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Introduction 

Effects of Reading Difficulty on Eye Movements 
Reading involves complex perceptual, linguistic, and 
ocular processes (Rayner and Pollatsek, 1989; Rayner, 
1998).  A skilled reader makes three to four jerky eye 
movements (saccades) along the line of text, with the 
duration of most eye fixations mostly between 150 and 
300ms (Harris, Hainline, Abramov, Lemerise, Ca-
menzuli, 1984, McConkie, Underwood, Zola, Wolverton, 
1985; McConkie and Dyre, 2000; Suppes, 1989).  About 
80 to 90% of saccades in reading are made in the forward 
direction (Frazier and Rayner, 1982; Mitchell, Shen, 
Green, & Hodgson, 2008; Vitu and McConkie, 2000). In 
addition, 5 to 15% of saccades refixate on the same word 
depending on the initial fixation position on that word 
(Rayner and Pollatsek, 1987; McConkie, Kerr, Reddix, & 
Zola, 1989; Vitu, McConkie, & Zola, 1998).   

The variability in fixation duration appears to reflect 
difficulties in processing text content (Just and Carpenter, 
1980; Morrison, 1984; Raney and Rayner, 1996; Rayner 
and Duffy, 1987; Rayner and Pollatsek, 1981).  Such an 

effect in fixation duration reflects a change to part of the 
frequency distribution of fixation duration (McConkie, 
Underwood, Zola, Wolverton, 1985; McConkie, Under-
wood, Wolverton, & Zola, 1988).  When a low-frequency 
or contextually-ambiguous word is encountered, the dura-
tion of the initial fixation on that word increases and the 
following saccade is more likely to be a regressive one, 
and/or a refixation on the same word (Frazier and Rayner, 
1982; Inhoff and Rayner, 1986; Pynte and Kennedy, 
2006; Rayner and Frazier, 1987; Weger and Inhoff, 2007; 
van Gompel, Pickering, & Traxler, 2001).   

Prominent models of eye movements in reading sug-
gest that a saccade is delayed or cancelled, and a refixa-
tion to the difficult word is made, in order to increase the 
processing time for that word.  Models of direct cognitive 
control assume that a planned forward saccade is trig-
gered after achieving a certain benchmark of processing 
an attended word.  Difficulty in processing that word 
cancels the planned saccade and replaces it with a refixa-
tion (e.g., Reichle, Pollatsek, Fisher, & Rayner, 1998; 
Reichle, Payner, & Pollatsek, 2003).  Models of adaptive 
ocular strategy allow saccades to be triggered at prede-
termined times and frequencies; text difficulty interrupts 
such an ocular strategy and triggers refixation instead 
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(Levy-schoen, 1981; O’Regan and Levy-Schoen, 1987; 
Vitu, O’Regan, Inhoff, & Topolski, 1995).  Other models 
assume flexible modification of saccade plan that sends 
the gaze to the word with the highest lexical/linguistic 
attractiveness, which leads to refixation and regression to 
a difficult word (Engbert, Longtin, Kliegl, 2002; Engbert, 
Nuthmann, Richter, & Kliegl, 2005; Reilly and Radach, 
2003).   

George W. McConkie and colleagues have established 
a line of work addressing the issue of probabilistic can-
cellation or delay of planned saccades in response to 
reading difficulty.  Based on their findings, McConkie 
and colleagues proposed a frequency of effect theory 
(FET) to qualitatively and quantitatively account for such 
a change in saccade latency (McConkie, Zola, Wolverton, 
1985; McConkie, Reddix, & Zola, 1992; McConkie, 
Kerr, & Dyre, 1994).  These earlier studies however did 
not address the effect of reading difficulty on regres-
sion/refixation frequency.   

This article is a tribute to McConkie’s work. It re-
views behavioral observations of saccade latency change 
underlying the FET, and evaluates new behavioral and 
neural evidence related to the occurrence of regres-
sion/refixation (Yang, 2005; Yang, Missal, & Heinen, 
2008).  These reviewed findings are then explained 
within the context of a behavioral/neural mechanism of 
eye movement control in reading.  Predictions on eye 
movements in reading are also derived from these find-
ings.  Because of the limit of a review article, readers 
interested in detailed research methods involved in these 
evaluated studies should consult the original articles.  

