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Introduction

Translation Process Research has advanced to a state 
where  recordings  of  behavioural  data  are used to  elicit 
and model cognitive processes in the translator’s mind. In 
particular, the relation between the rhythm and speed of 
typing  activities  and  gazing  behaviour  is  a  valuable 
resource  to  understanding  the  translator’s  black  box. 
While the gazing behaviour reveals details about the text 
comprehension  process,  the  typing  of  the  translation 
shows us how the target text is produced and revised. In 
between  these  two activities  lies  the human translation 
process which we aim at understanding and modelling by 
looking at the physically measurable in- and output. The 
accuracy  of  the  gaze  data  is  crucial  to  obtain  an 
undistorted approximation of these cognitive processes.

However,  gaze  data  collected  from  eyetrackers  is 
often noisy. The measured gaze location often does not 
exactly  correspond  to  the  spot  that  a  subject  actually 
looked  at  so  that  an  analysis  of  the  data  may lead  to 
misleading conclusions.  This is  harmful  when studying 
gaze data during reading (or writing) activities where we 
are dealing with relatively small spacial areas - words or 
characters - on the screen. A horizontal displacement of a 

few characters is still tolerable as it may still map to the 
same, or at least  a neighbouring word, while a vertical 
displacement of only one line corresponds to a jump  of 
perhaps  10  words,  which  may  imply  completely 
misleading  conclusions  when  analysing  the  data.  A 
vertical drift thus contributes more noise and may falsify 
major parts of the findings. 

Noise  and  drift  in  gaze  data has  been addressed  in 
several ways. A frequent method is to assess the collected 
data  after  an  experimental  sessions  and  disregard  data 
which is too noisy.  However, this seems impractical in a 
setting  which  allows  for  free head  movements, which 
potentially  add  noise  in  almost  every  recording.  Other 
methods make use of re-calibration on the fly Juhasz et.al 
(2006),  or  by  means  of  Required  Fixation  Location 
(Hornof  and  Halverson,  2002).  In  this  latter  method, 
participants are asked to place the mouse cursor over the 
objects  they are  looking at.  The discrepancies  between 
the  mouse  cursor  and  the  recorded  fixations  are  then 
measured revealing a drift or noise offset which may 
then be corrected.

Such  methods  are  also  undesirable  as  they  distract 
translators,  readers  or  writers  form  their  usual  way  of 
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working. Other solutions are necessary, in order to allow 
as  much as  possible  for  an  ecologically  valid  working 
environment.

Mishra  et  al  (2012)  propose  an heuristics-based 
technique  to  reduce  constant  deviations between users’ 
intended gaze location and the location captured by eye-
samplers,  so-called  systematic  errors.  These  error-
correcting heuristics are intended to shift gaze fixations to 
their  “true  locations”,  under  the  assumption  that  the 
measured gaze data at the beginning of a new line is often 
correct, while the effects of gaze drift worsen as the eyes 
move  towards  the  end  of  the  line.  Accordingly,  the 
method of Mishra et al. places most importance  on the 
first few fixations on each line, and successive fixations 
are subsequently mapped onto this line. A similar method 
has been described by Špakov (2007), with, however, a 
less  sophisticated  mechanism  to  determine  the  reading 
line from the first observed fixations. 

In  this  paper  I describe  a fixation re-
mapping  algorithm  that  is  tailored 
especially  to  translation  activities.  In 
translation,  the  eyes  move  frequently 
between two texts, the source text and its 
translation,  which  calls  for  specific 
solutions,  but  which  also  gives  us  more 
clues as to which symbols  and words the 
translator  may  be  reading.  In  the  first 
section  I  discuss  drifting  problems  in  a 
sequence of recorded  translation activity 
data, and why these drifting problems are 
difficult to capture with existing methods. 
From  the  description  of  the  drifting 
problem  I  then elaborate  criteria  for 
enhanced  fixation-to-symbol mapping  in 
translation  tasks.  The  following  section 
describes  the  implementation  of  the 
fixation re-mapping algorithm and a final 
section discusses evaluation issues.  

