
Journal of Eye Movement Research Michael Carl (2013)
6(2):5, 1-11 Dynamic programming for re-mapping noisy fixations in translation tasks

Introduction

Translation Process Research has advanced to a state
where recordings of behavioural data are used to elicit
and model cognitive processes in the translator’s mind. In
particular, the relation between the rhythm and speed of
typing activities and gazing behaviour is a valuable
resource to understanding the translator’s black box.
While the gazing behaviour reveals details about the text
comprehension process, the typing of the translation
shows us how the target text is produced and revised. In
between these two activities lies the human translation
process which we aim at understanding and modelling by
looking at the physically measurable in- and output. The
accuracy of the gaze data is crucial to obtain an
undistorted approximation of these cognitive processes.

However, gaze data collected from eyetrackers is
often noisy. The measured gaze location often does not
exactly correspond to the spot that a subject actually
looked at so that an analysis of the data may lead to
misleading conclusions. This is harmful when studying
gaze data during reading (or writing) activities where we
are dealing with relatively small spacial areas - words or
characters - on the screen. A horizontal displacement of a

few characters is still tolerable as it may still map to the
same, or at least a neighbouring word, while a vertical
displacement of only one line corresponds to a jump of
perhaps 10 words, which may imply completely
misleading conclusions when analysing the data. A
vertical drift thus contributes more noise and may falsify
major parts of the findings.

Noise and drift in gaze data has been addressed in
several ways. A frequent method is to assess the collected
data after an experimental sessions and disregard data
which is too noisy. However, this seems impractical in a
setting which allows for free head movements, which
potentially add noise in almost every recording. Other
methods make use of re-calibration on the fly Juhasz et.al
(2006), or by means of Required Fixation Location
(Hornof and Halverson, 2002). In this latter method,
participants are asked to place the mouse cursor over the
objects they are looking at. The discrepancies between
the mouse cursor and the recorded fixations are then
measured revealing a drift or noise offset which may
then be corrected.

Such methods are also undesirable as they distract
translators, readers or writers form their usual way of

1

Dynamic programming for re-mapping
noisy fixations in translation tasks

Michael Carl
Copenhagen Business School

Eyetrackers which allow for free head movements are in many cases imprecise to the extent
that reading patterns become heavily distorted. The poor usability and interpretability of
these gaze patterns is corroborated by a "naïve" fixation-to-symbol mapping, which often
wrongly maps the possibly drifted center of the observed fixation onto the symbol directly
below it. In this paper I extend this naïve fixation-to-symbol mapping by introducing
background knowledge about the translation task. In a first step, the sequence of fixation-to-
symbol mappings is extended into a lattice of several possible fixated symbols, including
those on the line above and below the naïve fixation mapping. In a second step a dynamic
programming algorithm applies a number of heuristics to find the best path through the
lattice, based on the probable distance in characters, in words and in pixels between
successive fixations and the symbol locations, so as to smooth the gazing path according to
the background gazing model. A qualitative and quantitative evaluation shows that the
algorithm increases the accuracy of the re-mapped symbol sequence
Keywords: Fixation-to-symbol mapping, drift in gaze data, drift-correction algorithm

DOI 10.16910/jemr.6.2.5 ISSN 1995-8692This article is licensed under a
Creative Commons Attribution 4.0 International license.

Journal of Eye Movement Research Michael Carl. (2013)
6(2):5, 1-11 Dynamic programming for re-mapping noisy fixations in translation tasks

working. Other solutions are necessary, in order to allow
as much as possible for an ecologically valid working
environment.

Mishra et al (2012) propose an heuristics-based
technique to reduce constant deviations between users’
intended gaze location and the location captured by eye-
samplers, so-called systematic errors. These error-
correcting heuristics are intended to shift gaze fixations to
their “true locations”, under the assumption that the
measured gaze data at the beginning of a new line is often
correct, while the effects of gaze drift worsen as the eyes
move towards the end of the line. Accordingly, the
method of Mishra et al. places most importance on the
first few fixations on each line, and successive fixations
are subsequently mapped onto this line. A similar method
has been described by Špakov (2007), with, however, a
less sophisticated mechanism to determine the reading
line from the first observed fixations.

