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Heat maps highlight cumulative, static importance in eye-tracking records, while network 
analysis helps elucidate dynamic importance from transitional relations.  The present study 
was designed to perform both analyses in the same conceptual framework, i.e., network rep-
resentation.  For this purpose, heat maps comprising 5 × 5 segments were overlaid with 
networks, both of which were produced from the eye-tracking records of 20 subjects who 
read 10 top web pages that were classified into three layout types.  The heat of the seg-
ments was graded on the basis of five percentile scores, whereas the core-peripheral nodes 
were identified by the agreement of centrality and ranking indices.  The congruence be-
tween the two types of importance was generally good at the node level and the community 
levels.  Additional findings included a) mixed patterns of the sustained fixations (i.e., 
loops) within the total fixations, and b) an increase in reciprocity as the network scope was 
narrowed to communities and then to the core neighborhoods.   
__________________________________________________________________________ 
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Introduction 

Eye-tracking records of web page readers help reveal 
how much the readers were attracted by different areas of 
a given page and how their attention shifted among areas 
through the examination of, for example, heat maps (cu-
mulative-static) and scan paths (relational-dynamic), re-
spectively (see Nielsen et al., 2010 for introductory in-
formation).  For these purposes, researchers may set a 
grid or mesh on a screen and count the number of eye 
fixations in the segments (see Granka et al., 2006; Jo-
sephson, 2004; Pan et al., 2004).  If the goal of the ana-
lysis is to focus on content rather than location, the screen 
should be segmented by content.  Although we employ a 
uniform grid in the present study to compare different 
pages, our approach is applicable to content-based seg-
mentation as well.  

Figure 1 shows a schematic illustration of the three 
basic methods for analyzing eye fixations, with uniform 
segmentation for ease of comparison.  In the heat map, 
segments are colored according to the frequency of fixa-
tions: the higher the fixation frequency, the hotter is the 

segment (see Cutrell et al, 2007).  Because it is static in 
nature, the map does not provide means to trace shifts in 
attention.  To study this dynamic aspect, the scan path is 
a suitable choice.  Drawing paths is simple, but one soon 
faces difficulties in analyzing multiple paths (Goldberg et 
al, 1999) owing to the lack of good summary indices oth-
er than length.  

Figure 1. Three basic approaches. 

Network analysis fills the gap between these ap-
proaches, since it enables us to capture important seg-
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ments in the transitional relations, as demonstrated by 
Matsuda and Takeuchi (2009, 2011), who examined eye-
tracking records obtained from viewers of top pages of 
commercial web sites.  They identified both core and 
peripheral segments on the basis of the centrality and 
ranking indices.  Besides, they extracted communities 
from the union (U) of the cliques, i.e., complete sub-
graphs in which all nodes are connected.  The network 
shown in Figure 1 gives a rough idea of a community, i.e., 
a densely connected subgraph, formed by large and 
brightly colored nodes.  Their approach will be briefly 
explained next before we provide justification for the 
present study. 

Network Analysis of the Eye-Fixation Data 
Matsuda et al. (2009, 2011) processed their analysis 

in four stages (see Appendix A of this paper for supple-
mentary information): a) network construction, b) iden-
tification of core and peripheral nodes, c) identification of 
communities, and, d) visual presentation of the communi-
ties.  First, the fixation sequences were transformed into 
adjacency matrices whose elements were the number of 
transitions between nodes.  The diagonal elements cor-
responded to the self-loop transitions ("loops" for short).  
Networks of the nodes were constructed from each adja-
cency matrix. 

Various network indices were computed in the second 
stage, including centralities and ranking scores.  The 
most and least important nodes, referred to as core and 
peripheral nodes, respectively, were identified on the 
basis of the agreement of the ranks of these indices.  In 
addition to selecting important individual nodes, Matsuda 
et al. attempted to extract communities defined as groups 
of nodes that were densely connected relative to those 
outside the group(s).  In view of the small size of the 
networks (25 nodes), they formed a single community 
from the union (U) of the node sets that constituted the 
largest cliques in each network.  Finally, they displayed 
the communities by the circular mode of Reingold and 
Tilford's (1981) tree layout algorithm, by placing the core 
nodes at the center. 

Before introducing the motivation of the present study, 
more detailed explanation of the core (and peripheral) 
nodes would be necessary, in view of their special bear-
ing on the dynamic importance.  

