints is systematically influenced by word 
frequency. On the other hand, word frequency has a 
strong impact on the hazard function of fixation duration, 
though its effect is limited to the slope of the fast rising 

phase. Familiar words results in fast rising hazard 
functions between 140 and 190msec, and the differences 
remains until approximately 250msec. The largest effect 
of word frequency is observed at about 190msec. Outside 
the window between 140 and 250msec, word frequency 
appears to have little effect on saccade generation. In 
particular, if a fixation on a low frequency word is not 
terminated by 250msec, its risk of it being terminated is 
the same as a fixation on a high frequency word.  

 

Figure 7. Effect of Word Length (Dundee corpus) 

Word length. The length of a word may be perceived 
during the preceding fixation, and therefore it may 
potentially have a different time course from that of word 
frequency.  Figure 7 shows hazard functions of the first 
fixations on words between 3 and 8 letters long. There 
were between approximately 34,000 and 62,000 first 
fixations in each word length category. The mean first 
fixation duration ranged from 191msec (3-letter-long 
words) to 202msec (8-letter-long words). The estimated 
changepoints are generally consistent across word 
lengths, and are comparable to those in previous analyses. 
Similar to that of word frequency, the effect of word 
length is again limited to the fast rising phase between 
140 and 250msec, with the strongest effect at 
approximately 190msec. Word length appears to share a 
similar time course as word frequency. 

Type of subsequent saccades. Refixations and 
regressions are sometimes assumed to be triggered by 
different mechanisms from forward saccades (e.g., 
Reichle, et al., 2006). In this analysis, fixations are 
classified into three categories based on the target of the 
subsequent eye movements – forward (to a word down 
the line), regression (to a previous word), and refixation 
(to the same word). The respective sample sizes were 
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305,334, 67,564, and 27,925 and the mean fixation 
durations were 203, 175, and 187msec. The estimation 
was the same as previous analyses, with the standard 
initial parameters of 100, 180, and 250msec. 

 

Figure 8. Hazard Functions for Fixations to be Followed by a 
Forward, Refixation, and Regressive Saccade. 

The estimated hazard functions are shown in Figure 8. 
Due to smaller sample sizes, the hazard rate estimates for 
refixations and regressions are noisier, and the 
corresponding confidence intervals for changepoints are 
larger than those of forward fixations. Nonetheless, 
locations of the first two changepoints are again 
consistent with previous values, and do not differ 
substantially by types of saccades. The third changepoint 
appears to be later for refixation and regressions 
compared to forward eye movements, but this 
observation needs to be interpreted with caution given the 
large confidence intervals.   

Despite similarities in the timing of the changepoints, 
the hazard functions for different types of fixations differ 
markedly. Unlike previous analyses, hazard functions 
diverge in the initial slow rising phase, where refixations 
and regressions are triggered at rates more than double 
that of forward saccades. The largest difference among 
the three conditions appears at the first changepoint, at 
approximately 140msec.  The higher saccade rates for 
refixations and regressions remain until approximately 
180msec, after which point they are surpassed by forward 
saccades. Refixations also differ from regressions in that 
by the third changepoint (about 280msec) the hazard rate 
for refixation is substantially lower than that of 
regressions. A higher initial hazard rate means excessive 
short fixations, whereas a low hazard rate leaves a 
relatively heavy right tail in the pdf. The net result, 

though, is an overall shorter average fixation. Subtle 
distributional differences like these can not be recovered 
by comparing the means.  

Pooled Hazard Functions 

Although the segmented linear regression is a useful 
descriptive tool, the hazard function cannot decrease at a 
linear rate forever because it would at some point become 
negative. Eventually the hazard function will curve as it 
approaches its asymptote at 0. A large sample is needed 
to demonstrate this. Fortunately, Figures 3 and 4 suggest 
that there is little language difference in the right tail of 
the hazard function. Thus, data from all 164 adult readers 
were pooled together in this analysis, which yielded over 
one million fixations. Similarly, English- and Chinese-
speaking children’s data were combined within each age 
level, which resulted in over 110,000 fixations per age 
group. These combined datasets allow relatively robust 
estimations of the hazard function at up to 2,000msec.  

