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Introduction 

In the industrial context of product evaluation, it ap-
pears relevant to use non declarative methods to detect 
which properties of the product attract the customer’s 
attention. Indeed, when a manufactured object is de-
signed, it is necessary to adapt the characteristics of the 
object –i.e. its design- in order to match both the de-
signer’s intentions and the public’s expectations.  

While some researchers are using ethological methods 
(manipulations, interactions), sociological ones (interac-
tion between users about the product), or sensorial (phys-

(physical perception of the product), our contribution to 
this field is to analyze the visual attention of the custom-
ers. 

The main idea of this work is to measure the spatial 
distribution of the visual attention when participants are 
gazing at a product. This should help to detect what kind 
of cognitive factors might direct the visual attention and 
to identify the properties – i.e. overall impressions or 
attributes- carried by the design which influence the 
product’s assessment. In the present study we want to 
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estimate the contribution of several perceptive and cogni-
tive factors which could potentially guide the visual at-
tention. While the overt visual attention can be inferred 
from eye-movements (Anderson & Dearbom, 1952) in 
various situations like driving or playing chess, the links 
between the visual and the cognitive activities are not 
obvious during an assessment task. Indeed, the visual 
information is not systematically processed serially (but 
in parallel): the eye positions do not reflect the encoding 
of local visual information (Rayner, 1998). Moreover, in 
situations with complex task or stimulus, the visual atten-
tion is subject to multiple cognitive top-down factors 
(Yarbus, 1967; Carpenter & Just, 1983; Henderson, 2003) 
in interaction with bottom-up ones (Chauvin, 2003; Itti & 
Koch, 2001 ; Itti et al., 2005). Several authors suggest 
some quantitative models to link eye positions and infor-
mation encoding during scene processing (Reichle, Ray-
ner & Pollatsek, 2003). Like De Graef (De Graef, 1998), 
Baccino (Baccino, 2002), or Tatler (Tatler et al., 2006) 
who use eye-tracking techniques to observe the attention 
process, we want to extract information from eye-
movements about cognitive and affective processes dur-
ing an assessment task of pictures of car cab interiors. 
The previous studies that have focused on manufactured 
objects confirm the complexity of the relationship be-
tween the eye positions, the cognitive locus and the as-
sessment task. Hammer (Hammer & Lengyel, 1991) 
shows that the eyes are directed towards the product areas 
that support text information. Sharmin (Sharmin, 2004) 
shows that during a mobile phone evaluation, visual at-
tention may browse the scene depending on at least two 
strategies: neighboring exploration and holistic informa-
tion analysis. 

Therefore, our approach is not to propose a supple-
mentary model completely dedicated to a precise context 
to explain the multiplicity of the involved processes, but 
thanks to this controlled context, we propose a general 
framework to design a statistical model linking eye 
movements and visual attention. 

Our methodology uses a statistical additive mixture 
model to estimate the contribution of several a priori dis-
tributions to explain the fixation distribution, depending 
on the visual scene (here the manufactured product) and 
the task. The first step of the study is to measure the eye-
movements of customers during a product evaluation 
task, and to aggregate them per task and product. Then, 
we make a hypothesis on the factors which might guide 

the visual attention. For each of them, a statistical model 
is defined to design each spatial distribution. In this 
study, five factors are defined. The first two are inde-
pendent to the visual scene: the random effect and the 
centrality bias. The next two depend on the visual scene: 
the visual saliency predicting the visual attention only 
from low-level local image features such as colors, edges, 
contrasts and luminance, and the information optimiza-
tion based on the relative position of the edges. The last 
one is semantic. The model for this last factor consists in 
extracting the relevant semantic information useful to 
solve the task. We suggest applying here the experimen-
tal “Bubbles” paradigm to evaluate this semantic infor-
mation. Finally, the contributions of each factor are com-
pared between each experimental situation (task × prod-
uct). 