Important Network Nodes 
Few will disagree to attributing the importance of 

nodes to centrality: the greater the centrality of the node, 
the higher is its importance.  However, the concept of 
centrality itself differs among three well-known centrality 
indices: degree, closeness, and betweenness (see Freeman, 
1979, for the definitions).  The two networks in Figure 2 
are similar in that they both have three pivotal nodes {A, 
B, C} around which other nodes fan out.  

 Figure 2. Core status of the pivotal nodes A and B. 

Table 1 
Centrality measures of the pivotal nodes. 

 Fully congruent 
(left) 

Semi-congruent 
(right) 

Index A B C A B C 

degree 7 5 6 3 5 6 

closeness .645 .500 .533 .458 .500 .371 

betweenness .811 .496 .567 .566 .785 .415 

Note.  Underlined are the largest values for each index. 

As listed in Table 1, node A in the left network is 
highly central, having the largest number of links con-
nected to it (i.e., degree), being closest to the rest of the 
nodes in terms of geodesic distance (closeness), and hav-
ing the largest proportion of short-cut paths running 
among all pairs of nodes (betweenness).  In contrast, 
node A in the right network is not the most central, de-
spite its middle position among the pivots.  Here, C is 
highest in degree and B is highest in closeness and be-
tweenness.  If we were to determine the core status on 
the basis of congruence among these indices, A and B 
would be considered the core and semi-core in the left 
and right networks, respectively. 

Besides the classical indices, the importance of nodes 
can be determined by the scores of PageRank (Brin et al, 
1998) and the authority- and hub-scores (Kleinberg, 
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1999).  They are essentially the values of the leading 
eigenvectors of the matrices differently derived from the 
adjacency matrix of a given network (see Appendix A, 
for additional note).  Setting aside the mathematical 
details, what makes these ranking scores distinct from 
classical centrality measures is their recursive nature.  
That is, the importance of a node by PageRank depends 
on the importance of nodes connected to it, and the im-
portance of these nodes further depends on nodes con-
nected to them.  The authority- and hub-scores bear mu-
tually reinforcing relationships: The authoritativeness of a 
node is enhanced by the hubness of the nodes linking to it, 
while the hubness of a node increases as a function of the 
authoritativeness of the nodes they link to.  We will se-
lect cores and peripherals on the basis of the agreement 
among the centrality indices and ranking scores, after 
Matsuda et al. (2009, 2011).   

Motivations for the Joint Analysis 
Although network analysis is useful, it is not suffi-

cient by itself, owing to the difficulties in fully incorpo-
rating the static aspect, i.e., heat for two reasons.  First, 
the fixation counts of the entry (or exit) segments are not 
retrievable from an adjacency matrix that records the 
number of shifts between the segments (see appendix A).  
Second, loops represented in the diagonal entries of the 
matrix cause complications in computing various indices 
and extracting communities.  Hence, the removal of 
loops from network analysis is generally accepted as a 
means of avoiding substantial difficulties in interpreting 
the results.  Moreover, loops are not distinguishable 
from recurrent fixations in heat maps unless specially 
separated.  Therefore, their significance in terms of sus-
tained interest deserves proper treatment to complement 
both the network approach and heat map analysis.   

The purpose of the present analysis is to compare the 
two types of importance, one static and the other dynamic 
in nature, using the same records studied by Matsuda et al.  
(2009, 2011).  Static importance, derived from the fre-
quency of fixations, will be examined by heat maps and 
loops, while dynamic importance, derived from transi-
tional relations, will be analyzed by the core and pe-
ripheral nodes.  Our relational analysis will be extended 
to the clique-based communities (see Appendix A) con-
taining the respective cores after the previous work.  In 
addition, we will further narrow the scope of the net-
works to core neighborhoods comprising the nodes di-
rectly linked to and/or from the cores.  The neighbor-

hoods were displayed but not examined in the previous 
study. 

 In order to facilitate the joint analysis, networks will 
be overlaid on the corresponding heat maps.  To this end, 
we will depart in two ways from Matsuda et al. (2009, 
2011) who displayed the communities alone, using the 
circular mode of Reingold and Tilford's (1981) tree lay-
out algorithm.  On the one hand, the entire network will 
be displayed with emphasis on the embedded communiti-
es and core-peripheral nodes.  On the other, the net-
works will be displayed in grid form in correspondence to 
the segmentation of the screen (see Appendix A). The 
key to presenting the networks over the heat maps is our 
idea of also treating the latter as unconnected networks 
devoid of links.   