Figure 9 shows estimated hazard rates for all 3rd- and 
5th-grade students and adult readers. Estimated hazard 
rates are marked with solid dots, and the corresponding 
standard errors are shown in vertical bars. The bold 
curves, a smoothed version of the hazard functions, are 
constructed using a simple moving average technique (no 
smoothing between 0 to 400msec, 3-sample averages 
between 400-600msec, 5-sample averages between 600 
and 1000msec, and 7-sample windows thereafter). 
Although other estimation techniques exist (Le, 1997; 
Luce, 1986), this simple method works well for the 
present purpose. The thin lines represent the 
corresponding pdf’s of fixation duration. Three vertical 
lines mark the three recurring changepoints at100, 180, 
and 250msec.  

As predicted, the rate of decline gradually decelerates 
for all three hazard functions. Overall, Figure 9 suggests 
that the hazard function of reading fixation duration 
involves four phases – (a) 0-100mse, slow rising, (b) 100-
180msec, fast rising, (c) 180-250msec, decelerated rising, 
and (d) >250msec, slow decaying. Although the first 
three phases can be approximated with segmented linear 
functions, the last phase will ultimately require a non-
linear function.  

Figure 9 also shows how the pdf’s are related to the 
hazard functions. Coincidentally, all pdf’s peak at 
180msec, where the rise of the hazard functions abruptly 
slows down. The reason for this deceleration is unknown. 
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Moreover, there appears to be a “bump” at approximately 
250msec in all pdf’s, which corresponds to the dramatic 
turn of the hazard function at the same time.  

Summary of Changepoints and Regression Slopes 

Figures 10 and 11 summarize the changepoints and 
slopes from Figures 3 to 7. Figure 10A plots the 

estimated locations of changepoints from 11 independent 
samples (see Figures 3 and 4); data are jittered for clarity. 
The error bars represent standard errors of estimation, 
reported by the segmented algorithm. The 3-changepoint 
model provides excellent fit to the data, and the estimated 
locations of changepoints are consistent across studies.  

Figure 9. Hazard functions and pdf’s of reading fixation duration based on pooled reading data for 3rd- and 5th-grade children and 
adults. Moving averaging is used to smooth the hazard function after 400msec. 

The first changepoint is at approximately 100msec, 
though the Dundee corpus always comes out higher. The 
second changepoint is consistently between 150 and 
180msec, averaging about 170msec. The last changepoint 
shows more variability because hazard rate estimates are 
much noisier in the tails. But nonetheless the values 
consistently center around 250msec. Figure 10B shows 
effects of individual differences, word frequency, and 
word length (see Figures 5-7), all of which are based on 
the Dundee corpus. Despite individual differences, 
estimates cluster together, with no overlap across 
changepoints. Moreover, the estimated changepoints are 
not associated with word frequency or word length.  

The same cannot be said for the slope parameter. 
Figure 11A and B illustrate the magnitude of the slope for 
each segment in previous figures. Error bars represent 
standard errors of the slope parameters. Figure 11A 
shows substantial variation in the second and third slopes, 
i.e., slopes between 100 and 180msec and between 180 
and 250msec. Figure 11B clearly demonstrates that as 
word frequency increases, the slope of the 2nd segment 
(the fast rising phase between 100-180msec) increases 
correspondingly. Similarly, the slope decreases as words 
become longer. There is also an interesting negative 
correlation (r=  -0.80 and -0.55 for word length and word 
frequency analyses, respectively) between slopes for the 
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2nd segment and the 3rd segment (between 180 and 
250msec). The reason for this negative relationship is 
unknown, but the net result is that the peak hazard rate at 
250msec is kept in the neighborhood of 0.015 to 0.020.  

 

 

Figure 10A-B. Summary of Estimated Changepoint Locations. 
Panel A includes estimates based on different datasets. All 
estimates in Panel B are based on the Dundee corpus. 