The Problem

In  contrast  to  typical  monolingual 
reading, a translator deals with two texts, 
a source text and its translation. While the 
source  text  (ST)  is  usually  static,  the 
target  text  (TT)  translation  dynamically 

evolves over time as a result of the translation process. 
During translation production, the translator’s gaze often 
switches  between  the  ST  and  the  TT,  with  short 
sequences of reading in the ST window and monitoring 
of  text  production  in  the  TT  window.  The  reading 
activities are characterized by short ST and TT reading 
patterns, frequent  regressions and re-fixations, and long 
saccades between the two texts, which lead to scattered 
fixations  when  moving  from  one  text  to  the  other, 
incorrect landing sites, and increased gaze measuring and 
mapping errors.

Figure 1 (top) shows an 8 second long fragment of a 
translation session from an English text into Estonian. In 
these 8 seconds the characters ”[pöllu]majandus ja sellest 
tulene” were typed (context is added in square brackets) 
which - according to my back-translation from Estonian 
using  google  -  corresponds  to  a  translation  of 
”agriculture and its pressure” in the English text. 

2

Figure 1 Replay with naïve fixation-to-symbol mapping showing a translation seg-
ment of 8 seconds. Top: the Translog-II replay shows the gaze sample points (red 
and green), the fixations and fixation to word mapping. Bottom: the translation 
progression graph shows the same segment of time with fixations on the source 
text (blue) fixations on the target text (green) and keystrokes. 
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The data was collected using Translog-II (Carl, 2012) 
and a Tobii T120 eyetracker, running in the 60Hz mode. 
The figure has three different types of gaze information: 
red and green dots represent gaze samples collected from 
the left and right eyes respectively. Blue circles represent 
fixations (i.e. clusters of coherent gaze points) for which 
the  numbers  on  the  fixations  reflect  their  temporal 
ordering,  so  that  fixation 0 occurred  first,  followed by 
fixation 2,  then 3 etc.  The third type  of information is 
fixation-to-symbol  mappings  indicated  by  the  violet 
background  behind  sequences  of  characters.  Figure  1 
shows a naïve fixation-to-symbol  mapping. That is, the 
center of the fixations are mapped to the closest character 
and the background of the surrounding 6 characters are 
coloured in violet. These characters and words are then 
supposed to represent the words that were looked at by 
the  translator  and  are  the  basis  of  further  analysis  of 
reading behaviour. 

A  number  of  issues  may  distort  this  fixation-to-
symbol mapping process, including: 

• due to calibration difficulties, free head movement or 
changes in light or other conditions, the gaze sample 
points  which  are  recorded  may  not  exactly 
correspond to the place which was gazed at. 

• the  choices  that  are  made  when  computing  the 
fixation, e.g. based on the left or the right eye gaze 
sample,  their  average,  how  proximity  or  saccades 
between successive gaze samples are defined, etc.

• the computation of the closest character for a given 
x/y position depends on which part of the character is 
taken as a reference, e.g. the upper left corner, or the 
center of the character, etc.

In  Figure  1  (top),  the  fixations  (blue  circles)  were 
computed based on the average of the left and the right 
eye sample, with the assumption that fixations should be 
at least 40ms in duration, and that all gaze samples within 
a fixation are no more than 25 pixels from the fixation 
center.  In  Figure  1  (top)  most  of  the  gaze  samples  lie 
between  the  first  and  the  second  line,  but  the  fixation 
centers are mostly mapped onto the words in the second 
line. 

However, it is likely that the translator actually read a 
segment in the first line, since s/he is currently producing 
the translation of ”agriculture and its pressure” while the 
gaze moves back and forth between the source segment 

in  the  upper  window  and  its  translation  in  the  lower 
window. 

Figure  1  (bottom)  shows  the  same  segment  in  the 
form of a translation progression graph.  The horizontal 
axis represents  8 seconds in which the fragment  of the 
translation was typed (70.000ms to 78.000ms) while the 
vertical  axis  presents  the  source  text  to  which  the 
translation  activities  relate.  The  graph  plots  how  the 
characters  were  typed  in  time:  black  characters  are 
insertions and red characters deletions. The graph shows 
that  there  are  several  stretches  of  fluent  writing  (e.g. 
“jandus” and “ja”) and several pauses of different length 
(e.g. there is a pause of almost 1 sec between the typing 
of “jandus” and “ja”). Blue dots represent fixations on the 
source  text  words  in  the  upper  part  of  the  Translog-II 
window while the green diamonds represent fixations on 
the translations in the lower window. Note that the blue 
dots in the bottom part in figures 1 and 2 correspond to 
the violet fixation-to-symbol mappings in the top part of 
the figure.