The first part of this article presents the computational 
principle of the additive mixture model. We first consider 
an additive Gaussian model in order to illustrate this 
model on our experimental eye tracking data and to set 
the background of the proposed method. In this model, 
the different modes in the additive model are not neces-
sarily Gaussian but must implement the different a priori 
guiding factors. Then we detail the design of each a priori 
mode from empirical distributions, developing the use of 
the “Bubbles” experimental paradigm to build the seman-
tic distribution. The second part exposes the experimental 
protocol and the results. 

Methodology 

Additive m ixture model to explain eye fixation 
distribution 

The most common technique to create density maps is 
to make convolution between the fixations map and a 
Parzen kernel (here for example a Gaussian kernel ad-
justed with the fovea size). It is a non-parametric method 
which is not useful to extract the clustering structure of 
the data. So we prefer a parametric modeling using an 
additive mixture model. Moreover, in the case of noisy 
data or of lack of robust data, we complete this model 
with a “random mode” to extract a part of the noisy struc-
ture in the data. Therefore, in this section we present the 
use of an additive mixture Gaussian method to model the 
spatial distribution of eye-fixations, first without the 
“random mode”, and secondly with the “random noise”.  
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This approach is commonly used to estimate the spa-
tial gaze density function. This method is “image-
dependant” because its interpretation is directly linked to 
the objects which compose the scene. The Gaussian addi-
tive mixture model is implemented with the “Expecta-
tion-Maximisation” algorithm (Dempster, Laird & Rubin, 
1977) as a statistical tool for density estimation. The den-
sity function f(x) of a random uni or multivariate variable 
x is estimated by an additive mixture of K Gaussian 
modes according to the following equation: 

, (1) 

with K the a priori number of Gaussian modes, pk the 
weight of each mode (p1+…pK=1), φ(x; θk) the Gaussian 
density of the kth mode and θk its parameter (mean and 
covariance matrix).  

The number of modes (K) is a priori unknown and must 
be chosen.  The selection model assesses the fitting qual-
ity (higher value for K) and the robustness without over-
training (lower value for K). A classical approach is to 
use an information criterion which balances the likeli-
hood of the model with its complexity (Hastie, Tibshirani 

& Friedman, 2001). Among the different available crite-
ria, the Bayesian Information Criterion (BIC) (Schwarz 
1978) is preferred in a density estimation context (Keri-
bin 2000). A range of possible values of K is chosen de-
pending on the complexity of the visual scene. For each 
value of K in this interval, the optimal parameters (pk, θk, 
k=1...K) of the mixture are found at the convergence of 
the Expectation-Maximization algorithm (“EM” algo-
rithm,). From all these sets of parameters, the “best” 
model is selected: it minimizes the BIC criterion:  

, (2) 

with L the maximum log-likelihood of the estimated 
model at the “EM” convergence, ν the number of free 
parameters and n, the number of observed data.  

Figure 1 illustrates this model on eye fixations dataset 
when people freely gaze at this visual scene during 8 sec-
onds. The range for the candidate values for K is between 
one and eight (this value is large enough according to the 
number of objects in the scene)  

 
(a) 

 

 

(b)  

 

 

(c) 

Figure 1: (a) Evolution of the BIC for all the K candidate values, (b) Eye fixations during a free viewing of this scene and 
localization of the Gaussian modes after the model selection, ( c) Spatial density f( x, y)of the eye fixations after the model 
selection.  Six Gaussian modes are defined to best fit the experimental data. 

In this example the BIC criterion reaches its optimum for 
K=6 when K varies from one to eight. The best model 
has thus six Gaussian modes (figure 1.a). Figure 1.b 
shows the localization of these modes. Each mode is il-
lustrated by its position (mean) and its spreading at one 
standard deviation (ellipse). These modes describe the 
spatial areas which are fixated during the scene explora-

tion, i.e. the probability for each area to be gazed at. Fig-
ure 1.c illustrates the resulting spatial density function 
f(.). Moreover, we can notice that the configuration with 
seven Gaussian modes can be also a “good” solution: the 
values for the BIC criterion are very close between these 
two configurations (BIC=-289.50 with K=6, BIC=-
289.12 with K=7). After that the BIC value increases 
(BIC = -280.02).  