In this paper I describe a fixation re-
mapping algorithm that is tailored
especially to translation activities. In
translation, the eyes move frequently
between two texts, the source text and its
translation, which calls for specific
solutions, but which also gives us more
clues as to which symbols and words the
translator may be reading. In the first
section I discuss drifting problems in a
sequence of recorded translation activity
data, and why these drifting problems are
difficult to capture with existing methods.
From the description of the drifting
problem I then elaborate criteria for
enhanced fixation-to-symbol mapping in
translation tasks. The following section
describes the implementation of the
fixation re-mapping algorithm and a final
section discusses evaluation issues.

The Problem

In contrast to typical monolingual
reading, a translator deals with two texts,
a source text and its translation. While the
source text (ST) is usually static, the
target text (TT) translation dynamically

evolves over time as a result of the translation process.
During translation production, the translator’s gaze often
switches between the ST and the TT, with short
sequences of reading in the ST window and monitoring
of text production in the TT window. The reading
activities are characterized by short ST and TT reading
patterns, frequent regressions and re-fixations, and long
saccades between the two texts, which lead to scattered
fixations when moving from one text to the other,
incorrect landing sites, and increased gaze measuring and
mapping errors.

Figure 1 (top) shows an 8 second long fragment of a
translation session from an English text into Estonian. In
these 8 seconds the characters ”[pöllu]majandus ja sellest
tulene” were typed (context is added in square brackets)
which - according to my back-translation from Estonian
using google - corresponds to a translation of
”agriculture and its pressure” in the English text.

2

Figure 1 Replay with naïve fixation-to-symbol mapping showing a translation seg-
ment of 8 seconds. Top: the Translog-II replay shows the gaze sample points (red
and green), the fixations and fixation to word mapping. Bottom: the translation
progression graph shows the same segment of time with fixations on the source
text (blue) fixations on the target text (green) and keystrokes.

DOI 10.16910/jemr.6.2.5 ISSN 1995-8692This article is licensed under a
Creative Commons Attribution 4.0 International license.

Journal of Eye Movement Research Michael Carl (2013)
6(2):5, 1-11 Dynamic programming for re-mapping noisy fixations in translation tasks

The data was collected using Translog-II (Carl, 2012)
and a Tobii T120 eyetracker, running in the 60Hz mode.
The figure has three different types of gaze information:
red and green dots represent gaze samples collected from
the left and right eyes respectively. Blue circles represent
fixations (i.e. clusters of coherent gaze points) for which
the numbers on the fixations reflect their temporal
ordering, so that fixation 0 occurred first, followed by
fixation 2, then 3 etc. The third type of information is
fixation-to-symbol mappings indicated by the violet
background behind sequences of characters. Figure 1
shows a naïve fixation-to-symbol mapping. That is, the
center of the fixations are mapped to the closest character
and the background of the surrounding 6 characters are
coloured in violet. These characters and words are then
supposed to represent the words that were looked at by
the translator and are the basis of further analysis of
reading behaviour.

A number of issues may distort this fixation-to-
symbol mapping process, including:

• due to calibration difficulties, free head movement or
changes in light or other conditions, the gaze sample
points which are recorded may not exactly
correspond to the place which was gazed at.

• the choices that are made when computing the
fixation, e.g. based on the left or the right eye gaze
sample, their average, how proximity or saccades
between successive gaze samples are defined, etc.

• the computation of the closest character for a given
x/y position depends on which part of the character is
taken as a reference, e.g. the upper left corner, or the
center of the character, etc.

In Figure 1 (top), the fixations (blue circles) were
computed based on the average of the left and the right
eye sample, with the assumption that fixations should be
at least 40ms in duration, and that all gaze samples within
a fixation are no more than 25 pixels from the fixation
center. In Figure 1 (top) most of the gaze samples lie
between the first and the second line, but the fixation
centers are mostly mapped onto the words in the second
line.

However, it is likely that the translator actually read a
segment in the first line, since s/he is currently producing
the translation of ”agriculture and its pressure” while the
gaze moves back and forth between the source segment

in the upper window and its translation in the lower
window.