The  segment  shows  that  the  translator  was  typing 
“ma” while the gaze was on the target window. The gaze 
moved  then  to  the  source  window  (blue  dots),  while 
typing  “jandus  ja”  and  then  came  back  to  the  target, 
inspecting  the  just  typed  words  (green  diamonds),  and 
then keeps on typing in “sellest tulene”, while correcting 
a few typos (characters in red).

Figure  1  shows  the  drift  of  gaze  data  and  wrong 
fixation-to-symbol mapping in the source window: while 
the  translation  of  source  words  3  to  5  were  typed, 
fixations in the source text are around words 17 to 26. 
However, it is likely that a translator read approximately 
the same words that s/he is currently translating, and not 
12 or 20 words ahead.

Figure  2  shows  the  output  of  the  automatically  re-
mapped  version.  The  fixation-to-symbol  mapping  has 
been changed so that the mappings occur in the first line 
in the source window. The location of the keystrokes, as 
well  as  the  gaze  samples  and  the  computation  of  the 
fixation centers are identical in the two pairs of figures, 
only  the  fixation-to-symbol  mapping  has  changed  in 
Figure 2. Figure 2 (bottom) shows the progression graph 
of the re-mapped segment, so that the distances between 
successive fixations become smoothed. 

Even  though  we  cannot  be  sure  what  a  translator 
actually looked at – e.g. whether s/he read a segment in 

3

DOI 10.16910/jemr.6.2.5 ISSN 1995-8692This article is licensed under a
Creative Commons Attribution 4.0 International license.



Journal of Eye Movement Research Michael Carl. (2013)
6(2):5, 1-11 Dynamic programming for re-mapping noisy fixations in translation tasks

the  first  or  second  line  -  intuitively  it  seems  more 
plausible that a translator reads source words which he or 
she  is  currently  translating  (as  in  Figure  2)  instead  of 
those  words  one  line  below  (as  in  Figure  1).  These 
observations  lead  us  to  the  following  criteria  for  a 
fixation-to-symbol re-mapping algorithm:

− successive  fixations  are  more  likely  on 
neighbouring words than in the lines above or 
below

− translators are likely to read passages of source 
text words which they are currently translating

− the distance between the fixation center and the 
fixated characters should be minimal

A Fixation Re-mapping 
Algorithm

The  proposed  fixation  re-mapping 
algorithm consists of 3 steps:

1. re-compute  fixation  from  gaze 
samples  and  compute  naïve 
fixation-to-symbol mapping

2. extend naïve mapping into a lattice 
of possibly looked-at symbols

3. find  the  best  path  through  the 
symbol  lattice,  depending  on 
whether  previous  successive 
fixation:

• occurs in the same window

• involves a change of window

• shows systematic drift  

This  section  describes  these  three 
steps  in  more  detail,  and  an 
evaluation  of  the  algorithm  is 
discussed in the next section.

Fixation Re-computation

Before  applying the actual  fixation 
re-mapping  algorithm,  fixations  must 
be re-computed in a consistent manner 
with the following parameters:

− the minimum fixation duration is set to 40 ms

− each  gaze-sample  point  must  occur  within  25 
pixels from the center of the fixation

− a gap  in  gaze-sample data of  more than 30ms 
will trigger a fixation boundary 

The  nearest  character  to  the  median  gaze  sample 
within a fixation would then be taken as the fixation-to-
symbol mapping. Figure 1, Figure 4 (top) and Figure 5a 
show  the  results  of  this  naïve  fixation-to-symbol 
mapping,  which  results  in  numerous  erroneous  symbol 
mappings a line below the one that the translator actually 
translated.  The  naïve  mapping  was  subsequently  re-
mapped based on the following algorithm.