x 

y 
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This example illustrates also one common difficulty 
when using the classical “EM” algorithm faced with noi-
sy data. If the latent data clustering is not very strong, 
some Gaussian modes can be extracted or not depending 
on the random initial conditions. That it is the case with 
the vertical Gaussian mode close to the left side of the 
image; its extraction depends on the initial conditions. To 
cope with such situations, we add a supplementary mode 
in the model: a uniform density. The experimental obser-
vations which are not close to latent clusters get contribu-
tions to this mode: it is the “noise” mode. The equation of 
the complete model is then:    

 , (3) 

with K the a priori number of Gaussian modes, pk the 
weight of each Gaussian mode, pu the weight of the uni-
form mode (p1 + …pK + pu=1), φ(x; θk) the Gaussian 
density of the kth mode and U(x) the uniform constant 
density such as . The “EM” algorithm is 

adapted to this model in order to estimate also the contri-
bution pu. So the model selection concerns the two previ-
ous ones, with or without the uniform mode. For the same 
data, the results are illustrated at figure 2. The minimum 
value of the BIC criterion is -295.60. This value is 
reached for the model with four Gaussian modes and the 
uniform mode. 

 

(a) 

 

 

(b)  

 

 

 (c) 

Figure 2: (a) Evolution of the BIC for all the K candidate values for the two models, with or without the uniform mode (b) Eye 
fixations during a free viewing of this scene and localization of the Gaussian modes, after the model selection, (c) Spatial density f(x, 
y) of the eye fixations, after the model selection.  Four Gaussian modes are then defined to best fit the experimental data. The 
contribution of the uniform mode is not visible on the figure because its density is constant.  
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The contributions of each mode are presented in table 1. 
We notice the contribution pu is significant compared to 
the contributions for the Gaussian modes. This uniform 
mode explains scattered data. Here there are scattered eye 
fixations which are not localized on specific areas 
(around here 17% of the whole fixations), i.e “ambient” 
eye fixations which are very sensitive to inter-individual 
variability.  

Mode  p1  p2 p3  p4  pu 
Contribution 0,10 0,08 0,28 0,37 0,17 

Table 1: Contribution of each mode.  The four first modes 
are Gaussian, the last one is uniform ( see Fig. 2 b,c) 

This approach, combining Gaussian mixture and the 
“EM” algorithm, is common to estimate density func-
tions. Depending on their position and deviation, the 
modes can be interpreted according to the objects in the 
scene. Here, the three modes in the left side among the 
four modes in this scene are related to objects: the steer-
ing wheel, the pedals, and the central desk. These objects 
are very important for the interpretation of the scene. But 
this approach does not reveal for a given task, if some 
modes are induced by a similar factor, or if a factor has 
similar effects on visual scenes which have not similar 
semantic properties.  

Nevertheless, we keep this statistical model as a gen-
eral framework to set-up the new model in which the 
modes are not necessarily Gaussian. They must represent 
the candidate guiding factors across different visual 
scenes for the same task and not spatial concentrations of 
eye fixations for a given visual scene. 

According to the previous section, the mixture model 
can be set depending on the density properties of the ex-
perimental data. But it can also be done by a priori hy-
potheses defining the number and the properties of each 
mode of the mixture. Then the global contribution of the 
whole fixations to each mode is estimated. This approach 
is employed by Vincent et al. (Vincent et al., 2009) where 
the eye positions density is modeled with a mixture of 
elementary a priori defined densities, each density repre-
senting a specific factor which might guide the visual 
attention. Thus, each mode of the additive mixture is de-
fined by a density modeling one candidate factor which 
might drive the cognitive analysis of the visual task. The 
common properties of these two models are the additive 
mixture of the modes and the “EM” algorithm to define 
their configuration parameters.  

These factors describe both low level and high level 
processes. Each mode is used to assess the contribution of 
the associated factor. First, it is necessary to identify 
these candidate factors, in relation to the visual task and 
then, their statistical density model. Each of these densi-
ties is represented by a spatial density map, either from a 
specific image processing, or from a manual segmenta-
tion and or also from statistical hypotheses, depending on 
the nature of the attention factors. The “EM” algorithm 
provides stable results if the a priori distributions are not 
strongly correlated. Each distribution which codes a guid-
ing factor must provide complementary effect on the stu-
died process, the visual attention. At the convergence of 
the “EM” algorithm, the contributions of each density are 
estimated, maximizing the likelihood of the final model 
which is then completely defined. 