 

 

Figure 11A-B. Summary of Estimated Slopes of Segmented 
Linear Regression. Data in Panel A are from independent 
corpora. Data in Panel B are from the Dundee corpus 

Not all slopes are subject to systematic influences, 
though. The slope between 0 to 100msec is low but 
consistent across datasets, so are the negative slopes of 
the declining phase after 250msec. These stable slopes, 
along with the consistent timing of the changepoints, 
strongly constrain the overall shape of the hazard 
function of reading fixation duration.  
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Discussion 

The present paper was motivated by the lack of a 
general linking hypothesis that allows a direct estimation 
of the time course of reading processes from empirical 
fixation duration data. I argue that this goal is 
unattainable within the traditional linear statistical 
framework. A set of new linking hypothesis is developed 
based on the assumption that a change in a reading 
process should affect the intensity of eye movements in 
real-time. This leads to a focus on the empirical hazard 
function of fixation duration distributions. Using this 
logic, the present study confirms a stereotypical hazard 
function of reading fixations (see Figure 9) that is 
generally consistent with previous reports (Feng, 2006; 
McConkie & Dyre, 2000; McConkie, et al., 1994; Yang, 
2006; Yang & McConkie, 2001). In addition, I illustrated 
how reading eye movements are influenced by various 
processing and individual differences variables, but in 
ways that are not predicted by current theories. I will 
discuss the logic for the model and its implications for 
theories of reading eye movements.  

Linking Distributions to Processes: The 
Instantaneity Assumption 

A key to the current model is the assumption that the 
effect of a reading process is reflected immediately on the 
hazard function (see next section about the oculomotor 
delay). This does not imply that a change in a reading 
process deterministically triggers a saccade; rather, the 
immediate impact is on the instantaneous likelihood of a 
saccade. The instantaneity assumption is consistent with 
contemporary models of reading eye movements, such as 
SWIFT (Engbert, et al., 2005; Richter, Engbert, & Kliegl, 
2006) and the Competition/Interaction model (Yang, 
2006), in which reading processes modulates the 
probability of saccades in real time.  

The instantaneity assumption is nevertheless not 
compatible with models where there is no consistent 
temporal mapping between reading processes and 
saccadic events. This happens in a strictly serial model, 
where a reading process X has no effect on the fixation 
duration until a subsequent random process Y is 
completed. In this case the fixation duration involves the 
sum of the two processing delays. Mathematically, the 
distribution of the sum of two random variables is the 
convolution of the two component distributions. 
Convolution, of which the moving-average is an 

example, scrambles temporal information about X with 
that of Y. When the variance of Y is small, the scrambling 
or jittering is localized. But with large variance in Y, 
signals of X are diffused over a wide time window, 
potentially the entire distribution of fixation duration, in 
which case recovering the time course of X is difficult.  

In short, the instantaneity assumption is a powerful 
assumption and should not be made lightly. But if 
deemed appropriate, it promises a pathway to recovering 
the time course of reading processes from the distribution 
of fixation duration. Even when the assumption does not 
hold strictly, the consequence may be moderate and 
tolerable when the intervening random variable is small. 
More sophisticated models may be developed to deal 
with independent noises, for example, through de-
convolution. 

The oculomotor delay. In this paper, δ represents the 
hypothetical “dead time” in which reading processes have 
no influence on saccadic decisions. Importantly, it is not 
the time to “program” an eye movement: the present 
model does not assume independence between 
oculomotor programming and high-level reading 
processes. As long as saccadic programming is open to 
the moderation by reading processes, the effect will be 
reflected on the hazard function and therefore is not part 
of δ. In the derivation of the present model, δ is assumed 
a constant, which is obviously an idealization. It is likely 
to be a random variable, but its mean and variance are 
expected to be small (e.g., Cutsuridis, Smyrnis, 
Evdokimidis, & Perantonis, 2007, used 20msec as an 
estimate of the time from burst neurons to eye muscles ) 
and thus unlikely to be a serious threat to the 
instantaneity assumption. Future research is need to 
investigate this effect. 