Frequency of Effect Theory  
Original observations. The frequency of effect theory 

(FET) was initially proposed based on observed changes 
in the distribution of fixation duration in response to dif-
ficulties in passage reading (McConkie, Zola, & Wolver-
ton, 1985).  In the earlier study, selected words in text 
passage were replaced with pesudowords beforehand, and 
the duration of initial fixation on these alternate words 
were analyzed.  A rightward (longer duration) shift in the 
frequency distribution of fixation duration was observed 
starting at 160ms.  McConkie and colleagues concluded 
that the effect of the alternate pseudowords would be best 
accounted for with a frequency of effect analysis, which 
quantifies the effect of encountered difficulties as the 

change in saccade frequency (or fixation termination) at 
each time interval and the duration of delay for the af-
fected saccade.           

In a later article, McConkie, Reddix, and Zola (1992) 
laid out three assumptions of the FET: (a) Processing 
difficulty in reading can only delay saccades scheduled to 
occur at a time after the ocular system is informed of the 
difficulty and has adequate time to exert a delay; (b) only 
a portion of saccades occurring after the initial onset time 
of saccade delay are affected; (c) all effected saccades are 
delayed for a fixed amount of time.  By manipulating 
these three parameters (initial onset time, affected propor-
tion, and effect size of delay), they obtained an estimation 
of 160ms for the onset of saccade delay, 32% of affected 
saccades, and a delay of 28ms for data from the above 
study (McConkie et al., 1985).  Note that these earlier 
studies and the original FET did not consider the direc-
tion of delayed saccades, such as whether the same por-
tion of forward and regressive saccades is delayed and 
whether the delay has the same duration.   

Differential effect on forward and regressive sac-
cades. To investigate the saliency of text difficulties on 
saccade delay in reading, Yang and McConkie (2001, 
2004) used a single-fixation displacement method to oc-
casionally replace a page of normal text with nonwords 
for a single fixation.  Different from the earlier studies, 
they analyzed the change in hazard value for forward and 
regressive saccades separately.  Hazard value is a good 
indicator of saccade probability, as it is calculated based 
on the frequency of occurring saccades relative to that of 
saccades still having not occurred (Elandt-Johnson and 
Johnson, 1999; Janssen and Shadlen, 2005).  Figure 1A 
shows the resultant hazard curves for forward saccades, 
computed from the frequency distribution for normal text 
and nonwords conditions (see Yang and McConkie 2001 
for the method of calculation).  The curves were cut off 
when 95% of saccades had occurred.  Here the arrow 
indicates the earliest time when the curve for the non-
word condition significantly departed from that for nor-
mal text.  The initial onset time of reduced probability for 
forward saccade was 200ms for nonwords.  Figure 1B 
shows the same conditions for regressive saccades, re-
vealing no delay at 200ms but significantly increased 
probability of regressive saccades for nonwords at 
300ms, a 100ms lag after the initial decrease in forward 
saccades.  FET analysis based on the frequency distribu-

DOI 10.16910/jemr.5.4.1 ISSN 1995-8692This article is licensed under a
Creative Commons Attribution 4.0 International license.



Journal of Eye Movement Research                                                                                                                                                       Yang, S.-N. (2012) 
5(4):1, 1-16                                                                                                                                                              Cognitive Control of Eye Movements 

3 

tion of fixation duration for the same data resulted in a 
200ms onset time, 41% of affected saccades, and a delay 
of 52ms for affected saccades.  Compared to the earlier 
results (McConkie et al., 1985), the nonwords condition 
resulted in a larger effect size (52 vs. 28ms) and a greater 
proportion of affected saccades (41% vs. 32%).  The 
larger proportion and effect size of affected saccades 
likely reflects the greater stimulus saliency (single non-
word vs. whole page of nonwords).  

The increase of regressive saccades with nonwords 
suggests saccades were not merely delayed; rather, re-
gressions were planned and executed in response to the 
detection of nonwords.  The readers likely attempted to 
make a refixation to re-inspect the foveated words and 
some of them were regressive.  This is confirmed by the 
accompanying finding that the additional regressions 
were mostly 1- to 4-letter length (Yang and McConkie, 
2001).   