Our study is expected to provide new analytical tools 
to both researchers and practitioners.  

Method 
Subjects (Ss). Twenty residents, (7 males and 13 fe-

males), living near a research institute called AIST, Japan, 
were recruited for the experiments.  They had normal or 
corrected vision, and their ages ranged from 19 to 48 
years (30 on the average).  Ten of the Ss were university 
students, five were housewives, and the rest were part-
time job holders.  Eleven Ss were heavy Internet users, 
while the rest were light users, as judged from their re-
ports about the number of hours they spent browsing in a 
week.   

Figure 3. Layout types. 

Stimuli. The top pages of ten commercial web sites 
were selected from various business areas: airline, e-
commerce, finance, and banking.  The pages were clas-
sified into Types A, B, and C, which differed in the lay-
out of the principal part beneath the top layer (see Figure 
3).  The main area of Type A was sandwiched between 
sub-areas, while the main areas of Types B and C were 
accompanied by a single sub-area either on the left (B) or 
on the right (C).   

DOI 10.16910/jemr.4.1.5 ISSN 1995-8692This article is licensed under a
Creative Commons Attribution 4.0 International license.



Journal of Eye Movement Research Matsuda, N. & Takeuchi, H. (2011) 
4(1):5, 1-12 Joint Analysis of Static and Dynamic Importance in Eye-tracking Records 

4 

 Apparatus and procedure. The stimuli were pre-
sented with 1024 × 768 pixel resolution on a TFT 17” 
display of a Tobii 1750 eye-tracking system at the rate of 
50 Hz.  The web pages were randomly displayed to the 
Ss one at a time, each display lasting 20 sec.  The Ss 
were asked to browse each page at their own pace.  The 
English translation of the instructions is “Various Web 
pages will be shown on the computer display in turn.  
Please look at each page as you usually do until the 
screen darkens.  Then, click the mouse button when you 
are ready to proceed.” The Ss were informed that the ex-
periment would last approximately five minutes.  

Segment coding and fixation sequences. A 5 × 5 
mesh was imposed on the effective part of the screen 
stripped of white margins that had no text or graphics. 

 

 

 

 

 

 

         Figure 4. Segment coding. 

The segments were sequentially coded, as shown in 
Figure 4, by the combination of alphabetical and numeri-
cal labels for rows and columns, respectively: A1, A2, …, 
A5 for the first row; B1, …, B5 for the second; …; and 
E1, …, E5 for the fifth. 

The raw tracking data for each subject comprised 
time-stamped xy-coordinates and were transformed to the 
fixation points under the condition that the subject’s eyes 
stayed within a radius of 30 pixels for a 100-msec period.  
Then, each fixation record was translated into code se-
quences according to the segments in which the fixation 
points fell.  

Adjacency (Transition) matrix. An adjacency matrix 
(25 × 25) was constructed for each page to record the 
frequencies of the fixation shifts from one segment to 
another aggregated across subjects from the fixation code 
sequences (see Appendix A).  Its rows (and columns) 
were arranged corresponding to the segment codes sorted, 
as follows:  

[A1, A2, …, A5, B1, …, B5, …, E1, …, E5] 

After separating the loops in the diagonal cells for 
heat analysis, the entries of the matrices were divided by 
the respective total frequencies.  These relative values 
matrices were used as weights of links for the computa-
tion of the ranking indices.  

Heat maps. In order to color the segments by heat, the 
number of fixations (NFix) was first classified into six 
grades separated at the 25, 50, 75, 95, and 100th percen-
tiles (the 100th percentile is the maximum value).  The 
numeric code and the color assignment are shown in Ta-
ble 2.  

Table 2 
Heat grade and color assignment. 

Note. For instance, 50p denotes the 50th percentile value. 

All the computations and graph layouts were carried 
out by the statistical package R (R Development Core 
Team, 2008) and its library package called igraph (Csardi 
et al., 2006) (see also Appendix B of the present paper). 