Figure 1 (bottom) shows the same segment in the
form of a translation progression graph. The horizontal
axis represents 8 seconds in which the fragment of the
translation was typed (70.000ms to 78.000ms) while the
vertical axis presents the source text to which the
translation activities relate. The graph plots how the
characters were typed in time: black characters are
insertions and red characters deletions. The graph shows
that there are several stretches of fluent writing (e.g.
“jandus” and “ja”) and several pauses of different length
(e.g. there is a pause of almost 1 sec between the typing
of “jandus” and “ja”). Blue dots represent fixations on the
source text words in the upper part of the Translog-II
window while the green diamonds represent fixations on
the translations in the lower window. Note that the blue
dots in the bottom part in figures 1 and 2 correspond to
the violet fixation-to-symbol mappings in the top part of
the figure.

The segment shows that the translator was typing
“ma” while the gaze was on the target window. The gaze
moved then to the source window (blue dots), while
typing “jandus ja” and then came back to the target,
inspecting the just typed words (green diamonds), and
then keeps on typing in “sellest tulene”, while correcting
a few typos (characters in red).

Figure 1 shows the drift of gaze data and wrong
fixation-to-symbol mapping in the source window: while
the translation of source words 3 to 5 were typed,
fixations in the source text are around words 17 to 26.
However, it is likely that a translator read approximately
the same words that s/he is currently translating, and not
12 or 20 words ahead.

Figure 2 shows the output of the automatically re-
mapped version. The fixation-to-symbol mapping has
been changed so that the mappings occur in the first line
in the source window. The location of the keystrokes, as
well as the gaze samples and the computation of the
fixation centers are identical in the two pairs of figures,
only the fixation-to-symbol mapping has changed in
Figure 2. Figure 2 (bottom) shows the progression graph
of the re-mapped segment, so that the distances between
successive fixations become smoothed.

Even though we cannot be sure what a translator
actually looked at – e.g. whether s/he read a segment in

3

DOI 10.16910/jemr.6.2.5 ISSN 1995-8692This article is licensed under a
Creative Commons Attribution 4.0 International license.

Journal of Eye Movement Research Michael Carl. (2013)
6(2):5, 1-11 Dynamic programming for re-mapping noisy fixations in translation tasks

the first or second line - intuitively it seems more
plausible that a translator reads source words which he or
she is currently translating (as in Figure 2) instead of
those words one line below (as in Figure 1). These
observations lead us to the following criteria for a
fixation-to-symbol re-mapping algorithm:

− successive fixations are more likely on
neighbouring words than in the lines above or
below

− translators are likely to read passages of source
text words which they are currently translating

− the distance between the fixation center and the
fixated characters should be minimal

A Fixation Re-mapping
Algorithm

The proposed fixation re-mapping
algorithm consists of 3 steps:

1. re-compute fixation from gaze
samples and compute naïve
fixation-to-symbol mapping

2. extend naïve mapping into a lattice
of possibly looked-at symbols

3. find the best path through the
symbol lattice, depending on
whether previous successive
fixation:

• occurs in the same window

• involves a change of window

• shows systematic drift

This section describes these three
steps in more detail, and an
evaluation of the algorithm is
discussed in the next section.

Fixation Re-computation

Before applying the actual fixation
re-mapping algorithm, fixations must
be re-computed in a consistent manner
with the following parameters:

− the minimum fixation duration is set to 40 ms

− each gaze-sample point must occur within 25
pixels from the center of the fixation

− a gap in gaze-sample data of more than 30ms
will trigger a fixation boundary

The nearest character to the median gaze sample
within a fixation would then be taken as the fixation-to-
symbol mapping. Figure 1, Figure 4 (top) and Figure 5a
show the results of this naïve fixation-to-symbol
mapping, which results in numerous erroneous symbol
mappings a line below the one that the translator actually
translated. The naïve mapping was subsequently re-
mapped based on the following algorithm.

4

Figur 2: Replay with re-computed fixation-to-symbol mapping showing the 8 second
translation segment from Figure 1. Top: the Translog-II replay shows the gaze sample
points (red and green), the fixations and fixation to word mapping a line above the map-
pings in Figure 1. Bottom: the translation progression graph shows the same segment of
time with fixations on the source text (blue) fixations on the target text (green) and key-
strokes.

DOI 10.16910/jemr.6.2.5 ISSN 1995-8692This article is licensed under a
Creative Commons Attribution 4.0 International license.

