
Journal of Eye Movement Research 
7(1):4, 1-11 

1 

Introduction 

A wide variety of gaze tracking systems are available 

commercially, each tailored for a specific set of applica-

tions.  Video-based eye-tracking is based on the principle 

that when near infrared (NIR) light is shone onto the 

eyes, it is reflected off the different structures in the eye 

to create four Purkinje reflections (Crane and Steele, 

1985).  The vector difference between the pupil centre 

and the first Purkinje image (PI) (also known as the glint 

or corneal reflection (CR)), is tracked. 

Tracking a person's gaze with a video-based system 

involves a number of steps. These steps can be loosely 

grouped into two sets, namely those involved with the 

detection of the eyes and eye features (e.g. pupil and glint 

centres) in the video frames, and those which map the 

detected features to gaze coordinates or Point of Regard 

(PoR) on the stimulus.  For purposes of this paper, it is 

assumed that the location of features in the eye video is 

known and the focus is on the challenge to use these as 

input to determine a person's Point of Regard. 

A simple video-based eye tracking system was devel-

oped with one camera and one infrared light source. The 

accuracy obtained with various combinations of calibra-

tion set and mapping model is evaluated for this system. 

This study aims to replicate and confirm the results of 

an earlier study (Blignaut, 2013).  The data set in the ear-

lier study showed clear trends with regard to the relation-

ships between the gaze target coordinates and the pupil-

glint vectors in the eye video.  In that study it was found 

that the number and arrangement of calibration targets as 

well as the mapping function is critically important to 

ensure good accuracy of a video-based eye tracker.  A 

mapping model was derived (see below for details) and it 

was proven to provide an accuracy of less than 0.5° when 

used with a 24-point grid. 

It was also indicated in Blignaut (2013) that accuracy 

cannot be based on a few validation points only as their 

might be areas of bad accuracy between the validation 

points.  This study aims to see if these results hold for 

another data set. 
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The results of this study should contribute towards the 

drive for cheaper and simpler eye trackers as it aims to 

find the optimal polynomial model to map features in the 

eye video of an eye tracker with one camera and one in-

frared source to gaze coordinates. While the principles of 

deriving the model might be applied to more complicated 

trackers, it is highly unlikely that the resulting models 

will apply to other configurations.  

Gaze Estimation 

In a video-based eye tracker the pupil-glint vector 

changes as the eyes move (Figure 1).  The model-based 

gaze estimation approach determines the 3D line of sight 

and calculates a person's Point of Regard (PoR) as the 

point where the line of sight intersects some object in the 

field of view, usually a computer monitor. It follows that 

for this approach to be implemented, the positions and 

orientations of the cameras, infrared lights and monitor 

(or other object(s) that the user might view) has to be 

known to a high accuracy. 

   

   

   

Figure 1. Corneal reflection at various gaze positions 

Regression-based systems use polynomial expressions 

to determine the Point of Regard as a function of the pu-

pil-glint vector in the eye image.  Polynomial models 

should include two independent variables (x and y com-

ponents of the pupil-glint vectors) which may or may not 

interact with each other for each one of the dependent 

variables (X and Y of the Point of Regard) separately.  

The coefficients for each term in the model need to be 

determined for every individual through a calibration 

process. 

Using an appropriate polynomial model, the differ-

ence in x-coordinates (x') and difference in y-coordinates 

(y') between the pupil and glint can be mapped to screen 

coordinates (X,Y).  Corrections for head movement can be 

done by normalising the pupil-glint vector in terms of the 

distance between the glints (if there are more than one IR 

source) or between the pupils (inter-pupil distance (IPD)), 

e.g. x = x' / IPD (if there is only on IR source as in this 

study). 

Polynomial Models in General 

A set of n points can be approximated with a polyno-

mial of n or less terms 

  ∑   
   

   

   

    [   ]   [   ] 

where x and y refer to the normalised x and y components 

of the pupil-glint vector of a specific eye at a specific 

point in time and X refers to the X-coordinate of the PoR 

for the specific eye on the two dimensional plane of the 

screen.  A similar, but not necessarily identical, model 

can be used for the Y-coordinate of the PoR for the spe-

cific eye. 