4

Figur 2: Replay with re-computed fixation-to-symbol mapping showing the  8 second  
translation segment from Figure 1. Top: the Translog-II replay shows the gaze sample 
points (red and green), the fixations and fixation to word mapping a line above the map-
pings in Figure 1. Bottom: the translation progression graph shows the same segment of 
time with fixations on the source text (blue) fixations on the target text (green) and key-
strokes. 
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Symbol lattice expansion

In the second step, the sequence of "naïve" fixation-
to-symbol mappings (as in Figure 1) is projected into a 
lattice of several possible correct symbol locations above 
and  below  the  current  fixation  on  the  text.  Then  a 
dynamic  programming  algorithm  applies  a  number  of 
heuristics to find the best path through the lattice, based 
on  the  distance  in  characters,  in  words  and  in  pixels 
between successive fixations, so as to smooth the gazing 
path according to observations reported in the literature.

Figures 3a to 3d illustrate this process based on the 
sequence  of  fixations  and  keystrokes  between  time 
stamps  70.000  and  73.000  in   Figures  1  and  2.  It  
illustrates the re-mapping of the fixation path in figure 1 
(bottom)  to  the  path  plotted  in  figure  2  (bottom). 

Additional fixations are computed from the gaze sample 
points, in the following way:

− compute the fixation center  only from the left 
eye gaze samples

− compute the fixation center only from the right 
eye gaze samples

− compute the fixation center from the average of 
the left and the right eye gaze samples

The fixation centers are then mapped onto the closest 
nearby character  in  the source  or  target  window, a so-
called fixation-to-symbol mapping. There are thus three 
different  fixation-to-symbol  mappings  average,  left and 
right, depending on which fixation they are based on. In 
addition,  a  character  is  retrieved  in  the  line  above  the 
uppermost  fixation-to-symbol  mapping  (up),  and  a 
character  is  retrieved  in  the  line  below  the  lowest 
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Figure 3a to 3d from top left to bottom right:  Figure 3a shows the projection of the naïve mapping into a lattice of  
alternative fixation-to-symbol re-mappings (red dots). Figure 3b (top, right) plots links to the first successor node, figures 3c  
(bottom, left) and 3d (bottom, right) show successive steps in the re-mapping algorithm, including links to pre-predecessor 
nodes.
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fixation-to-symbol  mapping  (down).  In  this  way,  five 
fixation-to-symbol mappings are generated in addition to 
the original one, which may, however, partially  overlap 
with these additional mappings.

While  Figure  1  (bottom)  shows  the  naïve  average 
fixation, figure 3a shows the same situation, where the 
original naïve fixation-to-symbol mapping path is plotted 
(in blue) and additionally re-computed fixation-to-symbol 
mappings are represented as dots on the vertical fixation 
time line  Ft. Figure 3a shows the projection of fixations 
on the lines above and below the naïve default mapping. 
For  fixation  time  F1,  two additional  fixation-to-symbol 
mappings  are  generated  in  the  lines  below  the  naïve 
mapping  (in  the  progression  graphs  the  words  further 
down in the text appear higher in the graph),  while for 
fixations  times  F2 and  F3 fixation-to-symbol  mappings 
are  generated  in the lines above and below the default 
naïve  mapping.  Note  that  different  fixation-to-symbol 
mappings at one fixation time may also be distributed in 
different  windows. For instance, a  down re-mapping of 
the fixation numbered 0 in Figure 1 (top) at the bottom of 
the source window may be re-located in the top of the 
target window, while the  up alternative would appear in 
the source window, e.g. on decreased, as shown in figure 
2 (top), where the same fixation is numbered 1.

Symbol lattice smoothing: same window 

In the third step a path through the lattice of possible 
fixation-to-symbol mappings is re-computed based on the 
minimum  penalty  score  of  the  distances  between 
successive  nodes.  Assuming  that  a  fixation-to-symbol 
mapping n is consolidated for a given fixation time Ft, a 
penalty  score  for  each  possible  fixation-to-symbol 
mapping m at the next fixation time Ft+1 and its fixation 
center f is computed by summing up a number of features 
as  described below. The fixation-to-symbol  mapping  m 
with the lowest penalty score is then consolidated. Figure 
3b shows the links to the three possible successor nodes, 
where the link in bold represents the strongest connection 
with lowest  penalty score.  We use two variants  of  the 
algorithm, one in case both fixations are recorded in the 
same window, and another method, described below, if n 
and m are in different windows.