The 100ms lag between the onset of forward saccade 
reduction and the initial increase of regressive saccade is 
much longer than the estimated 52ms with the FET.  This 
is not surprising, as the original estimate of saccade delay 
was calculated based on both forward and regressive sac-
cades.  Note half of saccades were regressive after the 
250ms interval for the nonwords condition (see hazard 
levels in Figure 1A and 1B), and regressive saccades 
were not reduced but increased with nonwords.  The ac-
tual proportion of delayed saccade likely would be at 
least doubled when only forward saccades were taken 
into account, thus the 52ms is an underestimation.        

To investigate how the detection latency of reading 
difficulties affects saccade latency, McConkie and Yang 
analyzed a set of data obtained from a study in which 
various types of text difficulty were created by replacing 
single original words with alternate text stimuli 
(McConkie and Yang, 2003; Yang, 2002).  Subjects read 
alternate versions of passages containing either the origi-
nal words or the alternate stimuli without utilizing any 
gaze-contingent manipulation.  Hazard curves for initial 
fixations in normal (original), nonwords, syntactic, and 
discourse difficulties were calculated for forward and 
regressive saccades.  Results show that frequency reduc-
tion to forward saccades first occurred at 225ms for non-
words, 250ms for syntactic difficulties, and at 275ms for 
discourse difficulties.  The initial increase of regression 
probability was found at 300, 350, and 350ms for these 

three conditions, although the increase was quite small, 
with no significant departure from the normal condition.  
These additional regressive saccades were either short 
with 1- to 3-letter length, or longer between 6-to 8-letter 
lengths.  Some of these regressive saccades were likely 
refixations and the rest were aimed at a previously fixated 
word.         

 

 
Figure 1. Likelihood (hazard value) of forward and re-
gressive saccades at different times during the critical 
fixation for normal text and nonwords conditions.  Haz-
ard value was calculated by dividing the frequency of 
forward or regressive saccade within each 25-ms time 
bin with that of not-yet-occurring all saccades.  Z test 
was conducted to determine the difference between the 
two conditions at each time bins (α = .05).  The earliest 
significant difference was marked with an arrow. A. For-
ward saccade hazard curves.  B. Regressive saccade haz-
ard curves. 
 

Together, the above findings suggest that eye move-
ment changes in response to processing difficulty in read-
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ing can be best described as a reduction in the frequency 
of forward saccades and a later increase of refixations or 
regressions.  The latency of detecting the difficulty (non-
words, syntactic or discourse related) and the saliency of 
difficulty (e.g., single word in fovea vs. whole page) 
likely determine the initial onset time of reduced saccade 
frequency as well as the proportion of affected saccades.       

Neurophysiological bases for Cognitive Control 
SEF involvement in cognitive control.  Cognitive 

control of motor responses is chiefly mediated by the 
frontal cortex (Passingham, 1985, 1993).  Among the 
frontal cortical structures involved in ocular control, the 
supplementary eye field (SEF) is a good candidate for 
exerting the effects of processing difficulty described 
above (Schlag and Schlag-Rey, 1987; Tehovnik, 1995; 
Tehovnik and Lee, 1993; Tehovnik and Sommer, 1997).  
Anatomically, the SEF is a frontal premotor structure 
involved in object-centric ocular responses (Russo and 
Bruce, 1993, 1996, 2000; Park, Schlag-Rey, & Schlag, 
2006; Schall, Morel, & Kass, 1993), helping specify an 
ocular response relative to a visual landmark or decision 
boundary (Olson, 2003; Olson and Gettner, 1995, 1996; 
Trembley, Gettner, Olson, 2002).  It receives inputs from 
visual structures such as the occipito-temporal and infe-
rior-temporal (IT) cortex where visual/orthographic in-
formation is encoded (Nobre, Allison, & McCarthy, 
1994; Pandya and Yeteria, 2002), and from the lateral 
intra-parietal (LIP) cortex where spatial location of visual 
objects is processed and updated for saccade guidance 
(Luppino, Matelli, Camarda, & Rizzolatti, 1993).  The 
SEF also projects to the frontal eye field (FEF), superior 
colliculus (SC), and brainstem where saccade preparation 
is carried out and saccade metrics are specified (Fries, 
1985; Hartmann-von Monakow, Akert, & Kunzle, 1979; 
Huerta and Kaas 1990; Schall, Morel, Kaas, 1993; Shook, 
Schlag-Ray, & Schlag, 1990).  These observations point 
to a likely SEF role in transforming the signal for a non-
spatial processing difficulty into a specific ocular com-
mand relative to a visual landmark.  