Results 
The top 10 pages used as stimuli are abbreviated as 

TPn hereinafter, where n varies from 1 to 10.  Among 
them, TP5 was eliminated owing to the broad white space.  
TP4 was also eliminated because the indices for the core 
identification did not agree well.  The following eight 
pages were subjected to the analysis:  

TP1, 3, 6, and 8 (Type A);  
TP2 and 9 (Type B), and; TP7 and 10 (Type C) 

Since the node names correspond to the segment 
codes, the terms nodes and segments would be used inter-
changeably in this section.   

Grade Color Heat (h) 
   

1            h = 100p 

2            95p < h < 100p 

3            75p < h < 95p 

4            50p < h < 75p 

5            25p < h < 50p 

6            h < 25 p 
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Examination of the Two Types of Heat 
The two types of heat of the segments are the number 

of fixations (NFix) and the number of loops (NLop).  
First, in the case of NFix, the median was strikingly simi-
lar across pages, either 38 or 40.  However, the mini-
mum and maximum of NFix varied from 2 (TP9) to 15 
(TP1) and from 91 (TP8) to 165 (TP10), respectively, 
with the range lying between 81 (TP8) and 161 (TP10).  
There was no obvious difference among the layout types. 

Second, the median number of NLop's slightly varied 
across pages, from 12 to 16.  The minimum and maxi-
mum values varied from 0 (TP3, 7, 9 and 10) to 3 (TP1) 
and from 45 (TP1) to 97 (TP10), respectively, with the 
range lying between 42 (TP1) and 97 (TP10).  As in the 
case of NFix, there was no obvious difference among the 
layout types. 

Table 3 
Pearson's (r) and Kendall's (τ) correlation coefficients between 
two heat measures (NFix and NLop) by TP. 

The correlations between NFix and NLop were quite 
high across TP's, as measured by Pearson's product-
moment coefficient shown in Table 3: .864 < r < .966.   
However, the correlations in ranks, not in magnitude, 
were somewhat lower, as measured by Kendall's rank 
coefficients (.606 < τ < .831). 

Concerning the first and second modal (i.e., the two 
most heated) segments, both NFix and NLop showed in-
teresting consistency.  As listed in Table 4, the modal 
pairs of TP1 (Type A), 2 and 9 (Type B), and, 7 and 10 
(Type C) were exactly identical on the two measures.  
Exceptions were limited to TP3, 6, and 8 of Type A.  
Among these, the non-identicality on TP3 arose from the 
reversed order of the pair {A1, B1}.  Their values dif-
fered only slightly, particularly in NLop.  Even on TP6 
and 8, A1 maintained its top modality. 

This nearly perfect consistency of the modal segments 
is noteworthy, suggesting the possibility that the frequent 
loops contributed to the frequent fixations.  This was 

examined in conjunction with the ratio NLop/NFix listed 
in Table 4.  

The contribution in the strict sense was confirmed in 
only three cases where the first modal segments on NLop, 
NFix, and NLop/NFix were the same: A1 of TP6 (Type 
A) as well as D5 of TP7 and B1 of TP10 (Type C).  The 
contribution was weaker in the cases where the second 
modal segments agreed: B1 of TP1 (Type A), B2 of TP9 
(Type B) and A1 of TP7 (Type C).  Of these, TP7 alone 
firmly confirmed the possibility.  

Table 4 
The first and second modal segments on three fixation-related 
measures.  

 Type A 

Measure TP1 TP3 TP6 TP8 

NFix B2, B1 
(10.0, 6.3) 

A1, B1 
(10.5, 9.5) 

A1, A2 
(11.8, 9.0) 

A1, C3 
(8.6, 7.7) 

NLop B2, B1 
(12.4, 9.6) 

B1, A1 
(14.8, 14.2) 

A1, C5 
(20.6, 9.2) 

A1, C5 
(12.6, 11.8) 

NLop/NFix D1, B1 
(.529, .522) 

B1, D1 
(.674, .596) 

A1, C5 
(.707, .684) 

D1, C5 
(.600, .575) 

 Type B Type C 

 TP2 TP9 TP7 TP10 

NFix A1, B3 
(10.6, 9.0) 

C2, B2 
(11.0, 8.3) 

D5, A1 
(10.9, 10.8) 

B1, A1 
(14.5, 8.7) 

NLop A1, B3 
(13.9, 10.5) 

C2, B2 
(15.4, 11.9) 

D5, A1 
(17.7, 15.8) 

B1, A1 
(21.5, 9.8) 

NLop/NFix D1, D4 
(.562, .559) 

C1, B2 
(.571, .548) 

D5, A1 
(.655, .589) 

B1, A5 
(.588, .520) 

Note. The numbers in parentheses are the proportions to the 
respective totals. 