Different features are considered when computing the 
penalty scores between successive nodes, depending on 
whether  the two successive fixation mappings occur in 
the same window, or whether the gaze moves from the 

source  window to the  target  window or  vice  versa.  In 
case two successive fixations occur in the same window 
(i.e.  the  source  or  target  window),  we  assume  that  a 
sequence of text is being read so that the eyes probably 
move forward over the text. In case the eyes move from 
one window to the other, we assume that the eyes move 
(close)  to  the  translation  of  the  sequence  that  was 
previously  looked  at  in  the  other  window.  In  this 
subsection we formalize the former case of text reading in 
one  window  and  the  next  section  tackles  the  case  of 
window switching. 

According  to  (Rayner,  1998),  during  “normal” 
reading the eyes  can jump distances  of around 5 to 15 
characters  along  the  text  from  left  to  the  right,  often 
skipping short  function words.  As drift  of  gaze data is 
presumably quite rare,  we suspect  that the gaze sample 
points which are received from the eye tracker, and thus 
the center of the various fixations that we compute from 
them, are  close to  the characters  and words which are 
actually read. In addition, we assume that translators read 
a piece of text (in the source or the target window) which 
is close to the sequence currently being translated. These 
considerations  are  formalized  in  the  following  four 
functions: 

(1) Cursor distance:

C(n, m) = abs(CurPos(m)–CurPos(n) - 10)

(2) Source ID distance: 

S(n, m) = abs(STID(m) – STID(n) + 2) * K

(3) Last keystroke distance: 

L(m) = abs(STID(m) – STID(l)) * K

(4) Fixation-symbol distance: 

P(f, m) = EuclidDistance(f, m) / z

i.e.: sqrt((f(x)–m(x))^2 + (f(y)–m(y))^2) / z

where  n and  m represent  two  fixation-to-symbol 
mappings,  f is  the  fixation  center  of  m,  K=6 is 
approximately  the  average  length  in  characters  of 
(English) words, z=24 is the size of the characters on the 
screen  that  we used  in  these  experiments,  and  l is  the 
cursor position of the last character that was typed in the 
target window. 

The Source Text word Id  STID(.) is computed based 
on  the  alignment  between  the  source  and  target  text. 
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Words in the source and target target text are numbered, 
and  the  alignment  information  allows  us  to  know  the 
Source  Text  word  Id  for  each  target  word  in  the 
translation.  This  information  can  be  linked  to  the 
keystrokes which actually produce the target words and 
the target  text.  An algorithm described  in  (Carl,  2013) 
describes how Source Text word IDs for keystrokes and 
fixations are computed from the alignments.

Between  each  consolidated  fixation-to-symbol 
mapping  n at time Ft and every possible successor node 
m at the following fixation time  Ft+1, a penalty score is 
computed as shown in equation (5):

(5) CSLP1(n,m,f) = C(n,m)+S(n,m)+L(m)+P(f,m) 

Since sometimes the eye may slip up or down a line 
or  two  (particularly  when  switching  between  the  two 
windows) we also compute the penalty score between the 
consolidated node  o at  the preceding fixation time  Ft-1 

and the successor mapping m, so as to lessen the impact 
of  the  current  mapping  potentially  being  a  slipped 
fixation on the gaze path, as shown in  equation (6) :

(6) CSLP2(o,m,f) = C(o,m)+S(o,m)+L(m)+P(f,m)

This situation is depicted in figure 3c. There is one 
consolidated  node  n at  fixation  time  F1 which  is 
connected  to  all  three  possible successor  nodes  m1..3 at 
fixation  time  F2.  These  connections  are  represented  by 
fine dotted lines. In addition, there are connections from 
the consolidated node o at fixation time F0 which link to 
the  three  possible  fixation-to-symbol  mappings  in  F2. 
These links are represented by dashed curved connectors. 
There are thus six penalty scores for the three nodes m1..3 

in  F2. The node with the lowest penalty is consolidated. 
The link to the previous consolidated fixation mapping in 
F1 is plotted in bold arrows in Figure 3c. Even though the 
distance to its immediate predecessor node in F1 is quite 
large, the bottom node  m  in  F2 was consolidated due to 
the similar Source Text word Id which it shares with the 
consolidated  fixation-mapping  node  in  F0 and  its 
proximity  to  the  previously  typed  character.  The 
algorithm  iterates  through  the  expanded  fixation-to-
symbol  mapping  lattice.  Once  a  fixation-to-symbol 
mapping is consolidated, the penalties of the next fixation 
nodes are computed as shown in Figure 3c and so on until 
the end of the lattice is reached.