To summarize, a noticeable characteristic of this 
method is that the additive model contains a priori den-
sity maps, which are chosen depending on the stimuli, the 
tasks, and the assumptions to be investigated, and which 
must be previously characterized. 

Setting up the a priori distributions composing 
the model 

Five factors are suggested to explain the observed 
fixation distribution, each one being modeled by one spa-
tial distribution and being considered as one mode of the 
additive mixture. 

First of all, if the eyes are guided by a random process, 
the distribution will follow a uniform law: each area of 
the space has the same probability of being gazed at. In 
the mixture, this map acts as a “trash” map, capturing 
fixations which are not explained by other assumptions. 

The second factor is a process of central gazing (Tatler, 
2007): the “on screen” gazing produces a central bias: the 
eyes preferentially gaze at the center of the screen and 
tend to return to it regularly, regardless of the content of 
the image. This is also the initial gaze position and may 
also be a rest position. A “centrality map” is thus defined, 
where the central area has a higher probability to be fixed 
than peripheral ones. The density is determined by a 
Gaussian function applied to the center of the image. In 
the original model proposed by Vincent, the mean and the 
variance covariance matrix will be adjusted during the 
algorithm as in a usual “EM” algorithm. Here these pa-
rameters are fixed because we want to evaluate the con-
tribution of this factor in the central area (see Figure 3). 
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Indeed, if these parameters are set after learning from the 
“EM” algorithm, this spatial mode can move or not in 
another place depending on the visual scene. 

The third factor comes from the visual bottom-up sali-
ency. One of the basic principles is that the eyes are at-
tracted towards areas of high contrasts combining differ-
ent low level visual features on textural luminance and 
chrominance variances. The bottom-up saliency model 
proposed by Itti (Itti & Koch, 2001) is very popular in 
this domain. In this work, we use a similar algorithm 
which is developed in our laboratory. It is based on the 
same general principles as Itti’s, but using a more accu-
rate model at the retina level (Ho, Guyader & Guérin-
Dugué, 2009). This map is considered here as merging 
low-level visual information to predict the relative attrac-
tiveness of spatial areas without “top-down” attention 
factors (see Figure 4). 

The fourth factor is based on an information maximiza-
tion approach (see Figure 5): it comes from experimental 
observations (Renninger, Coughlan & Vergheese 2005) 
that the eyes can be spatially positioned in such way to 
optimize the acquisition of visual information instead of 
sweep over an area to encode each information. This ap-
proach needs to compute from which point of view the 
details’ perception is maximized, limiting the number of 
saccadic movements. The edges are then extracted by an 
edge detector (here the “Sobel” detector).Then a spatial 
clustering algorithm is used to find the position of the 
edges barycenters. We use the “Mean Shift” algorithm 
(Fukunaga & Hostetler, 1975; Cheng, 1995). Finally, a 
Gaussian function, set up with the fovea size, is defined 
for each cluster and centered on each barycenter.  For this 
factor, the highest probability of gazing at an area is lo-
cated at the barycenters of the edges and their neighbor-
ing areas. 

The last factor is a semantic top-down factor: the visual 
attention is driven by cognitive processes and therefore 
by the semantic content of the visual scene. Thus, we 
have to extract the local areas of the scene which contain 
relevant information regarding the task. To model this 
factor, we use complementary experiments with the 
“Bubbles” paradigm using the same visual scenes and the 
same tasks. Our hypothesis is: the resulting “classifica-
tion map” obtained by this paradigm gathers the top-
down effects in the observed eye fixations density. The 
constructions of these maps are detailed in the next sec-
tion (see Figures 6 & 7). 

After having estimated the spatial density distribution 
of each factor and measured the eye-movements, the 
“EM” algorithm is employed in combination with the 
additive mixture model to find the best parameters for the 
model. In our case, these parameters are the relative con-
tribution of each mode (each factor) to the eye fixations 
density. In the next section, we provide the details of the 
method to build the semantic map, based on the “Bub-
bles” paradigm. 