Journal of Eye Movement Research Michael Carl (2013)
6(2):5, 1-11 Dynamic programming for re-mapping noisy fixations in translation tasks

Symbol lattice expansion

In the second step, the sequence of "naïve" fixation-
to-symbol mappings (as in Figure 1) is projected into a
lattice of several possible correct symbol locations above
and below the current fixation on the text. Then a
dynamic programming algorithm applies a number of
heuristics to find the best path through the lattice, based
on the distance in characters, in words and in pixels
between successive fixations, so as to smooth the gazing
path according to observations reported in the literature.

Figures 3a to 3d illustrate this process based on the
sequence of fixations and keystrokes between time
stamps 70.000 and 73.000 in Figures 1 and 2. It
illustrates the re-mapping of the fixation path in figure 1
(bottom) to the path plotted in figure 2 (bottom).

Additional fixations are computed from the gaze sample
points, in the following way:

− compute the fixation center only from the left
eye gaze samples

− compute the fixation center only from the right
eye gaze samples

− compute the fixation center from the average of
the left and the right eye gaze samples

The fixation centers are then mapped onto the closest
nearby character in the source or target window, a so-
called fixation-to-symbol mapping. There are thus three
different fixation-to-symbol mappings average, left and
right, depending on which fixation they are based on. In
addition, a character is retrieved in the line above the
uppermost fixation-to-symbol mapping (up), and a
character is retrieved in the line below the lowest

5

Figure 3a to 3d from top left to bottom right: Figure 3a shows the projection of the naïve mapping into a lattice of
alternative fixation-to-symbol re-mappings (red dots). Figure 3b (top, right) plots links to the first successor node, figures 3c
(bottom, left) and 3d (bottom, right) show successive steps in the re-mapping algorithm, including links to pre-predecessor
nodes.

DOI 10.16910/jemr.6.2.5 ISSN 1995-8692This article is licensed under a
Creative Commons Attribution 4.0 International license.

Journal of Eye Movement Research Michael Carl. (2013)
6(2):5, 1-11 Dynamic programming for re-mapping noisy fixations in translation tasks

fixation-to-symbol mapping (down). In this way, five
fixation-to-symbol mappings are generated in addition to
the original one, which may, however, partially overlap
with these additional mappings.

While Figure 1 (bottom) shows the naïve average
fixation, figure 3a shows the same situation, where the
original naïve fixation-to-symbol mapping path is plotted
(in blue) and additionally re-computed fixation-to-symbol
mappings are represented as dots on the vertical fixation
time line Ft. Figure 3a shows the projection of fixations
on the lines above and below the naïve default mapping.
For fixation time F1, two additional fixation-to-symbol
mappings are generated in the lines below the naïve
mapping (in the progression graphs the words further
down in the text appear higher in the graph), while for
fixations times F2 and F3 fixation-to-symbol mappings
are generated in the lines above and below the default
naïve mapping. Note that different fixation-to-symbol
mappings at one fixation time may also be distributed in
different windows. For instance, a down re-mapping of
the fixation numbered 0 in Figure 1 (top) at the bottom of
the source window may be re-located in the top of the
target window, while the up alternative would appear in
the source window, e.g. on decreased, as shown in figure
2 (top), where the same fixation is numbered 1.

Symbol lattice smoothing: same window

In the third step a path through the lattice of possible
fixation-to-symbol mappings is re-computed based on the
minimum penalty score of the distances between
successive nodes. Assuming that a fixation-to-symbol
mapping n is consolidated for a given fixation time Ft, a
penalty score for each possible fixation-to-symbol
mapping m at the next fixation time Ft+1 and its fixation
center f is computed by summing up a number of features
as described below. The fixation-to-symbol mapping m
with the lowest penalty score is then consolidated. Figure
3b shows the links to the three possible successor nodes,
where the link in bold represents the strongest connection
with lowest penalty score. We use two variants of the
algorithm, one in case both fixations are recorded in the
same window, and another method, described below, if n
and m are in different windows.

Different features are considered when computing the
penalty scores between successive nodes, depending on
whether the two successive fixation mappings occur in
the same window, or whether the gaze moves from the

source window to the target window or vice versa. In
case two successive fixations occur in the same window
(i.e. the source or target window), we assume that a
sequence of text is being read so that the eyes probably
move forward over the text. In case the eyes move from
one window to the other, we assume that the eyes move
(close) to the translation of the sequence that was
previously looked at in the other window. In this
subsection we formalize the former case of text reading in
one window and the next section tackles the case of
window switching.