Symbol lattice smoothing: different window 

As  mentioned  previously,  penalty  scores  are 
computed  slightly  differently  if  the  two  successive 
fixation-to-symbol  mappings are distributed in different 
windows.  Since  shifting attention  from one window to 
another  window  (i.e.  switching  between  two  texts)  is 
different from usual reading behaviour, we do not assume 
that  eyes  move in  jumps of  around 10 characters,  and 
omit the cursor distance penalty function C(.). Rather, the 
eyes seek to retrieve the translation of the word that was 
looked at (or worked on) in the other window, and thus 
the  value  STID(n) of  one  fixation  will  be  similar  to 
STID(m) of the following fixation. That is, penalty scores 
increase  as  the  two  successive  fixations-to-word 
mappings return a different STID(.) in both windows: 

(7) Source ID distance during window change:

S’(n, m) = abs(STID(m) – STID(n)) * K

The  last  keystroke  distance  L(.) and  the  Fixation-
symbol distance P(.) as in equation (3) and (4) remain the 
same  also  when  changing  windows.  For  sequences  of 
fixations  which  imply  window  changes,  we  thus 
introduce two functions, analogous to the case in which 
the eyes stay in the same window, in which S’LP1(n, m, f) 
computes  the  penalty  scores  for  immediate  successive 
nodes and S’LP2(o, m, f) computes the penalty scores for 
two nodes distance:

(8) SLP1(n, m, f) = S’(n, m) + L(m) + P(f, m)

(9) SLP2(o, m, f) = S’(o, m) + L(m) + P(f, m)

Systematic error correction

The brain usually prefers visual input from one eye 
which is referred to as  the dominant eye.  Accordingly, 
fixations computed with the gaze data of the dominant 
eye  correspond  more  precisely  to  the  visual  input  and 
hence reveal more accurately what the brain was actually 
processing.   According  to  wikipedia 
(http://en.wikipedia.org/wiki/Ocular_dominance), 
approximately two-thirds  of  the population is  right-eye 
dominant  and  one-third  left-eye  dominant.  As  outlined 
above,  we compute  left,  right and  average fixation-to-
symbol  re-mappings.  Since  we  do  not  know  the  eye 
dominance  of  our  participants,  the  left and  the  right 
fixation-to-symbol  mappings  take  into  account  the  fact 
that the preferred visual input may be on the left or right 
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eye  respectively,  while  the  average takes  the  average 
over  both  eyes.  We  can  expect  that  the  left,  right,  or 
average mappings do not change from one fixation to the 
next: the dominant eye does not change from one fixation 
to another. 

In addition, we frequently observe instances of gaze 
drift,  where  the  observed  gaze  data  is  a  line below or 
above the one that we think it is plausible to assume the 
person was actually reading. The  up and  down fixation-
to-symbol re-mappings take into account such systematic 
gaze  drifts  by  simulating  a  shifting  of  the  observed 
fixation  a  line  up  or  down.  Since  gaze  data  does  not 
usually drift within short  periods of time from the line 
above to the line below, we assume that the  left,  right, 
average,  up and down fixation  re-mappings  are  stable 
over  stretches  of  time.  To  take  this  constraint  into 
account, the fixation-symbol distance penalty P(f,m) from 
equation  (4)  is  relaxed  if  two  successive  fixations 
mappings  have  the  same  re-mapping  values,  as  in 
equation (10): 

(10) P(f,m) = 0, if (ReMap(n) eq ReMap(m) 

or (ReMap(o) eq ReMap(m)

P(f,m) = EuclidDistance(f, m) / z, otherwise

where  ReMap(x) returns one of the values  up,  down, 
left,  right or  average, according to the way in which the 
fixation-to-symbol mapping was computed.  

Evaluation

This section describes a quantitative and a qualitative 
evaluation of the re-mapping algorithm. We generated a 
set of gold standard data by manually mapping fixations 
onto their “correct” symbols, against which the algorithm 
can be tested. The second evaluation looks at an example 
and  relates  the  resulting  re-mapping  to  a  model  of 
translation.