Semantic map construction from the “Bubbles” 
paradigm 

Material & Methods 

For the top-down factor, we want to extract the rele-
vant parts of the visual scene which should be observed 
to solve the given task. As far as we know, the “Bubbles” 
paradigm (Gosselin & Schyns, 2001) has never been em-
ployed to compare semantic information and bottom-up 
effects on visual attention. We apply it here to select, for 
a given couple image × task, the visual areas encoding 
relevant information to solve the judgment task. This 
paradigm was originally designed to identify facial areas 
associated with facial expressions recognition (Hum-
phreys et al., 2006). It consists in watching the scene 
through a mask, with only a few parts being maintained 
visible (the “Bubbles”, which are spatially set at random). 

Therefore the participants must solve a decision task 
while gazing the scene through the “Bubbles” mask. This 
method is relevant when the task resolution requires the 
capture of local visual information in the scene. The fixa-
tion density distribution shows areas which attract the 
visual attention and the “Bubbles” method identifies the 
decision areas. Moreover it shows whether the decision is 
really about local areas or not, and if the judgment task is 
homogenous or not between participants.  

To summarize, this method is efficient when there is a 
“ground truth” which is related to the correct answers, 
when the decision is based on local visual areas, and 
when the decision criteria are stable.  

Otherwise, if several “correct answers” exist, if the 
different visual scenes cannot be discriminated by local 
areas, or if the decision is subject-dependant, then the 
algorithm will not be able to extract local areas statisti-
cally associated with consensual decisions. 
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Figure 3: “Centrality map” on the 207 car image. 

 

 

Figure 4: Saliency map for 207-sport car image. 

 

(a) 

 Figure 5: Set up the « Maximization » map for the 207 image 
from (a ) a Edge filter and clustering -here 4 clusters-  

 

(b) to obtain the final map after a Gaussian smoothing.  

 

 Figure 6: (a) Classification image for 207, assessment of the 
sport character of the 207. 

 

(b)  Classification image for C6, assessment of the 
luxury property. 
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The “Bubbles” paradigm proposed by Gosselin (Gos-
selin & Schyns, 2001) statistically links the subjects’ an-
swers with the areas of the visual scene gazed during a 
decision task. These local areas are called the “diagnostic 
areas”.  

The stimuli we employ are visually and semantically 
complex, and the decision activates high-level processes. 
Moreover, a consensus between participants is necessary 
in order to extract some stable diagnostic areas:  one 
“right” answer and a “false” one must exist, and this al-
ternative must be homogenous to all the participants. 

Therefore, we adapt this paradigm to a paired-wise com-
parison task, in order to assess the stimuli with a refer-
ence (Humphreys et al., 2006). The “Bubbles” are set at 
random for one image of the pair and the same localiza-
tions are set for the second image. See Figure 7. The de-
cision is taken after the visual inspection of both images 
of the pair, having a similar masking (left and right sides 
of the screen): in the pair, one image has the required 
property, the second, does not. The description of the 
different properties studied of the car’s cab interiors are 
described in the next section. 

 

Figure 7: A”Bubbles” paired-wise comparison for 207 car cabs.

The algorithm adjusts automatically the number of 
“Bubbles”, to be adapted to the performance of the par-
ticipants (from 70 up to 80% of correct answers) during 
the trial and will move towards a setup threshold of cor-
rect answers. The surface of each bubble is set such as its 
radius is one angular degree (fovea). On average (de-
pending on the complexity of the scene), between 10% 
and 15% of the picture is visible. Finally the algorithm 
estimates the correlations between the correct answers 
and the position of the visible areas, and provides a prob-
abilities distribution. This is the probability for a spatial 
area to be associated to a right answer. In other words, 
the “Bubbles” paradigm provides a spatial map of right 
decision making: the classification map.  