Functionally, the SEF has been shown to participate in 
ocular go/nogo decision and in initiating antisaccades.  
Human SEF is more active when making the decision to 
withhold a saccade/pursuit than it is for either the same 
visual stimulation or eye movements but no decision is 
required (Heinen, Rowland, Lee, & Wade, 2006).  Sepa-

rate populations of neurons in monkey’s SEF signal go or 
nogo decision respectively (Heinen, Hwang, & Yang, 
2011; Kim, Badler, Heinen, 2005; Yang, Ford, Hwang, & 
Heinen, 2010).  In performing the antisaccade task, neu-
rons in the SEF signal the withheld of ipsilateral prosac-
cade saccade, as well as the planning and execution of 
contralateral antisaccades (Park, Schlag-Rey, & Schlag, 
2006; Schlag-Rey, Amador, Sanchez, & Schlag, 1997; 
Stuphorn and Schall, 2006; Stuphorn, Taylor, & Schall, 
2000).  Abolition of the SEF leads to little deficit in visu-
ally-guided saccades, but heightens difficulties in execut-
ing go/nogo ocular decision and antisaccade tasks (Schil-
ler and Chou, 1998; Tehovnik, Sommer, Chou, Slocum, 
& Schiller, 2000).     

Potential SEF involvement in human reading is sup-
ported by a recent optical imaging study (Yang, Tai, & 
McConkie, 2003).  Using the same single-fixation re-
placement method documented by Yang and McConkie 
(2001), the study showed that human SEF displayed 
heightened activity when human readers encountered 
reading difficulties.  The heightened neural activity was 
temporally linked to the critical fixations when nonwords 
were present, compared to activity with normal text.  The 
functional location of the SEF region in this study was 
confirmed with the antisaccade paradigm.   

While the above findings are not direct evidence of 
human SEF involvement in exerting the cognitive signal 
in response to text difficulty, they suggest likely SEF 
involvement in the needed cognitive control of eye 
movements in reading.   

SEF microstimulation studies.  To assess whether the 
SEF can exert changes on saccades in a manner consis-
tent with the frequency of effect findings reported above, 
a series of microstimulation studies were conducted 
(Yang et al., 2008; Yang et al., 2010).  These experiments 
specifically addressed the following questions: (a) Does 
stimulating the SEF at different times affect the latency 
and proportion of affected saccades in a manner consis-
tent with the observed effects with various types of proc-
essing difficulty in reading? (b) Does the strength of SEF 
stimulation mimick the saliency effect of processing dif-
ficulty on the proportion and effect size of affected sac-
cades?  (c) Would the effect of SEF stimulation on sac-
cades be directionally selective and dependent on the 
anticipated direction of visual target as in reading?  
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To these ends, monkeys were trained to make a sac-
cade to a target (white circle extended 0.5° of visual an-
gle), which randomly appeared at horizontal locations 10° 
to the left or right of a fixation point (see Yang et al., 
2008 for details).  In each experimental session, an elec-
trode was first lowered into an implanted chamber above 
the SEF, and an effective site was found by delivering a 
train of stimulating current and observing its effect with 
online monitoring of saccade initiation time.  Most sites 
were identified with current amplitudes of 50 to75 mi-
croA and stimulation duration of 100ms.  After an effec-
tive site was identified, trials with various stimulation 

parameters (current onset time, current amplitude, and 
target locations) were conducted.  Note all sessions did 
not result in an equal number of trials; about 300 to 600 
trials were conducted for each site. 

Stimulation onset time.  In the first experiment, 7 ex-
perimental sessions were conducted in which the stimula-
tion onset times (SOA) was varied but the current ampli-
tude (75 to 100microA) and duration (100ms) were kept 
constant.  Figure 2A shows the frequency of saccade la-
tency for control trials (no current stimulation) pooled 
from 7 sessions.  Note the peak frequency was about 
175ms.   