A counter tendency was observed on the remaining 
five pages, in which nearly half of the NFix's (41.9% to 
55.6%) were non-loops: A1 of TP3 and 8 (Type A), A1 
of TP2 and C2 of TP9 (Type B), A1 of TP10 (Type C).  
These segments were modal in NFix and NLop but not in 
NLop/NFix. 

 

Joint Analysis of Heat Maps and Networks 
Shown in Figures 5 and 6 are the heat maps by TP 

overlaid by the respective networks in which the clique-
based communities are highlighted by large and bright 
nodes as well as by segment codes.  In addition, the core 
nodes are the largest in size, while the peripheral nodes, 

 Type A Type B Type C 

   TP1 TP3 TP6 TP8 TP2 TP9 TP7 TP10 

r .864 .930 .881 .885 .955 .933 .939 .966 

τ .606 .818 .780 .690 .808 .831 .749 .827 
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small in size, have light-colored frames.  Although most 
of the nodes are semi-cores and semi-peripherals in the 
strict sense, they will be called cores and peripherals, 

respectively, for the sake of brevity, unless particularly 
necessary. 

Figure 5. Networks and heat maps by TP of Type A with the clique communities highlighted by large and brightly colored nodes with 
Type-TP labels accompanied by the core node and the primary and secondary hot segments measured by NFix and NLop, i.e., 
[NFix1st, NFix2nd| NLop1st, NLop2nd].   
[Note] Segments are colored by heat grade listed in Table 2. 
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In these figures, the links connected to (inward) and 
from (outward) the cores within the individual communi-
ties are specially colored using colors different from 

those used in the previous study (Matsuda et al., 2009, 
2011), because of the coloring constrains arising from 
overlaying.

 
Figure 6. Networks and heat maps by TP of Types B and C with the clique communities highlighted by large and brightly colored 
nodes with Type-TP labels accompanied by the core node and the primary and secondary hot segments measured by NFix and NLop, 
i.e., [NFix1st, NFix2nd| NLop1st, NLop2nd].   
[Note] Segments are colored by heat grade listed in Table 2. 
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The heat of the segments of all the core nodes ex-
ceeded the 75 percent level, falling in the top three grades.  
Among them, the primacy of the cores B2 of TP1 (Type 
A) and B1 of TP10 (Type C) was perfect.  These seg-
ments were modal in both NFix and NLop, as explained 
above.  However, they differed with respect to 
NLop/NFix: only C3 maintained the primacy in this ratio.  
The heat of the other segments fell in the third grade, 
except for C3 of TP8 (Type A), which belonged to the 
second grade. 

In contrast to the cores, all the peripheral nodes were 
found in the least heated segments (i.e., grade 6).  The 
lack of importance of the peripherals was also evidenced 
by the absence of direct links to the cores in the respec-
tive networks, except for E3 of TP7 (Type C), which was 
linked from the core B3.  Even this case lacked both 
static and dynamic importance. 

Table 5 
Proportion of the community members by heat grade (%). 

Heat Type A Type B Type C 

grade TP1 TP3 TP6 TP8 TP2 TP9 TP7 TP10 

1, 2 9.1 14.3 20.0 25.0 20.0 15.4 18.2 25.0 
3 22.7 28.6 40.0 25.0 30.0 23.1 36.4 37.5 
4 22.7 42.9 10.0 37.5 40.0 46.2 9.1 37.5 

5, 6 45.5 14.3 30.0 12.5 10.0 15.4 36.4 0.0 

Total size 22 14 10 8 10 13 11 8 

Table 6 
Number of neighbors of core nodes by type of link. 

Note. R* denotes the reciprocity defined as the ratio of the 
number of two-way links to the total number of links, e.g., .611 
= 11/(11 + 3 + 4). 

When we extended the scope of importance from the 
cores to the clique-based community nodes, we found an 
interesting tendency (see Table 5).  The majority of the 
community members (>54.5%) were located, on all TP's, 
in the segments whose heat exceeded the median level 

(grade 4 or higher).  The tendency was more intense on 
TP6 and 8 (Type A), TP2 (Type B), and TP7 and 10 
(Type C):  Around 50.0–62.5% of the members be-
longed to the segments of grade 3 or higher.  