According to (Rayner, 1998), during “normal”
reading the eyes can jump distances of around 5 to 15
characters along the text from left to the right, often
skipping short function words. As drift of gaze data is
presumably quite rare, we suspect that the gaze sample
points which are received from the eye tracker, and thus
the center of the various fixations that we compute from
them, are close to the characters and words which are
actually read. In addition, we assume that translators read
a piece of text (in the source or the target window) which
is close to the sequence currently being translated. These
considerations are formalized in the following four
functions:

(1) Cursor distance:

C(n, m) = abs(CurPos(m)–CurPos(n) - 10)

(2) Source ID distance:

S(n, m) = abs(STID(m) – STID(n) + 2) * K

(3) Last keystroke distance:

L(m) = abs(STID(m) – STID(l)) * K

(4) Fixation-symbol distance:

P(f, m) = EuclidDistance(f, m) / z

i.e.: sqrt((f(x)–m(x))^2 + (f(y)–m(y))^2) / z

where n and m represent two fixation-to-symbol
mappings, f is the fixation center of m, K=6 is
approximately the average length in characters of
(English) words, z=24 is the size of the characters on the
screen that we used in these experiments, and l is the
cursor position of the last character that was typed in the
target window.

The Source Text word Id STID(.) is computed based
on the alignment between the source and target text.

6

DOI 10.16910/jemr.6.2.5 ISSN 1995-8692This article is licensed under a
Creative Commons Attribution 4.0 International license.

Journal of Eye Movement Research Michael Carl (2013)
6(2):5, 1-11 Dynamic programming for re-mapping noisy fixations in translation tasks

Words in the source and target target text are numbered,
and the alignment information allows us to know the
Source Text word Id for each target word in the
translation. This information can be linked to the
keystrokes which actually produce the target words and
the target text. An algorithm described in (Carl, 2013)
describes how Source Text word IDs for keystrokes and
fixations are computed from the alignments.

Between each consolidated fixation-to-symbol
mapping n at time Ft and every possible successor node
m at the following fixation time Ft+1, a penalty score is
computed as shown in equation (5):

(5) CSLP1(n,m,f) = C(n,m)+S(n,m)+L(m)+P(f,m)

Since sometimes the eye may slip up or down a line
or two (particularly when switching between the two
windows) we also compute the penalty score between the
consolidated node o at the preceding fixation time Ft-1

and the successor mapping m, so as to lessen the impact
of the current mapping potentially being a slipped
fixation on the gaze path, as shown in equation (6) :

(6) CSLP2(o,m,f) = C(o,m)+S(o,m)+L(m)+P(f,m)

This situation is depicted in figure 3c. There is one
consolidated node n at fixation time F1 which is
connected to all three possible successor nodes m1..3 at
fixation time F2. These connections are represented by
fine dotted lines. In addition, there are connections from
the consolidated node o at fixation time F0 which link to
the three possible fixation-to-symbol mappings in F2.
These links are represented by dashed curved connectors.
There are thus six penalty scores for the three nodes m1..3

in F2. The node with the lowest penalty is consolidated.
The link to the previous consolidated fixation mapping in
F1 is plotted in bold arrows in Figure 3c. Even though the
distance to its immediate predecessor node in F1 is quite
large, the bottom node m in F2 was consolidated due to
the similar Source Text word Id which it shares with the
consolidated fixation-mapping node in F0 and its
proximity to the previously typed character. The
algorithm iterates through the expanded fixation-to-
symbol mapping lattice. Once a fixation-to-symbol
mapping is consolidated, the penalties of the next fixation
nodes are computed as shown in Figure 3c and so on until
the end of the lattice is reached.

Symbol lattice smoothing: different window

As mentioned previously, penalty scores are
computed slightly differently if the two successive
fixation-to-symbol mappings are distributed in different
windows. Since shifting attention from one window to
another window (i.e. switching between two texts) is
different from usual reading behaviour, we do not assume
that eyes move in jumps of around 10 characters, and
omit the cursor distance penalty function C(.). Rather, the
eyes seek to retrieve the translation of the word that was
looked at (or worked on) in the other window, and thus
the value STID(n) of one fixation will be similar to
STID(m) of the following fixation. That is, penalty scores
increase as the two successive fixations-to-word
mappings return a different STID(.) in both windows:

(7) Source ID distance during window change:

S’(n, m) = abs(STID(m) – STID(n)) * K

The last keystroke distance L(.) and the Fixation-
symbol distance P(.) as in equation (3) and (4) remain the
same also when changing windows. For sequences of
fixations which imply window changes, we thus
introduce two functions, analogous to the case in which
the eyes stay in the same window, in which S’LP1(n, m, f)
computes the penalty scores for immediate successive
nodes and S’LP2(o, m, f) computes the penalty scores for
two nodes distance:

(8) SLP1(n, m, f) = S’(n, m) + L(m) + P(f, m)

(9) SLP2(o, m, f) = S’(o, m) + L(m) + P(f, m)

Systematic error correction

The brain usually prefers visual input from one eye
which is referred to as the dominant eye. Accordingly,
fixations computed with the gaze data of the dominant
eye correspond more precisely to the visual input and
hence reveal more accurately what the brain was actually
processing. According to wikipedia
(http://en.wikipedia.org/wiki/Ocular_dominance),
approximately two-thirds of the population is right-eye
dominant and one-third left-eye dominant. As outlined
above, we compute left, right and average fixation-to-
symbol re-mappings. Since we do not know the eye
dominance of our participants, the left and the right
fixation-to-symbol mappings take into account the fact
that the preferred visual input may be on the left or right

7

DOI 10.16910/jemr.6.2.5 ISSN 1995-8692This article is licensed under a
Creative Commons Attribution 4.0 International license.

Journal of Eye Movement Research Michael Carl. (2013)
6(2):5, 1-11 Dynamic programming for re-mapping noisy fixations in translation tasks

eye respectively, while the average takes the average
over both eyes. We can expect that the left, right, or
average mappings do not change from one fixation to the
next: the dominant eye does not change from one fixation
to another.

In addition, we frequently observe instances of gaze
drift, where the observed gaze data is a line below or
above the one that we think it is plausible to assume the
person was actually reading. The up and down fixation-
to-symbol re-mappings take into account such systematic
gaze drifts by simulating a shifting of the observed
fixation a line up or down. Since gaze data does not
usually drift within short periods of time from the line
above to the line below, we assume that the left, right,
average, up and down fixation re-mappings are stable
over stretches of time. To take this constraint into
account, the fixation-symbol distance penalty P(f,m) from
equation (4) is relaxed if two successive fixations
mappings have the same re-mapping values, as in
equation (10):

(10) P(f,m) = 0, if (ReMap(n) eq ReMap(m)

or (ReMap(o) eq ReMap(m)

P(f,m) = EuclidDistance(f, m) / z, otherwise

where ReMap(x) returns one of the values up, down,
left, right or average, according to the way in which the
fixation-to-symbol mapping was computed.

Evaluation

This section describes a quantitative and a qualitative
evaluation of the re-mapping algorithm. We generated a
set of gold standard data by manually mapping fixations
onto their “correct” symbols, against which the algorithm
can be tested. The second evaluation looks at an example
and relates the resulting re-mapping to a model of
translation.

Quantitative Assessment

One way to assess the quality of an automatically
generated fixation-to-symbol re-mapping is to compare it
against manually adjusted gold standard data. Given that
the Translog-II replay mode allows us to observe text
production together with gaze behavior (examples of
screen shots are given in Figures 1 and 2), it is possible,
but a laborious task, to manually re-map fixations onto

the more plausible words and characters in the text. For
this purpose, Translog-II has a “remap” mode in which it
stops at each fixation. A user can position the cursor over
a character, and hit the return key and then Translog-II
assigns the cursor position to the current fixation as its
fixation-to-symbol mapping. The re-mapped file can then
be stored and compared with other re-mapped versions.

To assess the accuracy and difficulty of this re-
mapping task, three native Hindi speakers manually re-
mapped the fixations of one Translog-II English -> Hindi
translation session onto the words that they believed the
translator looked at during the translation. They were
instructed to select the most likely position that they
thought the translator had looked at.

Tabel 1: Percentage of agreement between two versions of fixa-
tion-to-symbol mappings in source and target window.