 

Figure 2. Changes in the frequency of affected saccades and mean saccade latency for trials with different stimulation 
onset times relative to target onset (stimulation onset asynchrony, or SOA).  A. Frequency of saccade latency for con-
trol trials (no stimulation).  B. Differences in mean saccade latency between control trials and stimulation trials with 
various SOAs.  Error bars indicate the 95% confidence intervals.  C. Changes in saccade frequency for simulated trials 
relative with different SOAs, compared to the frequency for control trials.  The area below the zero indicates reduced 
frequency and that above increased frequency. 
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Figure 3.  Changes in saccade frequency and mean saccade latency for trials with various amplitudes of stimulation 
current, compared to control trials.  All stimulations had +75ms SOA and 100ms duration.  Illustrations are the same 
as in Figure 2.  A.  Changes in saccade frequency for different current amplitudes.  B. Changes in mean saccade la-
tency for corresponding trials.  Error bars indicate 95% confidence intervals. 
 

Figure 2B shows the difference in mean saccade la-
tency between control and stimulated conditions.  The 
difference in saccade latency increased and then de-
creased as SOA was shifted to the right, and the maximal 
difference was found with +75ms SOA, when the dura-
tion of stimulation coincides with the period of highest 

saccade frequencies without stimulation.  This is based 
on the assumption that it requires a latency of 50 to 75ms 
to generate the delay effect on saccade initiation (see 
Yang et al., 2008).  Figure 2C shows the frequency of 
affected saccades for different SOAs; the area below zero 
indicates reduced frequency and that above zero in-
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creased frequency.  Data were pooled from all 7 sessions, 
with the frequency for control trials subtracted from that 
of stimulated trials recorded in the same session.  Resul-
tant distributions show maximal reduction in frequency at 
175ms, and with +75ms SOA.      

Current amplitude.  Current amplitude was also sys-
tematically manipulated in 6 sessions with the SOA kept 
constant at +75ms and duration at 100ms.  Figure 3A 
shows the proportion of affected saccades with different 
current amplitudes (25 to 400microA).  As the current 
was heightened, the proportion of affected saccades also 
increased; the difference in distribution grew narrower 
but was not shifted further to the right (longer latencies).  
Figure 3B shows the mean difference in saccade latency.  
The increase of current amplitude (20 to 400microA) was 
accompanied by greater increase of saccade latency; this 
was due to a greater proportion of delayed saccades 
rather than an increase of effect size.   

 
Effected saccade direction. To investigate the spatial 

extent of the stimulation effect, stimulation (50 or 
75microA, +75ms SOA, 100ms duration) was delivered 
while the monkey was making a saccade toward a target 
randomly presented at 10° eccentricity and in one of 12 
directions (equally spaced by 30° radial angles).  Results 
were recorded from 11 SEF sites.  To quantify the spatial 
tuning of the stimulation effect, the latency change (stim-
ulated - control) at different target locations was normal-
ized relative to the location with the maximum differ-
ence.  To combine results from all 11 sites, the 
normalized magnitude of difference for the 12 directions 
was first rotated and aligned to the direction with the 
maximal delay.  The normalized scores were then aver-
aged for the 12 aligned angles for all sites.  Figure 4 
shows the normalized mean latency differences.  Each 
point represents the average of the normalized scores of 
the realigned angles for all sites, with 0° indicating the 
direction with maximum latency change.  Gaussian esti-
mation reveals that the spatial extent of significant sac-
cade delay (SD = 21.4°) is limited to 172° of radial angle 
(α = .05).  Note that the maximal delay direction for all 
21 sites was ipsilateral to the stimulation SEF site.     

In reading, there is clear expectation about saccade di-
rection.  To determine whether effect of SEF stimulation 
depends on such directional anticipation, in 10 stimula-
tion sessions the target was displayed at one of the two 

horizontal locations at 10° eccentricity.  In three separate 
blocks with 200 trials in each block, the target appeared 
at the ipsilateral location in 50%, 75%, or a 25% fre-
quency.  Target direction was randomly interleaved in 
each trial block.     