Toward a Model of Reading Eye Movement 
Control  

The paper began with a generic linking hypothesis (2) 
between the hazard function of fixation duration and the 
time course of a reading process. Empirical data from 
large eye movement corpora uncovered additional 
regularizes in the data that allow further refinements of 
the theoretical model. Two observations stand out: the 
robustness of the hazard function and the way in which 
higher-order processes influence the fixation duration 
distribution. I will recap these results before presenting a 
revised model and discuss its implications.  
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Fixed time course, flexible slopes. Perhaps the most 
unexpected finding of this study is the consistent timing 
of the changepoints of hazard functions. This is not 
attributable to the linking hypothesis – it does not restrict 
the shape of the hazard function. Given the large sample 
sizes and diverse datasets involved in this study, these 
findings are unlikely to be due to chance or statistical 
artifacts. On the other hand, the hazard rate of reading 
fixation duration is systematically influenced by inter- 
and intro-individual variables. As shown in Figures 11A 
and 11B, the modulation effect concentrates on two 
specific parameters, namely the slopes during the fast-
rising phase of the hazard function, between 100-
180msec and 180-250msec. It is also interesting that the 
hazard rate remains a piecewise-linear function during 
these time windows, which implies that the modulation 
effect is sustained and near constant between critical 
changepoints.  

The interesting question is what caused these changes 
in the saccadic rate. Traditionally, reading eye 
movements are thought to be triggered by events outside 
of the oculomotor system, for example by the completion 
of certain stage of lexical processing (e.g., Morrison, 
1984; Reichle, et al., 1998). According to this model, the 
locations of changepoints should depend on the 
distribution of lexical processing time, e.g., earlier for 
familiar words and later for low frequency words. This is 
no what was observed (see Figure 6). Moreover, one 
would expect different changepoints for beginning and 
skilled readers because children take more time to 
recognize words (McConkie, et al., 1991; Rayner, 1986). 
This is again not the case (Figure 4). None of the factors 
examined here – language, age, individual differences, 
word frequency, word length, or the previous saccade – 
seems to systematically influence the changepoints of the 
hazard function. Future studies should, for example, 
investigate the effect of word frequency for each 
individual reading at each word length. But given the 
robustness of the changepoints shown here, we cannot 
ignore the possibility that the basic shape of the hazard 
function, including the changepoints, is characteristic of 
the oculomotor system rather than the exogenous factors 
examined here.  

Under this backdrop, it is interesting to consider how 
high-level reading processes modulate and control 
reading eye movements. In the final section I will outline 
an extension of the segmented regression model that 

incorporates empirical constraints observed in this study. 
The model is intentionally inductive and restrictive, 
which complements more sophisticated modeling 
approaches (Feng, 2003, 2006, 2009). It makes falsifiable 
predictions about how the saccadic rate is modulated by 
reading processes that can be easily tested in future 
research.   

A Proportional-Hazard model. An interesting 
consequence of having segmented linear regressions with 
fixed changepoints is that cognitive/linguistic effects may 
be estimated using the proportional hazard model (Cox, 
1972; Martinussen & Scheike, 2006).   

Using the notion of (2), let λ(t) be the baseline hazard 
function for reading fixation duration and λ*(t) be the 
hazard function under the influence of a process X. In the 
present study λ(t) is well approximated by a 3-
changepoint segmented linear regression 

ii Ctbt +⋅=)(λ , 

where bi and Ci are the slopes and intercepts for the four 
linear functions defined by the three changepoints t1, t2, 
and t3; the timing of the changepoints is constant, at 
approximately 100, 180, and 250msec, and is 
independent of all the factors examined here. On a whole, 
the present study suggests that the risk of saccade under X 
is proportional to that in the baseline condition,   

iiii Ctbptpt +⋅⋅=⋅= )()(* λλ     (6) 

where pi ( ]4,1[∈i ) are constant relative risks for the 

four phases. Obviously, pi >1 when X increases the 
hazard function during this period, and vise versa. 