Finally, Table 6 shows the classification of the nodes 
that were directly connected with the cores by link type: 
two-way (both inward and outward), inward only, and 
outward only.  As indicated by reciprocity (R*), most of 
the nodes had two-way links with the respective cores, 
except for TP8, where outward links were dominant.  
Generally, the reciprocity tended to increase as we nar-
rowed the scope from entire networks to communities 
and then to core neighborhoods (see Table 7). 

Table 7 
Reciprocity of communities and entire networks. 

network Type A Type B Type C 

scope TP1 TP3 TP6 TP8 TP2 TP9 TP7 TP10 

community .478 .549 .625 .607 .537 .600 .800 .714 
entire .481 .436 .507 .445 .426 .459 .653 .630 

Discussion 

Given a set of coded eye-fixation sequences, re-
searchers can infer two types of importance of each seg-
ment: one from the counts of the codes (non-relational), 
and the other from the transitional relations via the adja-
cency matrix (see Appendix A).  Because the two types 
of importance are complementary (static and dynamic), 
their joint analysis is desirable to gain rich knowledge.  

The present study revealed an interesting congruence 
between the static and dynamic importance, namely, in 
the locations of the most (or least) heated segments and 
the core (or peripheral) nodes identified in the networks.  
The core nodes, the most important nodes, were located 
in the hot segments (whose heat exceeded the 75th per-
centile level).  The opposite congruence was more thor-
ough: the peripheral nodes, the least important nodes, 
were located in the least heated segments.   

Beyond the node-segment matches, extended congru-
ence was observed among the nodes of the clique-based 
communities bearing importance in terms of fairly tight 
connections to the cores.  The majority of the clique-
based community members were in the warm to hot seg-

Link Type A Type B Type C 

type* TP1 TP3 TP6 TP8 TP2 TP9 TP7 TP10 

two-way 11 6 5 2 5 8 8 5 

inward 3 3 2 0 4 3 2 2 
outward 4 1 0 5 0 1 0 0 

Total  
R* 

18 
.611 

10 
.600 

7 
.714 

7 
.286 

9 
.556 

12 
.667 

10 
.800 

7 
.714 
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ments (whose heat exceeded the 50th percentile level, i.e., 
the median).   

Considering the fact that the centrality indices incor-
porate the presence of relations (i.e., transitions) but not 
their magnitudes, the observed congruence between the 
frequency-based heat maps and the network nodes was 
unexpectedly high.  The results confirm the merit of the 
present approach, but there is room for further investiga-
tion.   

In addition to the congruence, we found that the pro-
portion of the two-way links, as measured by reciprocity, 
tended to increase as the scope of analysis was narrowed 
from entire networks to communities and then to core 
neighborhoods.   

A note has been made in the previous section about 
the prominent primacy of the two cores located in the 
most heated segments: B2 of TP1 (Type A) and B1 of 
TP10 (Type C).  Upon close examination, we found that 
the former was the sole genuine core being ranked high-
est on all six indices.  The latter was a semi-core in the 
strict sense, being ranked highest in four out of six indi-
ces: degree, closeness, PageRank, and authority.  D3 of 
TP3 (Type A) also had four top rankings, but the heat of 
the corresponding segment was not in the top two grades.  
The two semi-cores (B1-TP10-C, D3-TP3-A for short) 
ranked highest in degree, closeness, and PageRank, but 
they differed in the other indices: Their rankings in <be-
tweenness, authority-, hub-scores> were <7, 1, 8> on B1-
TP10-C and <1, 2, 6> on D3-TP3-A.  If they differed 
solely in the centrality indices or the ranking scores, the 
explanation would be far less complicated.  A clue to 
the answer may lie in the large difference in the between-
ness scores and the minor differences in the authority- 
and hub-scores.  As explained in brief in Introduction, 
betweenness reflects the global structure, but currently 
available algorithms disregard the link weights.  Author-
ity- and hub-scores also reflect the global structure, but 
they incorporate the weights.  Hence, for further analy-
sis, we need to wait for the completion of the algorithm 
for weighted betweenness. 