 
Figure 4.  Normalized change in saccade latency between 
stimulated and control trials.  The mean increase in sac-
cade latency recorded from 21 sessions was normalized 
in relation to the maximal delay recorded from each site.  
Rotation of target direction was done to align the results 
to the maximal delay direction (at 0°) before averaged 
across all sites.   
 

Figure 5 shows the mean saccade latency for stimu-
lated and control trials pooled from 9 ipsilateral delay 
sites.  Results from trial blocks with different frequencies 
of target location were plotted separately.  It reveals that 
without stimulation, the mean latency of ipsilateral sac-
cades was shorter with higher target frequency.  With 
stimulation, saccade latency was increased more with 
75% of target frequency, and less so with 50% frequency.  
As a result, the mean latency was the same for all three 
frequencies with stimulation applied to the ipsilateral 
SEF.  Therefore, the effect of current stimulation is best 
characterized as the removal of any facilitating effect 
associated with anticipated target location.          

Together, these microstimulation experiments reveal 
several important findings regarding the SEF role in sac-
cade control.  First, the latency change induced by SEF 
stimulation depends on when the current is delivered.  
The stimulation current affects more saccades when its 
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duration optimally overlaps the time intervals with the 
highest saccade frequency without stimulation.  This is 
consistent with the observed different onset times and 
proportions of affected saccades for various types of 
processing difficulty (McConkie and Yang, 2003).  Sec-
ond, the effect size of saccade delay and the proportion of 
affected saccades increase in relation to the amplitude of 
stimulation current.  These can account for the longer 
delay and more affected saccades for the condition with 
whole-page nonwords than a single nonword.  Third, the 
stimulation effect is spatially tuned.  Visually-guided 
saccades toward a direction ipsilateral to the stimulated 
SEF site are maximally delayed, but there is little delay 
effect for the opposite, contralateral direction.  Finally, 
SEF stimulation delays visually-guided saccades by re-
moving the facilitation of location anticipation.  There 
was little effect on saccade latency when the target ap-
peared at the less anticipated location.  The last two find-
ings are consistent with the selective cancellation of for-
ward saccades and the addition of regressive saccades in 
response to reading difficulty.  

 

 
 
Figure 5.  Mean saccade latency for blocks of trials with 
different target frequencies.  The target appeared at an 
ipsilateral location of stimulated SEF sites with 25%, 
50%, or 75% in separate blocks.  Stimulated and un-
stimulated control trials were interleaved within a block.  
Trials from 10 sessions were pooled together to compute 
the means and 95% confidence intervals.  Only data from 
trials with ipsilateral target locations were included in 
the analysis. 

A Neural/Behavioral Mechanism for Cognitive Con-
trol in Reading 

The above observations show several parallel similari-
ties between effects of reading difficulty and SEF stimu-
lation.  They suggest that the SEF can help resolve read-
ing difficulty by preventing forward saccades, hence 
slowing down the progression of gaze shift alone the line 
of text in reading.  To illustrate how a neural mechanism 
involving the SEF can exact the theorized cognitive con-
trol within the context of reading, the following sections 
provide an account on how neural processes are coordi-
nated to exact the observed effects on eye movements.  
The illustrated mechanism is not intended to be a well-
defined model of neural control, but an illustration of 
likely SEF involvement based on presently known neural 
processes.     

Neural processes for cognitive control.  For the pur-
pose of describing the neural control of saccade delay in 
reading, one can simplify the underlying neural mecha-
nism of saccade initiation as consisting of two compo-
nents: cortico-collicular and cortical (Trappenberg, Doris, 
Munoz, & Klein, 2001; Findley and Walker, 1999).  Fig-
ure 6 illustrates the involved neural substrates and proc-
esses.  The cortico-collicular component, including poste-
rior cortical areas (e.g., lateral intra-parietal lobe, LIP) 
and the superior colliculus (SC), carries out the processes 
of selecting a visual target and converting the retinal error 
of the selected target into neural pulses that subsequently 
drive the ocular muscle (Colby, Duhamel, & Goldberg, 
1995; Ferraina, Pare, & Wurtz, 2002; Konen, Kleiser, 
Bremmer, & Seitz, 2007; Schiller, 1998; Wurtz, Sommer, 
Pare, & Ferraina, 2001).     