Quantitative Assessment

One  way  to  assess  the  quality  of  an  automatically 
generated fixation-to-symbol re-mapping is to compare it 
against manually adjusted gold standard data. Given that 
the  Translog-II  replay  mode  allows  us  to  observe  text 
production  together  with  gaze  behavior  (examples  of 
screen shots are given in Figures 1 and 2), it is possible, 
but a laborious task, to manually re-map fixations onto 

the more plausible words and characters in the text. For 
this purpose, Translog-II has a “remap” mode in which it 
stops at each fixation. A user can position the cursor over 
a character,  and hit the return key and then Translog-II 
assigns the cursor position to the current fixation as its 
fixation-to-symbol mapping. The re-mapped file can then 
be stored and compared with other re-mapped versions. 

To  assess  the  accuracy  and  difficulty  of  this  re-
mapping task, three native Hindi speakers manually re-
mapped the fixations of one Translog-II English -> Hindi 
translation session onto the words that they believed the 
translator  looked  at  during  the  translation.  They  were 
instructed  to  select  the  most  likely  position  that  they 
thought the translator had looked at.

Tabel 1: Percentage of agreement between two versions of fixa-
tion-to-symbol mappings in source and target window.

 Human Naive Re-mapping

Win HK KR RH RN HN KN RA HA KA

W1 50.4 50.4 50.6 50.6 50.6 50.5 50.4 50.4 50.4

W2 49.1 49.1 49.1 47.7 47.7 47.8 46.8 46.8 47.0

W12 0.51 0.44 0.24 1.62 1.72 1.75 2.73 2.69 2.54

We compared these three re-mapped versions to each 
other.  In  addition,  we  compared  each  of  the  human 
fixation-to-symbol mapping to the baseline naïve and to 
the automatically generated mapping. This resulted in 9 
comparisons  of  3  human reference  versions  and  2  test 
files. All 9 comparisons agree that approximately 50.5% 
of  all  fixations  occurred  in  the  source  window,  while 
there is agreement that between 46.8% and 49.1% of the 
fixations should be located in the target window. For the 
remaining 0.51% to 2.73% of the fixations the reference 
and test versions do not agree as to whether the fixation 
was in the source window or in the target window. Table 
1 shows the agreement  of the distribution between two 
versions. “R”, “K” and “H” were three human annotators, 
“N” the naïve baseline mapping and “A” the automatic 
re-mapping  introduced  in  this  paper.  Accordingly,  the 
columns “HK”,  “KR” and “RH” show the values  of  a 
comparison between the manually generated re-mapped 
versions of the three human translators. Compared to the 
naïve  and  automatically  re-mapped version,  the  human 
annotators  seem to largely agree  on whether  a  fixation 
took place in the source or in the target  window. They 
only disagree in between 0.24% to 0.51% of the fixations. 
The automatic method is most often incorrect  and  does 
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not agree in 2.54% - 2.73% of the cases with the human 
generated gold standard data. 

To  assess  the  precision  of  fixation-to-symbol 
mapping, we computed the average normalized distance 
between  the  mapped  character  offset  position  in  the 
reference file (cr) and the test file (ct). The offset distance 
was  normalized  by  the  fixation  duration  dur,  which  is 
identical in both files:

(11)   ACD = 1/n * ∑n dur * abs(cr – ct) 

The  Average  Character  Distance  ACD reflects  the 
distance between the fixation-to-symbol mappings of two 
files from a textual viewpoint: a fixation which is mapped 
onto a character in the line above or below the reference 
fixation results in a large penalty equal to the number of 
characters in that line, while a horizontal mismatch has a 
comparatively  small  penalty.  Thus,  even  though  the 
physical distance between two fixation mismatches may 
be  identical,  a  vertical  mismatch  is  considered  much 
worse than a horizontal one. 

Tabel 2 Average character distance between two fixa-
tion-to-symbol mappings for source window (W1) target win-
dow (W2),in case the fixations are mapped in different windows  
(W12) and the average character distance (AVG).