 Human Naive Re-mapping

Win HK KR RH RN HN KN RA HA KA

W1 50.4 50.4 50.6 50.6 50.6 50.5 50.4 50.4 50.4

W2 49.1 49.1 49.1 47.7 47.7 47.8 46.8 46.8 47.0

W12 0.51 0.44 0.24 1.62 1.72 1.75 2.73 2.69 2.54

We compared these three re-mapped versions to each
other. In addition, we compared each of the human
fixation-to-symbol mapping to the baseline naïve and to
the automatically generated mapping. This resulted in 9
comparisons of 3 human reference versions and 2 test
files. All 9 comparisons agree that approximately 50.5%
of all fixations occurred in the source window, while
there is agreement that between 46.8% and 49.1% of the
fixations should be located in the target window. For the
remaining 0.51% to 2.73% of the fixations the reference
and test versions do not agree as to whether the fixation
was in the source window or in the target window. Table
1 shows the agreement of the distribution between two
versions. “R”, “K” and “H” were three human annotators,
“N” the naïve baseline mapping and “A” the automatic
re-mapping introduced in this paper. Accordingly, the
columns “HK”, “KR” and “RH” show the values of a
comparison between the manually generated re-mapped
versions of the three human translators. Compared to the
naïve and automatically re-mapped version, the human
annotators seem to largely agree on whether a fixation
took place in the source or in the target window. They
only disagree in between 0.24% to 0.51% of the fixations.
The automatic method is most often incorrect and does

8

DOI 10.16910/jemr.6.2.5 ISSN 1995-8692This article is licensed under a
Creative Commons Attribution 4.0 International license.

Journal of Eye Movement Research Michael Carl (2013)
6(2):5, 1-11 Dynamic programming for re-mapping noisy fixations in translation tasks

not agree in 2.54% - 2.73% of the cases with the human
generated gold standard data.

To assess the precision of fixation-to-symbol
mapping, we computed the average normalized distance
between the mapped character offset position in the
reference file (cr) and the test file (ct). The offset distance
was normalized by the fixation duration dur, which is
identical in both files:

(11) ACD = 1/n * ∑n dur * abs(cr – ct)

The Average Character Distance ACD reflects the
distance between the fixation-to-symbol mappings of two
files from a textual viewpoint: a fixation which is mapped
onto a character in the line above or below the reference
fixation results in a large penalty equal to the number of
characters in that line, while a horizontal mismatch has a
comparatively small penalty. Thus, even though the
physical distance between two fixation mismatches may
be identical, a vertical mismatch is considered much
worse than a horizontal one.

Tabel 2 Average character distance between two fixa-
tion-to-symbol mappings for source window (W1) target win-
dow (W2),in case the fixations are mapped in different windows
(W12) and the average character distance (AVG).

 Human Naive Re-mapping

Win HK KR RH RN HN KN RA HA KA

W1 8.7 13.9 10.3 48 42 44.7 25.3 25.2 24.2

W2 3.5 6.7 8.5 16.8 16.4 15.5 13.4 10.9 11.5

W12 479 514 460 338 342 346 613 597 588

AVG 8.6 12.6 10.5 37.7 34.8 34.9 35.9 34.0 32.8

Table 2 shows the ACD values for the 9 comparisons
between the three manually generated reference
mappings, the naïve mapping and the re-mapped version.
The average ACD value for the three reference files
varies between 8.6 and 12.6 for the reference file
comparison, and between 34 and 37.7 for the machine
generated fixation-to-symbol mappings. Inter-human
annotation agreement is thus much higher compared to
the naïve and re-mapped versions.

When looking into the distribution of the ACD error, a
big difference can be observed for the source window
(W1), and the target window (W2). The human
annotators agree on the fixation mapping with
approximately 1 word precision (3.5 – 8.5 characters) in

the target window and approximately 2 words precision
(8.7 – 13.9 characters) in the source window. In cases
when a reference and a test file assigned the same
fixation to a different window, the ACD value is
particularly high. An example of this situation is shown
in Figure 4, in which the same fixations have been
mapped onto the last words in the source text (Figure 4,
top) and in in another version on the first words in the
target text (Figure 4, bottom). As the character offset in
the first (source) text is high and in the second (target)
text low, ACD has a particularly high value. Table 1
shows us that this is often the case in the case of re-
mapping, which worsens the average ACD score.