The frontal cortical system carries out the function of 
transforming cognitive, top-down decisions into an ocular 
signal that modifies or overrides the subcortical one 
(Stuphorn and Schall, 2006; Schall, Stuphorn, & Brown, 
2002).  In it, the frontal eye field (FEF) specifies the met-
rics (direction and amplitude) of an endogenously pre-
pared saccade, whereas the supplementary eye field 
(SEF) encodes the preferred ocular response (e.g., go vs. 
nogo, left vs. right of a landmark) based on object-centric 
coordinates (Schall, 1991a, 1991b; Schall, Morel, & 
Kaas, 1993).  The SEF achieves cognitive control by 
suppressing or reducing the cortico-subcortical activity 
augmented by direction anticipation in a spatially selec-
tive manner, while allowing an alternate saccade to be 
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planned and executed by other regions such as the frontal 
eye field (FEF), which is also spatially selective.  Such 
fine-tuned coordination is illustrated by the co-
involvement of the SEF and FEF in no/nogo and antisac-
cade tasks, and their differential involvement in saccade 
execution, with the SEF signaling the cognitively-based 
choice and the FEF executing the actual saccade plan 
(Yang, Heinen, Hwang, & Badler, 2006).   

 
Eye movement control in reading.  Figure 6 summa-

rizes the possible involvement of the above neural sub-
strates in effecting a change in saccade latency and direc-
tion in reading.  It entails the scenario of encountering an 
orthographic difficulty (e.g., a low-frequency word) dur-
ing an eye fixation.  Spatial information afforded by mul-
tiple word stimuli is processed in parallel at the LIP, and 
a saccade is planned toward the center of a selected word, 
the gravity center of letter strings, or that of a visual blob, 
dependent on the assumed visual selection processing in 
reading (McConkie et al., 1988; O’Regan & Levy-
Schoen, 1987; Vitu et al., 1995; Yang and Vitu, 2006).  
Because of attentional or ocular biases caused by direc-
tional anticipation, word stimuli in the forward direction 
(i.e., to the right in English reading) are more likely to be 
selected.  The SC encodes the retinal error for the se-
lected visual stimuli, and the retinal error of the selected 
word is transformed into temporal neural pulses in the 
brainstem (Keller and Edelman, 1994; Waitzman, Ma, 
Optican, Wurtz, 1991; Wurtz and Optican, 1995; Opti-
can, 1996).   

Taking place in parallel to the above process is the or-
thographic processing of word(s) present in the effective 
foveal region.  This involves neural areas such as the in-
ferior-temporal (IT) lobe, where neural activities reflect 
the processing of word stimulus and is heightened when 
more words and greater difficulty in word recognition is 
encountered (Hagoort, Indefrey, Brown, Herzog, Stein-
metz, & Seitz, 1999; Nobre, Allison, & McCarthy, 1994; 
Rumsey, Horwitz, Donohue, Nace, Maisog, & Andrea-
son, 1997).      

Cognitive control in reading can be achieved by first 
generating a distressing (heightened) signal at IT that 
indicates significant orthographic difficulty.  The SEF 
directly or indirectly receives the signal and in turn sup-
presses the visually-based forward saccade; it also signals 
the decision to refixate the current or previously fixated 

word.  The FEF plans and executes a saccade that reflects 
the choice preferred by the SEF, and therefore its activity 
reflects the eventual saccade decision (see Heinzle, Hepp, 
& Martin, 2010 for the modeling of such saccade deci-
sions).      

 
Figure 6.  A diagram summarizing the likely neu-
ral/behavioral mechanism of cognitive control in read-
ing.  Difficulty in orthographic difficulty is used as an 
example.  Behavioral functions and underlying neural 
substrates (in parenthesis) are illustrated.  Arrows indi-
cate signal flows for saccade planning; the filled end 
circle indicates saccade suppression.    

Note that the above description serves to illustrate the 
likely neural mechanism of cognitive control in response 
to processing difficulty.  It is not intended to account for 
the all aspects of eye movement control in reading.  For 
detailed models of neural involvements in eye movement 
control, please consult other more comprehensive models 
(e.g., Heinzle et al., 2010; Reichle et al., 2003). 