According to Hennessey et al. (2008), the polynomial 

order may vary but is most often of first order: 

X = a0 + a1x + a2y + a3xy 
Y = b0 + b1x + b2y + b3xy 

The coefficients ak and bk, k ϵ (0,n-1), are determined 

through a calibration process which requires the user to 

focus on a number of dots (also referred to as calibration 

targets) at known angular positions while storing samples 

of the measured quantity (Abe et al., 2007). 

A least squares regression is then done to determine 

the polynomials such that the differences between the 

reported PoRs and the actual PoRs (the positions of the 

dots on the monitor) are minimised.  The regressions are 

done separately for the left and right eyes and an interpo-

lated PoR is calculated as the average of the (Xleft,Yleft) 

and (Xright, Yright) coordinates. 

A set of n points can be fitted with a polynomial of n 

terms in which case R² (indication of goodness of fit) will 

be 1.  Regression with less terms or through more points 

will result in a polynomial that does not necessarily pass 

through any of the points and R² will be less.  This does, 

however, not necessarily mean that the approximations 

will be worse.   In the simplified example of Figure 2 

with a single independent variable, a 6
th

 order polynomial 

(7 terms a0 + a1x +a2x
2
 + a3x

3
 + a4x

4
 + a5x

5
 + a6x

6
 ) fits 
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the seven points exactly, but interpolation at x=17 will 

obviously be bad.  A 5
th

 order approximation of the data 

has a lower R², but interpolations between the points will 

be much better.  Because of the end effects, even this 

polynomial will provide bad approximations at x values 

larger than 18. 

The decision of how the regression model should look 

is therefore not obvious.  Draper and Smith (1981) indi-

cates that, apart from the brute-force method (i.e. testing 

all the possible equations), there is no systematic proce-

dure that can provide the most suitable mapping equation. 

 

Figure 2. 5th order (black) and 6th order (blue) 

regressions of seven data points 

Specific Models 

The simplest model would be to map the gaze coordi-

nates in terms of a linear relationship with the normalised 

pupil-glint vector without considering interactions be-

tween the two dimensions: 

X = a0 + a1x 

Y = b0 + b1y 

A second order polynomial in x and y with first order 

interactions are used by Mitsugami, Ukita and Kidode 

(2003) and Cerrolaza et al. (2012): 

X = a0 + a1x + a2x
2
 + a3y + a4y

2
 + a5xy 

Y = b0 + b1x + b2x
2
 + b3y + b4y

2
 + b5xy 

The above model can be extended to include second 

order interactions: 

X = a0 + a1x + a2x
2
 + a3y + a4y

2
 + a5xy + a6x

2
y

2
 

Y = b0 + b1x + b2x
2
 + b3y + b4y

2
 + b5xy + b6x

2
y

2
 

Zhu and Ji (2005) used the following model: 

X = a0 + a1x + a2y + a3xy 

Y = b0 + b1x + b2y + b3y
2
 

Cerrolaza and Villanueva (2008) generated a large 

number of mapping functions, varying the degree and 

number of terms of the polynomial.  They found that, 

apart from some of the simplest models, increasing the 

number of terms or the order of the polynomial had al-

most no effect on accuracy.  A preferred model was cho-

sen as one that showed good accuracy across all configu-

rations in addition to having a small number of terms and 

being of low order: 

X = a0 + a1x + a2x
2
 + a3y 

Y = b0 + b1x
2
 + b2y + b3xy + b4x

2
y 

In a previous study (Blignaut and Wium, 2013), we 

examined the accuracy of 625 polynomials and found the 

following model to provide the best results for all partici-

pants as long as at least 8 calibration points are used: 

X = a0 + a1x + a2x
3
 + a3y

2
 + a4xy 

Y = b0 + b1x + b2x
2
 + b3y + b4y

2
 + b5xy + b6x

2
y 

In another previous study (Blignaut, 2013) we used 

specific trends with regard to the relationships between 

the gaze target coordinates and the pupil-glint vectors in 

the eye video to derive a set of polynomials. 