The experiment was designed with the Stat4Ci1 Mat-
lab Toolbox provided by F. Gosselin. The classification 
task is carried out with 10 participants per condition and 

                                                
1 
http://www.mapageweb.umontreal.ca/gosselif/labogo/Sta
t4Ci.html 

320 decisions per subjects. At least 900 tries are per-
formed on each pair and each task. For each try, the pic-
tures are partially masked by the bubbles. Consequently, 
the participant has to make a decision on partial informa-
tion. If the answer is false, we can consider that the visi-
ble information through the “bubbles” isn’t related to the 
assessment task. Otherwise, if the answer is right, the 
visual information is sufficient: the visible parts through 
the “Bubbles” are significant regarding to the task. By 
cumulating the answers of all the participants, the correct 
answers are statistically correlated with the visible areas. 

The participants are 64% male and 36% female; aver-
age age is 31.4 years old. They are not working in the 
automotive sector (design, marketing or communication). 

Two car cab interiors are chosen to be judged by par-
ticipants: Peugeot 207 (207) and Citroën C6 (C6), de-
signed in two versions: sports versus standard for 207, 
white versus black for C6. We therefore obtain four vis-
ual stimuli. 
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Two tasks are chosen: for the 207, the participants as-
sess the “sport” car’s design or the “quality level” of the 
interior cabs. For C6, instructions are to evaluate the 
“quality level” or the” luxury quality” of the interior cabs.  

Results 

It must be noted that the quality of the results depends 
on the experimental conditions and the number of trials. 
Figure 6.a presents the classification results for the 207 
(sport character), and this map actually represents deci-
sion areas. Moreover, for the task on the “high level” 
assessment, the decision areas appear less locally accu-
rate than for the task on “sport” type.  

For C6, the decision areas are not spatially localized. 
Actually, for the “quality level” assessment, the choice is 
not homogeneous among the subjects: the “Bubbles” al-
gorithm cannot extract converging areas. For the “luxury” 
assessment task (see Figure 6b), the choice effectively 
points to the white modality (“correct answer”), but the 
only decision criterion is the color. 

Oculometry measures: assessment of the 
factors driving the eyes 

Material & method 
We have defined in the preceding section eight ex-

perimental conditions (4 pictures * 2 assessments). In this 
experiment, we add a control task: four groups observe 
each stimulus without instructions (4 conditions).  

Twelve groups are thus formed, having ten partici-
pants per group, and for the control (free viewing task), 
four groups are formed, one per interior compartment. 
The participants are selected in such way to have homo-
geneous groups in terms of age and gender; they all 

bought a medium-range car in the last two years; they 
live in France and do not work in the automotive sector. 
The participants’ ages are homogeneously distributed 
from 20 to 60 years old (median: 35 y.o.).  

The cars pictures are exposed at scale 0.80 of their 
real size on a screen of 160cm × 125cm at 2m from the 
participant (42° visual angle). The eye-tracker employed 
is the FACELAB® 4.1, used in precision mode (1.5°) 
with a sampling frequency of 60Hz. Two warm up tries 
are done before the first judgment trial. Each participant 
realizes two assessment tasks, one on a 207 and one on a 
C6. This order (207 or C6 first) is counterbalanced. After 
a calibration step, the sequence begins with a black slide, 
and the participant is asked to stare at a dot located at the 
center of the screen. Then, the image is exposed for 8 
seconds. Finally the participant gives his answer, and the 
sequence is repeated. 

Twenty eye-movements sequences are recorded per 
product and task. After eliminating wrong measures or 
failed trials (around 20%), we obtain around sixty se-
quences of 8 seconds per condition. 

Results 
In order to explain the spatial fixations density for 

each experimental condition, we have then defined the 
statistical model based on an additive mixture of the five 
distributions previously described which might compete 
to guide the visual attention in this context. At the con-
vergence of the “EM” algorithm, we obtain the contribu-
tion of each of these five factors. These contributions are 
considered as the relative effect of each factor guiding the 
eye-movements (the sum of the contributions value is 
equal to one). Table 2 shows these contributions for each 
experimental condition (stimulus × task). Table 3 shows 
the results for the free viewing task. 