Figure 4: different fixation-to-symbol mappings of two mapping
approaches between time stamps 5000 and 10000. Top:fixation-
to-word mappings on the last words in the source text (blue
dots); Bottom: mappings on the first word in the target text
(green diamonds)

9

DOI 10.16910/jemr.6.2.5 ISSN 1995-8692This article is licensed under a
Creative Commons Attribution 4.0 International license.

Journal of Eye Movement Research Michael Carl. (2013)
6(2):5, 1-11 Dynamic programming for re-mapping noisy fixations in translation tasks

However, for fixations which are correctly detected in
the source window (W1) or in the target window (W2)
the ACS scores clearly outperform the naïve mapping.

Qualitative Assessment

A number of cognitive models of the human
translation process exist which provide us with insights
about the observed translation process data and which
may serve as a basis for an evaluation of re-computed
fixation-to-symbol alignment patterns. For instance,
Jakobsen (2011) has found indications of a recurrent
“micro-cycle”, i.e. a processing pattern consisting of six
steps, some of which can be skipped or repeated several
times. The processing cycle starts with an act of

comprehension, namely reading the chunk of ST which is
about to be translated (step 1). The translator then shifts
his/her gaze to the TT to locate the position where the TT
is about to be produced (step 2). The translation is typed
and monitored (steps 3 and 4), and the translator’s gaze
shifts back to the ST, where the relevant reading area is
located and the current ST word is read again (steps 5 and
6) (Jakobsen 2011, 48).

While such models give us a general picture of what
we may expect in the translation activity data, they are
still far from exactly predicting where the next fixation is
to be expected. In addition, a large variation of individual
translation styles has been described, for instance in

10

Figur 5a (top) naïve mapping vs. its re-mapped version 4b (bottom). Both figures represent the same translation segment.

DOI 10.16910/jemr.6.2.5 ISSN 1995-8692This article is licensed under a
Creative Commons Attribution 4.0 International license.

Journal of Eye Movement Research Michael Carl (2013)
6(2):5, 1-11 Dynamic programming for re-mapping noisy fixations in translation tasks

(Dragsted & Carl 2013), so that the evaluation of the re-
mapped log files remains, for the moment, subjective and
intuitive. In the future we hope that in a real-time reactive
application the success of a re-mapping method could be
evaluated based on its usefulness, Figures 5 show an
example of the present re-mapping algorithm.

The progression graph in Figure 5a clearly shows a
systematic drift of the source text fixation mappings
about 12 to 20 words ahead of the translations on which
the translator is working. Figure 4b shows a re-mapping
which clearly comes closer to the initial main criteria
which were previously established to design of the re-
mapping algorithm:

− successive fixations are one or two words apart

− translators are likely to read source passages
which they are currently translating

 The re-mapped version also better accounts for the
recurrent micro-cycle, as described above (Jakobsen
2011).

Acknowledgements

This work was partially supported by the CASMACAT
project funded by the European Commission (7th Frame-
work Programme).We are grateful to all contributors to
the database for allowing us the use of their data.
Particular thanks goes to Nancy Underwood for
throughly re-reading of the manuscript.

References

Dragsted, B., & Carl, M. (2013). Towards a classification
of translation styles based on eye-tracking and
keylogging data. Journal of Writing Research 5(1),
133-158

Hornof, A.J., & Halverson, T. (2002). Cleaning up
systematic error in eye-tracking data by using
required fixation locations. Behavior Research
Methods, Instruments, & Computers, 34, 592–604.

Jakobsen, A.L. (2011). Tracking translators’ keystrokes
and eye movements with Translog. In C. Alvstad, A.
Hild & E. Tiselius (Eds.), Methods and Strategies of
Process Research (pp. 37-55). Amsterdam: John
Benjamins.

 Mishra, A., Carl, M., Bhattacharya, P. (2012). A
heuristic-based approach for systematic error
correction of gaze data for reading, Workshop on
Eye-tracking and Natural Language Processing,
Coling 2012, 24th International Conference on
Computational Linguistics, 15 December, 2012
Mumbai, India

Rayner, K. (1998) Eye movements in reading and
information processing: 20 years of research.
Psychological Bulletin 124(3): 372-422.

Špakov, O. (2007). GWM – the Gaze-to-Word Mapping
Tool, available online at
http://www.cs.uta.fi/~oleg/gwm.html.

11

DOI 10.16910/jemr.6.2.5 ISSN 1995-8692This article is licensed under a
Creative Commons Attribution 4.0 International license.