Implications and novel predictions.  The above 
mechanism accounts for some critical behavioral obser-
vations in reading.  First, the frequency of effect on fixa-
tion duration for different types of processing difficulty 
can be explained by the race between the visually-based 
saccadic signal and the cognitive control (suppressing) 
signal generated by the SEF.  A more elementary proc-
essing center can detect the difficulty earlier and allow 
the SEF to exert a suppression signal faster.  This ex-
plains why more saccades are cancelled at earlier times 
when encountering a nonword than a syntactic ambiguity.  
Second, the observed tendency of making refixations and 
regressive saccades in response to processing difficulty 
can be accounted for by the spatial tuning and object-
centric coordinates of cortically-based neural control 
(McPeek and Keller, 2002; Walker, Deubel, Schneider, & 
Findlay, 1997).  Such spatial tuning allows a forward 
saccade to be suppressed and a regressive saccade or re-
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fixation be executed despite the ongoing inhibition of 
forward saccades.  Third, the larger effect size and pro-
portion of affected saccade with more salient ortho-
graphic difficulty can be explained by the stronger SEF 
signal relative to a constant threshold for saccade sup-
pression.  This allows the probability of affected saccade 
to increase, and/or the latency of reaching the threshold to 
be shortened (Carpenter and Williams, 1995).       

The proposed neural/behavioral mechanism also gen-
erates several novel predictions about cognitive control of 
eye movements in reading.  First, the original FET pre-
dicts a constant effect size of saccade delay, without re-
gard to the direction of the executed saccades.  This as-
sumption is based on the idea that a saccade is delayed to 
allow more processing time (McConkie et al., 1994).   

The present observations suggest that the delay re-
flects the cancellation of a planned forward saccade, and 
the planning and execution of refixation or regression 
independently of the cancelled saccade.  Consequently, it 
predicts a longer delay when a regression has to be gen-
erated to a specific word that requires the update of word 
location.  In comparison, a regression to the same word, 
requiring no updated word location, should result in a 
shorter latency.  The amount of delay does not depend on 
the nature of processing difficulty (nonwords or syntactic 
ambiguity), but the resultant response to the difficulty 
(refixation vs. longer regression).  This is in contrast with 
the assumption that fixation duration is predicted based 
on the difficulty of currently processed word.  This hy-
pothesis can be readily examined by looking into the 
amount of time lag between the onset of reduced saccade 
frequency and the increase of refixation and regression 
for different processing difficulties. 

The second novel prediction is that the same type of 
difficulty with various severity or saliency should result 
in different onset times and proportions of delayed sac-
cades.  A nonword composed of random letters should 
delay more saccades than a pseudoword, compared to a 
high-frequency real word.  This is due to the higher prob-
ability of detecting nonwords than pseudowords, which 
can be quantitatively predicted based on the saliency of 
processing difficulty.  This is in contrast with the theory 
of saccades being delayed to allow more processing time, 
as it predicts the same amount of delay due to the fact 
that they are both not real words.      

Finally, the hypothesized race between forward sac-
cade signal and suppression signal predicts that the effect 
of processing difficulty could spread over consecutive 
eye fixations.  This is because the latency of initial sac-
cade delay for some types of text difficulty could be very 
long, and the cancellation of forward saccades and a re-
gression can be executed only during the following fixa-
tion.  In some cases, the processing difficulty can also 
have a delay effect when the eye fixates at the word to the 
left of the one causing difficulty, but this would only oc-
cur when the difficulty can be detected early enough and 
when the fixation on that word is long enough.  These 
would account for the peripheral to foveal effect observed 
in previous studies (e.g., Kennedy and Pynte, 2005).  
Conducting a frequency of effect analysis on data from 
these studies should confirm whether this is the case.     

Conclusions 

In reading, cognitive control of eye movements is 
necessary to cope with text difficulty.  Here a neural 
mechanism is outlined to cancel visually-based, anticipa-
tion-facilitated forward saccades while allowing refixa-
tions or regressions to be executed based on processing 
difficulty.  Frontal cortical areas such as the SEF likely 
carry out these processes, and a certain amount of time is 
needed to accomplish such control, dependent on the type 
of cognitively-based eye movements.  Future research or 
reanalysis of existing findings is needed to validate novel 
predictions based on the proposed mechanism.  
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