0bject Task Random Centrality Saliency Info-Max Semantic 
207-sport sport assessment 0.00 0.41 0.00 0.15 0.44 
207-sport quality 0.00 0.50 0.00 0.15 0.34 

207-standard sport assessment 0.00 0.24 0.00 0.24 0.53 
207-standard quality 0.00 0.63 0.00 0.19 0.18 

C6-white luxury 0.00 0.61 0.12 0.19 0.08 
C6-white quality 0.00 0.56 0.06 0.26 0.12 
C6-black luxury 0.00 0.52 0.12 0.31 0.05 
C6-black quality 0.00 0.73 0.00 0.22 0.05 

Table 2: Contribution of each factor for each experimental condition ( judgment tasks). 
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Object Random Centrality Saliency Infomax Semantic 

207-standard 0.00 0.62 0.00 0.15 0.18 

207-sport 0.00 0.45 0.00 0.24 0.31 

C6-white 0.00 0.67 0.04 0.19 0.08 

C6-black 0.00 0.77 0.00 0.31 0.04 

Table 3: Contribution of each factor for each experimental condition ( free viewing task). 

First of all, the “Random” factor does not contribute 
to the model: the fixations are not randomly distributed 
and they can be explained by the other factors. Secondly, 
the distinction between 207 and C6 conditions is high-
lighted. For 207, the semantic map explains the eye-
movements better than the low-level maps (“Saliency” 

and “InfoMax”) which have weak contributions. For C6, 
the situation is reversed; the low-level maps explain the 
experimental data better than the high-level semantic 
map. Moreover, the centrality bias is stronger for C6.  

 

 

Figure 8: Projection of each experimental condition on the first two principal components (81.64%  of the observed 
inertia). 

A Principal Components Analysis appears here as a 
very useful way to compare the various eye movement 
sets in order to highlight the similarities and differences 
between the different models. For this, a dataset is cre-
ated with the eight experimental conditions for the as-
sessment task, merged with the four experimental condi-

tions for the free viewing task. This provides twelve 
situations described by the four factors with a non null 
contribution corresponding to three degrees of freedom. 
There is one constraint: the contribution sum is set to one. 
The resulting biplot of the projection on the first two 
principal components (see Figure 8) shows mainly two 
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trends: the C6 products versus the 207 products, depend-
ing on the semantic factor contribution. For the C6 prod-
ucts, the visual attention seems to be guided by bottom-
up factors (visual saliency, maximization). For the 207 
products, two subgroups are discriminated by the contri-
bution of the “centrality” factor: the assessment of the 
sporting property induces attention more focused on the 
decision areas than the other tasks (highest cognitive lev-
el).  

Therefore, the eye positions depend of course on the 
task and may in some cases overlap with the visual deci-
sion criteria. When the central areas are strongly gazed at, 
it might be because the attention is less directed to local 
areas, or because the central local information is watched. 

But, when participants gaze freely at the 207 products 
(without a judgment task), the fixation distribution is well 
explained by the semantic map (which is built by the 
“Bubbles” experiment on the basis of judgment process). 
Thus, even without instructions, the decision areas are 
particularly observed for the 207. The interpretation of 
the link between visual attention and decision is therefore 
complex. For the C6, we notice that the free viewing at-
tention is well explained by the centrality hypothesis, but 
not by saliency or maximization, as might have been fo-
reseen. 

Discussion 
This approach seems very efficient to highlight the 

relative weights of different factors which can guide the 
distribution of the visual attention. This method allows 
comparison to several experimental conditions, and to 
identify specific features of the attention processes for 
each situation. 

About the results, several points must be discussed. 
First, the respective effects of the factors are quite similar 
for the 207 (either sport or standard) with and without 
instruction: it does not mean that the participants gaze 
these areas because they have information useful for the 
task or if there are some physical or cognitive distinctive-
ness areas. Even if the task requires local visual informa-
tion, these areas might be gazed at because of the judg-
ment processes, but also because of attractiveness, visual 
complexity, or object identification processes. Second, if 
the random effect appears null, the centrality one is rather 
highly weighted. It is convergent with the Tatlers’ obser-