The observed relationships between the fixations 
(NFix) and the loops (NLop) are also noteworthy, since 
they indicate recurrent and sustained attention.  The use 
of the ratio NLop/NFix helped us separate three cases in 
which the large NLops contributed to the large NFixs: 
A1-TP6-A, D5-TP7-C and B1-TP10-C.  Moreover, in 

five out of the remaining seven cases, we found the coun-
ter tendency, namely, nearly half of the large NFix's re-
sulted from non-loops: A1-TP3-A, A1-TP8-A, A1-TP2-B, 
C2-TP9-B and A1-TP10-C.  These results motivated us 
to investigate patterns of shifts beyond pairs of segments, 
as recorded in the adjacency matrices. 

Although the present approach has merits, it has a li-
mitation arising from the potential dominance of one or a 
few records in the aggregate tendencies.  For instance, a 
very hot segment may result from a large number of 
fixations concentrated in a limited number of records 
(Naturally, unattended segments are free from such a 
possibility).  Similarly, transitions in an adjacency ma-
trix may be dominated by the particular tendency of a few 
records.  This in turn will influence the computation of 
the ranking scores.  

This limitation may be overcome by looking for pat-
terns shared among records.  Furthermore, if we explore 
sequential patterns, we would be able to extend the span 
of dynamic relationships beyond the chains of node pairs 
to longer sequences.  Suppose links A2-B1 and B1-C4 
(in the present coding system) are identified in network 
analysis, it would be difficult to know whether they re-
sulted from the triad sequence A2-B1-C4 frequently 
shared among records.   

We expect the concept of PrefixSpan (Pei et al., 2001) 
for frequent pattern mining and Graph Mining (see Cha-
karabarti et al., 2006) to lead us to extract motifs, i.e., the 
basic sequence of transitions.  The output of this line of 
search can be used to test the generality of the scan pat-
terns, such as F-shaped (Nielsen, 2006; Nielsen et al., 
2010), zigzag (Lorigo et al., 2008), and Z-shaped (as be-
lieved by many leaflet designers) patterns. 

Probably, many practitioners and students have been 
inspired by Nielsen and Pernice's (2010) book, which 
includes viewing patterns of individuals on various web 
pages.  Nielsen and Pernice employed both pixel-based 
heat maps and gaze plots based on fixation duration rath-
er than frequencies.  Their gaze plot is actually a scan 
path augmented by dots (circles) varying in size accord-
ing to the fixation duration.  However, the overlapping 
dots make it hard to discern the heat of the dots and trace 
the trajectory that is frequently covered by the dots.  
More importantly, the transitional importance is not con-
sidered.  It is clear that those who are interested in sin-
gle-case studies can benefit from applying our approach, 
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which enables the quantification of importance and the 
examination of closely linked segments such as commu-
nities and neighborhoods. 

Finally, we point out that the identification of the core 
nodes should be guided by the research purpose and not 
restricted to the congruence of several indices.  For in-
stance, one can use the centrality degree alone or in com-
bination with closeness, if node-centric importance is 
pertinent.  In contrast, betweenness is useful if one is 
concerned with the mediating importance in the flow of 
attention over the entire network.  Alternatively, one can 
employ PageRank and/or authority- and hub-scores if one 
focuses on recursive rankings. 

Appendix A 
We present herein examples to help interested readers 

gain basic knowledge about our approach.  See Was-
serman and Faust (1994) as well as Newman (2003) for 
more comprehensive explanations from different perspec-
tives. 

Fixation Sequences and an Adjacency Matrix 
Let us suppose that we focus on the following eye-

fixation sequences obtained from two subjects who 
watched a screen with nine segments coded by letters in 
{A, B, ..., I}.  One can easily extend the idea to general 
cases with the large number of segments and/or records.  

Seq1 = <ACCBFGGGAEBF>; length=12 

Seq2 = <BAABCBDEHD>; length=10 

Needless to say, fixations are intervened by saccadic eye 
movements.  The successive codes such as CC in Seq1 
result from repeated (or sustained) fixations.  The fre-
quencies of the codes appearing in the sequences serve 
the basis of the heat map: 

[A/4, B/5, C/3, D/2, E/2, F/2, G/3, H/1, I/0] 

The segment 'I', with no fixation, will be treated as an 
isolated node in the network. 

By writing a short program in any suitable software, 
one can transform the sequences into an adjacency (or 
transitional) matrix as shown in Table A1, in which cellij 
contains the number of transitions from segment i to j.  
The resulting network will be directed, as shown in Fig-

ure A1, in two forms where the loops depict the repeated 
codes registered in the diagonals.  