 Human Naive Re-mapping

Win HK KR RH RN HN KN RA HA KA

W1 8.7 13.9 10.3 48 42 44.7 25.3 25.2 24.2

W2 3.5 6.7 8.5 16.8 16.4 15.5 13.4 10.9 11.5

W12 479 514 460 338 342 346 613 597 588

AVG 8.6 12.6 10.5 37.7 34.8 34.9 35.9 34.0 32.8

Table 2 shows the ACD values for the 9 comparisons 
between  the  three  manually  generated  reference 
mappings, the naïve mapping and the re-mapped version. 
The  average  ACD value  for  the  three  reference  files 
varies  between  8.6  and  12.6  for  the  reference  file 
comparison,  and between 34 and 37.7 for  the machine 
generated  fixation-to-symbol  mappings.  Inter-human 
annotation agreement  is  thus much higher  compared to 
the naïve and re-mapped versions. 

When looking into the distribution of the ACD error, a 
big  difference  can  be  observed  for  the  source  window 
(W1),  and  the  target  window  (W2).  The  human 
annotators  agree  on  the  fixation  mapping  with 
approximately 1 word precision (3.5 – 8.5 characters) in 

the target window and approximately 2 words precision 
(8.7 – 13.9 characters)  in the source window. In  cases 
when  a  reference  and  a  test  file  assigned  the  same 
fixation  to  a  different  window,  the  ACD value  is 
particularly high. An example of this situation is shown 
in  Figure  4,  in  which  the  same  fixations  have  been 
mapped onto the last words in the source text (Figure 4, 
top) and in in another version on the first words in the 
target text (Figure 4, bottom). As the character offset in 
the first (source) text is high and in the second (target) 
text  low,  ACD has  a  particularly  high  value.  Table  1 
shows us that this is  often the case in the case of re-
mapping, which worsens the average ACD score. 

Figure 4: different fixation-to-symbol mappings of two mapping  
approaches between time stamps 5000 and 10000. Top:fixation-
to-word mappings on the last  words in the source text (blue  
dots);  Bottom: mappings on the first  word in  the target  text  
(green diamonds)
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However, for fixations which are correctly detected in 
the source window (W1) or in the target window (W2) 
the ACS scores clearly outperform the naïve mapping. 

Qualitative Assessment

A  number  of  cognitive  models  of  the  human 
translation process exist which provide us with insights 
about  the  observed  translation  process  data  and  which 
may serve  as a  basis  for  an evaluation of  re-computed 
fixation-to-symbol  alignment  patterns.  For  instance, 
Jakobsen  (2011)  has  found  indications  of  a  recurrent 
“micro-cycle”, i.e. a processing pattern consisting of six 
steps, some of which can be skipped or repeated several 
times.  The  processing  cycle  starts  with  an  act  of 

comprehension, namely reading the chunk of ST which is 
about to be translated (step 1). The translator then shifts 
his/her gaze to the TT to locate the position where the TT 
is about to be produced (step 2). The translation is typed 
and monitored (steps 3 and 4), and the translator’s gaze 
shifts back to the ST, where the relevant reading area is 
located and the current ST word is read again (steps 5 and 
6) (Jakobsen 2011, 48).

While such models give us a general picture of what 
we may expect in the translation activity data, they are 
still far from exactly predicting where the next fixation is 
to be expected. In addition, a large variation of individual 
translation  styles  has  been  described,  for  instance  in 
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(Dragsted & Carl 2013), so that the evaluation of the re-
mapped log files remains, for the moment, subjective and 
intuitive. In the future we hope that in a real-time reactive 
application the success of a re-mapping method could be 
evaluated  based  on  its  usefulness,  Figures  5  show  an 
example of the present re-mapping algorithm. 

The progression graph in Figure 5a clearly shows a 
systematic  drift  of  the  source  text  fixation  mappings 
about 12 to 20 words ahead of the translations on which 
the translator is working. Figure 4b shows a re-mapping 
which  clearly  comes  closer  to  the  initial  main  criteria 
which  were  previously established to  design  of  the re-
mapping algorithm:

− successive fixations are one or two words apart

− translators  are  likely  to  read  source  passages 
which they are currently translating

 The re-mapped version also better accounts for the 
recurrent  micro-cycle,  as  described  above  (Jakobsen 
2011).
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