X = a0 +a1x +a2x
2
 +3x

3
 +a4y +a5xy +a6x

2
y +a7x

3
y 

Y = b0 + b1x + b2x
2
 + b3y + b4y

2
 + b5xy + b6x

2
y 

This model provided very good accuracy (< 0.5°) for 

the simple one camera, one IR source eye tracker, given 

that enough calibration points were used to facilitate re-

gression of the multi-term polynomials (Blignaut, 2013). 

Calibration Targets 

Besides the polynomials to use for interpolation, a 

mapping model also entails the number and arrangement 

of calibration targets.  To limit the end effects of poly-

nomial interpolation, it is important that there are targets 

on the edges of the display area.  More calibration targets 

will allow polynomials with more terms which might 

result in better accuracy but takes more time and might be 

strenuous on the participant's eyes.  The ideal situation 

would be to find a set of polynomials that is very accurate 

while using only a small number of calibration targets. 

Accuracy 

Accuracy is measured as the distance, in degrees, be-

tween the position of a known target point and the aver-

age position of a set of raw data samples, collected from a 

participant looking at the point (Holmqvist et al., 2011).  
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This error may be averaged over a set of target points that 

are distributed across the display.  The interest in this 

paper is in minimising the error that occurs due to the 

calibration process, specifically for a simple one light, 

one camera configuration. 

While an accuracy of 0.3° has been reported for tow-

er-mounted high-end systems operated by skilled opera-

tors (Holmqvist et al, 2011), remote systems are usually 

less accurate.  Hansen and Ji (2010) provided an over-

view of remote eye-trackers and reported the accuracy of 

most model-based gaze estimation systems to be in the 

order of 1° - 2°.   

Methodology 

Experimental Configuration 

An eye tracker was developed with a single CMOS 

camera with USB 2.0 interface and a 10 mm lens together 

with a single infrared light source.  The UI-1550LE-C-

DL camera from IDS Imaging (http://en.ids-

imaging.com/ ) has a 16001200 sensor with pixel size of 

2.8 m (0.0028 mm).  The images were rendered on a 

screen with a pixel size of 0.364 mm.  The calibration 

was done on a 1360×768 (495 mm×280 mm) section of 

the screen at a distance of 800 mm from the participants.  

The camera was positioned 280 mm in front of the screen 

with an eye-camera distance of 600 mm.  See Figure 3 for 

details. 

Table
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Figure 3.  Hardware configuration 

Data capturing 

The calibration area was divided into a 15×9 grid to 

have the same width:height ratio as that of the display 

area (1360×768 pixels) (Figure 4).  Twenty six (26) par-

ticipants were presented with a series of 135 targets that 

covered the entire grid.  Five data sets were captured for 

every participant. 

 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 0.6 10.5 11.5 12.5 13.5 14.5 

0.5                

1.5                

2.5                

3.5                

4.5                

5.5                

6.5                

7.5                

8.5                

Figure 4.  Calibration grid with 15×9 cells 

No chin rest was used, but participants were requested 

to keep their heads as still as possible at a constant dis-

tance from the eye camera.  Participants could at any time 

look away from the screen and rest their eyes.  A target 

would only be accepted if the gaze was stable for a min-

imum period of 1 second.  For each target, the pupil-glint 

vector of the last 500 ms of the period of stable gaze was 

saved to a database.  The saved data were used afterwards 

to simulate the calibration procedure for various combi-

nations of calibration target arrangements and mapping 

models. 