Moreover, Figure 11 suggests that (6) can be further 
constrained: with a few exceptions, p1=1 and p4=1, i.e., 
high-level processes do not modulate the hazard function 
during the initial slow rising period or the final slow 
decline period. Also, it is reasonable to assume C1=0, and 
thanks to constraints of the segmented regression model, 
other Ci are determined by the endpoint of the previous 
segment and are not free parameters. Thus, for most 
higher-order reading processes, their effects on the 
intensity of saccades can be characterized by 
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The model (7) is restricted: given a baseline hazard 
function 

ii Ctbt +⋅=)(λ , there are only two free 

parameters, p2 and p3, to be estimated. Developing 
statistical tests for ti and pi is beyond the scope of the 
present paper, but since (7) is a straightforward extension 
of the proportional hazards model in survival analysis 
(Cox, 1972), similar techniques in survival analyses can 
be used here (see Martinussen & Scheike, 2006). 
Additionally, the pdf and moments (e.g., the mean and 
variance) of the fixation duration distribution can be 
derived – symbolically or numerically – using (5). In 
theory the last segment (t>t3) must be replaced by a 
nonlinear function in order to be a valid hazard function, 
but the notion of a proportional hazard model is equally 
applicable. 

On the Underlying Mechanism. What does the 
proportional-hazard model (7) tell us about the 
underlying psychological and neurophysiological 
processes? To this end we note that (7) depicts the 
evolution of the hazard function over time: 

ii bpta
t

+==
∂
∂

)(
λ      (8) 

where a(t) is a step function that changes values at the 
pre-defined changepoints ti. Alternatively, if we assume 
time is discrete rather than continuous, we have   

ii bpttatt ++=+=+ )()()()1( λλλ    (9) 

In words, the risk of making a saccade at one moment 
is the sum of the risk at the previous moment and a 
moderation term that is mostly constant except changes at 
critical times. This suggests a very simple control 
mechanism, whereby reading eye movements are 
generated by a random process, where its key parameter, 
the moment-to-moment saccadic risk (i.e., the hazard 
rate), is moderated by the activation level a(t) of an input 
node, A, for lack of a better name. Note that up to this 
point the mechanism is general enough to describe 
virtually any hazard function, but findings from this study 
reveal some peculiar properties of A.  

First, the empirical hazard function, as depicted by (7) 
or (9), is simple enough to suggest that A acts as the main 
conduit between the random saccade generation process 
and other processes. A potential candidate is the superior 
colliculus, which hosts the fixate and move centers and is 
connected to a wide network of brain regions (Carpenter, 

2000; Findlay & Walker, 1999; Munoz, 2002). While the 
superior colliculus is not the sole source of saccadic 
commands, it may be the primary channel of control 
during natural reading. 

Second, the temporal profile of A is also interesting: 
its activation level is a step function, jumping between 
stable states. If node A is kicked into different gears by 
input from various brain regions, then the present model 
predicts that these control signals arrive at relatively fixed 
delays after the onset of a fixation. Supportive evidence 
comes from Yang and McConkie (2001), who found the 
saccade hazard rate was strongly inhibited between 125-
175msec when texts were masked by non-text like stimuli 
such as unspaced X-strings and blank pages, and between 
175-250msec in conditions where words were replaced 
with nonwords. This suggests the phase changes at 
120msec and 180msec are triggered by input from 
perceptual and lexical processes, respectively. Hints also 
come from the current study. For example, the peak of 
word frequency effect is also at around 190msec; 
developmentally, children’s hazard functions become flat 
between 180-250msec, which could be associated with 
the lack of automaticity in word recognition. In addition, 
saccades are mostly suppressed prior to100msec, except 
when voluntary saccadic strategies such as regressions or 
refixations are to be carried out, in which cases the 
hazard rate is substantially raised. The idea that signals 
from different processes arrive by a fixed schedule 
requires further research.  

Finally, the model (9) implies that effects of higher-
order reading processes are also mediated by A, because 
both pi and bi are bound by the same time windows 
defined by the changepoints of the hazard function. Data 
also suggest that the modulation is generally small and 
relatively brief during normal reading. Nonetheless, such 
moderate moderation is more than enough to generate 
reliable differences in mean fixation durations and in 
distribution functions.  

The hazard function model presented here is first and 
foremost a descriptive model for the distribution of 
reading eye movements. The segmented linear regression 
is arguably the simplest tool to capture these changes, but 
it needs not to imply that the underlying mechanism is 
discontinuous or linear. The important message is that the 
empirical hazard function takes predictable turns at 
predictable times. So far no mechanistic model of reading 
eye movements can fully explain the timing and 
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directions of these changes. A statistical model of eye 
movements, no matter how precise, cannot positively 
identify the underlying stochastic mechanism without 
additional processing assumptions. The linking 
hypothesis and the processing model outlined above is a 
step toward this direction.  
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Appendix A.  
A Monte Carlo Study of Potential Biases of 

the Segmented Algorithm 

Segmented (Muggeo, 2008) is a general purpose 
regression model and has not been applied to estimating 
changepoints in the hazard function. This study examines 
its ability to recover changepoints from a distribution 
with segmented linear hazard functions.  