Table A1. 
The adjacency matrix in tabular form. 

Note that the total count is less than the sum of the 
lengths of the sequences by two (= 22 – 20).  The differ-
ence is equal to the number of sequences, since the row 
(or, column) sums do not include the ending (or, starting) 
codes of the sequences.  

Figure A1. Network representation of the transition matrix in 
two formats. 

Once one realizes the possibility of representing a 
heat map as an unconnected network with no links at all, 
the rest is straightforward: specification of the node at-
tributes (shapes and colors) and the choice of the layout 
format (grid or other). 

Reciprocity 
Three nodes in the above network are mutually linked, 

i.e., A-B and B-C.  In other words, their relationships 
are reciprocal.  The reciprocity index is a measure of the 
dominance of mutual relationships in a given network, 
defined as the ratio of the number of mutual (two-way) 
links to the total number of links. 

 A B C D E F G H I sum 

A 1 1 1 0 1 0 0 0 0 4 
B 1 0 1 1 0 2 0 0 0 5 
C 0 2 1 0 0 0 0 0 0 3 
D 0 0 0 0 1 0 0 0 0 1 
E 0 1 0 0 0 0 0 1 0 2 
F 0 0 0 0 0 0 1 0 0 1 
G 1 0 0 0 0 0 2 0 0 3 
H 0 0 0 1 0 0 0 0 0 1 
I 0 0 0 0 0 0 0 0 0 0 

sum 3 4 3 2 2 2 3 1 0 20 
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Cliques 
In network analysis, a clique is defined as a complete 

subgraph in which every pair of nodes is connected.  
Therefore, a clique may contain smaller cliques within it.  
An example of a network with two largest cliques each of 
size 4 is shown in Figure A2 by the circular layout.  
Note that both cliques contain triangular sub-cliques.  
The union of the cliques formed by {a,b,c,d} and 
{a,c,d,e} yields a community consisting of {a,b,c,d,e}.  
The term “community” is understood in network analysis 
as a densely connected subnetwork relative to the exter-
nal node(s).  

 

 

 

 

 

 

 

Figure A2. An example of a clique-based community in a 
network with two largest cliques of size four. 

PageRank, Authority-, and Hub-Scores 
These ranking scores are similar in motivations and 

mathematical solutions but not identical.  Their principal 
goal is to list hyperlinked documents in reasonable order, 
say, by importance in a broad sense.  The attractiveness 
of the scores stems from the recursive characterization of 
importance.  That is, the importance of a document in-
creases by being linked from other important documents.  
PageRank (Brin et al., 1998) derived the scores from the 
leading eigenvector of the transpose of a given adjacency 
matrix A, after standardization by row.   

Roughly speaking, Kleinburg's (1999) authority-
scoring is analogous to PageRank scoring.  The idea of 
Kleinburg's hub-score is to increase the value of the list-
ing by providing an auxiliary listing of documents that 
link to the authoritative ones.  He posited that users are 
also interested in the documents that refer to the impor-
tant ones.  The authority- and hub-scores share mutually 
reinforcing relationships.  The mathematical solutions 
are the leading eigenvectors from ATA and AAT for the 
authority- and hub-scores, respectively.  Those who 

have background knowledge of linear algebra can see that 
these solutions are related to SVD (singular value de-
composition).  

Appendix B: Software 
For network analysis and related operations, the pre-

sent authors employed a package called igraph (Cardi & 
Nepusz, 2006) in combination with R (R Development 
Core Team, 2006), which is a freely available language 
and environment for statistical computing and mathe-
matical operations.  R also provides a graphical envi-
ronment (CRAN, 2011, http://cran.r-project.org/).  

Let us illustrate the versatility of the software with the 
networks, called g, presented in Appendix A, according 
to the following scheme:  

XY = layout.function(g, ...) 

plot(g, layout=XY, ...) 

For Figures A1 (left) and A2, the built-in layout.functions 
were used: layout.reingold.tilford and layout.circular.  
The grid coordinates of Figure A1 (right) were computed 
by a user-supplied function.   

Since users can store R data structures like g in an ex-
ternal file, users may perform their analysis in steps in-
stead of writing a single long program.  For more details, 
contact the first author of the present study. 
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