vations (Tatler,  2007), showing that either in a free view-
ing task or in a search task, the eyes tend to stand in the 
center. Our results therefore confirm that even in a judg-
ment task, this bias is strong, but with our experimental 
protocol, we can’t decide if the bias comes from the ini-
tial position of the eyes or because it is an optimal loca-
tion to gaze at the scene. Third, the saliency appears to be 
null for the 207 cars while the semantic ones is high, and 
in all the cases the saliency weights are lower than the 
information-maximization hypothesis. The saliency map 
is considered to model the locations where the overt at-
tention goes, but it does not seem to model the areas 
where the participants often gaze at. We can suggest that 
in such kind of judgment task, the saliency effects are 
counterbalanced, not by the task (cf. free viewing results) 
but by the knowledge of the object, and therefore by the 
semantic content of the scene. While the Information-
maximization seems to contribute well, it can be ex-
plained by the fact that this map models the optimal loca-
tions to gaze at the objects of the scene, which is linked 
with the a priori knowledge of the spatial structure of the 
objects.  

About the materials employed, we use pictures of car 
cabin interiors; therefore some information is missing 
between the real object and its representation (three di-
mensional depth, ecological immersion…). Moreover, 
these objects are very well known (pre-existing cognitive 
structures) and are consistent (the precepts are organized 
in a coherent manner), the representation is dense (a lot 
of objects can be gazed at simultaneously), and they may 
be interpreted at multiple levels, from colors and textures, 
to the presence / lack of functionalities, the relative posi-
tion of the object, the overall attractiveness,...These ob-
servations converge to confirm our methodology in vari-
ous experimental contexts, i.e. to measure the attention 
processes in real scenes, and to test other tasks and sev-
eral kinds of objects. 

The analysis of eye-movement data is one of the most 
striking points of such kind of behavioral experiments. If 
the experimenters have some hypothesis about the areas 
which will be gazed at, the definition of areas of interest 
independent to the measures is interesting. The transition 
occurrences between areas, the temporal patterns of fixa-
tion, or the characteristics of the eye-movements per area 
(fixation frequencies, delays before the first fixation, du-
ration, saccade amplitude) can be studied. If there is no 
hypothesis about the areas which will be observed, or if 
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we need to compare the similarities between several tries, 
the analysis using the density estimation is relevant. After 
having established the density of the fixations, they can 
be either compared directly, or being employed to com-
pare several tries regarding to a specific density reference 
(Tatler et al., 2006) data employed to estimate the density 
will have an effect on the number of local maxima, their 
highest values, and their topology.  

Regarding the statistical method proposed by Vincent, 
we slightly modify it. First we use one generic map in-
stead of several dedicated maps to model the bottom-up 
factors on the basis of a visual saliency process (chromi-
nance, edges, and luminance) regardless of the task. Sec-
ondly, we add semantic information based on the “Bub-
bles” paradigm (regardless of physical characteristics of 
the scene) which seems well adapted to build a top-down 
map, to be defined for each task and each picture. This is 
our main contribution to this method. At last, the rele-
vance of the additive mixture model comes from the as-
sumption that each driven factor is complementary to the 
others. As a consequence of these properties, the weak-
nesses of this method are the following: First, the fusion 
model of the different factors is simple (additive mix-

ture). If there are complex interactions, they are not taken 
into account. And then, if the factors are strongly corre-
lated, the “EM” algorithm will be unstable. A second 
limitation comes from the “Bubbles” method: if there is a 
weak consensus among participants, or if the decision 
areas are not local, some common diagnostic areas do not 
appear. Finally, concerning the global model, we can note 
that the factors estimations are relatively stable across 
different trials and initial conditions. Nevertheless, the 
confidence estimates might have been computed using a 
bootstrap resampling to confirm this robustness. 

In this context we have in one hand, a complex proc-
ess of visual attention depending on factors which inter-
act with each other, and in the other hand, the experimen-
tal data reflects the great variability of the subjects’ be-
havior. A statistical approach performed in a sufficient 
number of tries is relevant. Even if the assumptions of the 
statistical model are simple as it is the case for the addi-
tive mixture, this approach remains relevant while the 
aim is to capture the very main effects. So the additive 
mixture model appears especially well adapted to such 
kinds of paradigms. 
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