We begin by specifying a two-piece segmented linear 
function as the hazard rate model.  
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where d is the location of the changepoint, and a and 
b are parameters controlling the slopes. Using (5), the 
corresponding probability density function is  
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which is a piecewise Weibull distribution (Johnson, et 
al., 1994). See Figure A1. Its cumulative distribution 
function (CDF) is  
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A random sample can be generated from this 
distribution by first generating a uniform random number 
between 0 and 1, and plug it in the inverse function of the 
CDF.  
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Figure A1. The hazard function, PDF, and CDF of the 
piecewise Weibull distribution used in Appendix A. 

The Monte Carlo study was done in R (v2.7), and the 
source code is available upon request. In this example we 
set a=0.5, b=1, and d=1. As a result, the slope of the first 
segment is ¼ of the slope of the second segment, similar 
to what is observed in the empirical data. A total of 1,000 
Monte Carlo samples were drawn, each of which 
included 5,000 random numbers generated from the 
aforementioned distribution. With each Monte Carlo 
sample, the hazard rate was first estimated using the 
kphaz routine, with a bin size of 0.01. The segmented 
routine was then employed to estimate the changepoint in 
the hazard function. We initialized the model to a single 
random changepoint between 0.75 and 1.25. This 
procedure was repeated 1,000 times.  

The frequency distribution of the estimated location 
of the changepoint is shown in Figure A2. The 

distribution appears to be symmetrical around d=1. 
Indeed, the mean estimated changepoint is at 0.9970, 
with 95% confidence interval between 0.9317 and 
1.0742. Based on this example, there is little evidence for 
biases in the procedure used to estimate the empirical 
hazard function and to estimate the changepoint. 
Although this far from a systematic examination of the 
algorithm, which is beyond the scope of the current 
paper, the current example adds to the confidence in the 
methodology.  
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Figure A2. The distribution of estimated changepoint based on 
1000 Monte Carlo samples. 

Appendix B.  
A Bootstrap Study of Potential Biases of the 

Reported SE 

The Segmented algorithm (Muggeo, 2008) reports an 
estimated standard error (SE) of the changepoint 
estimation. The SE can be used to construct confidence 
intervals and to illustrate the stability of the changepoints. 
It is unclear whether the estimated SEs are reasonably 
close to the true SE. If large discrepancies are found, they 
can cast doubt on the conclusion that the changepoints 
are relatively stable. 

In this bootstrap study, random samples of size 5,000 
were repeatedly drawn (with replacement) from the 
dataset for Figure 7, which includes approximately 
1,000,000 fixations by adult readers. Each sample then 
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went through the analytical procedure described in the 
Method section, i.e., the empirical hazard function was 
first estimated and then modeled using the Segmented 
routine. The procedure was repeated 10,000 times. The 
study was implemented in R (v2.7), and the source code 
is available upon request. 

Figure B. Distributions of estimated SE for the three change 
points. 

The bootstrap means of the changepoints were 111, 
178, 240msec for change points 1, 2, and 3, respectively. 
Based on the 10,000 bootstrap samples, the 
corresponding SEs were 4.5, 6.0, and 14.2msec, 
respectively.  Figure B shows the distributions of 
algorithm-estimated SEs across the 10,000 samples. The 
mean SEs were 16.5, 18.8, and 17.9, respectively, for the 
three changepoints. These figures are higher than the 
corresponding bootstrap estimates, marked by the arrows 
in the figures.  

By repeatedly sampling from real data, the bootstrap 
study suggests that the Segmented algorithm  (Muggeo, 
2008) is generally conservative in estimating the standard 
error of a changepoint. The true confidence intervals in 
Figure 10 and 11 may be even smaller than meet the eye.  
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