To ensure that participants focused on a target, an ini-

tial linear regression was done after the 135 targets were 

accepted (Figure 5).  A specific target was displayed 

again if the pupil-glint difference did not fall within 6 of 

the average distance from the line.  This procedure was 

repeated until all data points were within this tolerance 

from the regression line. 
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Figure 5. Initial linear regression to determine outliers 

during data capture 

Despite the technique of normalising the pupil-glint 

vectors in terms of the inter-pupil distance (IPD), accura-

cy can still be affected by gaze distance.  Therefore, in 

order to compare the accuracy of various polynomials 

with one another, the gaze distance was controlled.  
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Gaze distance was approximated in terms of the inter-

pupil distance (IPD).  The system was calibrated at 600 

mm where the IPD in pixels was equated to the average 

IPD of 63 mm for adults (Dodgson, 2004).  Although the 

inter-pupil distance differs slightly from one person an-

other, the effect is not more than 30 mm.  It is not im-

portant that the value is 100% accurate – the distance 

indicator only serves to ensure that the gaze distance for a 

specific person remains constant. 

Two fixed concentric circles were displayed around 

each target, representing camera distances of 597 and 603 

mm respectively.  A third concentric circle was displayed 

with varying radius as the participant moves his head 

backwards or forwards (Figure 6).  The participant had to 

move his head until the dynamic circle is between the two 

fixed circles, i.e. in the range 598 mm - 602 mm.  For this 

study, the focus was solely to find the most appropriate 

mapping model at a specific gaze distance.  Future stud-

ies will include gaze distance as a separate independent 

variable for the regression polynomial. 

 
Too near 

 
Too far 

 
Correct 

Figure 6. Real-time feedback on gaze distance with a 

circle with varying radius (red) around the 

target that should be between two fixed 

(grey) circles 

Calibration and Validation 

Calibration.  Data for the pupil-glint vectors at se-

lected cells in the 15×9 grid (Figure 4) was selected to 

serve as calibration targets.  The accuracy for six differ-

ent calibration sets, which varies with regard to the num-

ber and arrangement of targets (Figure 7), were compared 

with one another.  One of these arrangements is the full 

135-point set that were used as benchmark for the best 

possible accuracy that can be attained. 

Since the regression is done separately for the X and 

Y dimensions, it was thought that the arrangement of 

calibration targets should be such that they cover as many 

distinct X and Y values as possible.  Having 9 points on a 

3×3 grid effectively limits the regression to 3 distinct X 

and 3 distinct Y values.  In Figure 7 below, 18 calibration 

targets are, for example, arranged to cover 11 distinct X 

and 9 distinct Y coordinates. 

 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 

0.5 x  o     xo     o  x 

1.5                

2.5 o    o      o    o 

3.5                

4.5 x       x       x 

5.5                

6.5   o     o     o   

7.5                

8.5 xo    o   x   o    xo 

 5 targets with 3 distinct X and 3 distinct Y coordinates 

x 9 targets with 3 distinct X and 3 distinct Y coordinates 

o 14 targets with 7 distinct X and 4 distinct Y coordinates 

 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 

0.5 o   o    o    o   o 

1.5                

2.5  o    o    o    o  

3.5                

4.5 o   o    o    o   o 

5.5                

6.5  o    o    o    o  

7.5                

8.5 o   o    o    o   o 

 18 targets with 11 distinct X and 9 distinct Y coordinates 

o 23 targets with 9 distinct X and 5 distinct Y coordinates 

Figure 7. Five different sets of calibration targets 

Validation.  Normally, the accuracy of a system can 

be determined by requesting a participant to look at a 

second series of evenly spread targets (the first series 

being the calibration targets) for which the X and Y coor-

dinates are known.  The accuracy is then calculated as the 

average of the differences between the known and report-

ed positions. 

To ensure representative measurement of accuracy, 

validation targets (to be distinguished from calibration 

targets) should be spread regularly across the entire range 

at small intervals.  For this study, the saved pupil glint 

vectors for all 135 cells in the 15×9 grid were used to-

wards this purpose (cells marked with  in Figure 4).  

For every participant/calibration set combination, the 

pupil-glint vectors in the calibration cells were used to 

determine the regression coefficients for each one of 12 

polynomial models (Table 1). Models 9-12 in Table 1 

will be derived later. A high level algorithm of the pro-

cess is given in Figure 8. 
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Table 1. Summary of models for which the accuracies 

are determined. 

No. Reference Polynomial for X Polynomial for Y 

1 Simple model x,1 y,1 
2 Hennessey, 2008 x, y, xy, 1 x, y, xy, 1 
3 Mitsugami, 2003 x2, x, y2, y, xy, 1 x2, x, y2, y, xy, 1 
4 Mitsugami, 2003 x2, x, y2, y, x2y2, xy, 1 x2, x, y2, y, x2y2, xy, 1 
5 Zhu & Ji (2005) x, y, xy, 1 x, y, y2, 1 

6 
Cerrolaza & Villanueva 
(2008) 

x2, x, y, 1 x2, y, x2y, xy, 1 

7 Blignaut & Wium (2013) x3, x, y2, xy, 1 x2y, xy, y, x2, x, y2, 1 
8 Blignaut (2013) x3y, x3, x2y, x2, x, xy, y, 1 x2y, xy, y, x2, x, y2, 1 
9 Derived below x3y, x3, x2y, x2, x, xy, y, 1 x2y, xy, y, x2, x, 1 

10 
Derived below x3y, x3, x2y, x2, x, xy, y, 1 x5y, x4y, x3y, x2y, xy, y, 

x5, x4, x3, x2, x, 1 

11 
Derived below x3y, x3, x2y, x2, x, xy,  

y3, y2, y, 1 
x2y, xy, y, x2, x, 1 

12 
Derived below x3y, x3, x2y, x2, x, xy,  

y3, y2, y, 1 
x5y, x4y, x3y, x2y, xy, y, 
x5, x4, x3, x2, x, 1 

Notes: 

(i) For simplicity and readability, polynomials are written without 
coefficients. The polynomial a0x+a1y+a2xy+a3 is, for example, 

written as x,y,xy,1. 

(ii) Models 9-12 will be derived later in this paper. 

For each participant 
{ 
 For each calibration set 
 { 
  For each model 
  { 
   Determine mapping polynomials 
   Get the average accuracy over the valida-

tion points 
  } 
 } 
} 

Figure 8.  Algorithm for data analysis 

Derivation of alternative models 

Relationship between (Pupil X – Glint X) and PoRx 

The models mentioned above express the X and Y co-

ordinates of the PoR as two bivariate polynomials in 

terms of the x and y coordinates of the pupil-glint vector.  

In an attempt to simplify the relationships, the data that 

was captured was analysed while controlling for one of 

the two independent variables (the x and y coordinates of 

the pupil-glint vector).  In other words, X was expressed 

in terms of x only at a specific value for Y. This means 

that for the 15×9 grid, nine relationships could be written 

for X in terms of x and 15 relationships could be written 

for Y in terms of y. 

Figure 9 shows the relationships between the target X 

coordinate and the average normalized pupil-glint X (re-

ferred to as PGX) of 130 data sets (26 participants with 5 

repetitions each) at 9 distinct Y coordinates for the left 

and right eyes. 
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Figure 9. Target X coordinate against average nor-

malized pupil-glint X of 26 participants at 9 distinct Y 

coordinates for the left eye (top) and right eye (bottom). 

From Figure 9 it can be inferred that a third degree 

polynomial should fit each one of the 9 relationships very 

well. The following relationship was found between the 

normalised pupil-glint differences and the X-coordinate 

of the target for the left eye at Y=200: 

X = 1.24x
3
 + 6.77x

2
 + 260.4x + 1087.8,  R

2
 = 0.9999. 

The R
2
 values at the other Y-positions of the targets 

are given in Table 2. 

Table 2. R2 values for the regression formulas for X 

at specific values of Y. 

Eye 
Target Y coordinate 

200 285 370 455 540 625 710 795 880 

Left 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 

Right 0.9999 0.9998 0.9997 0.9998 0.9998 0.9996 1.0000 1.0000 0.9999 

In general terms, the relationship can be written as 

X = ax
3
 + bx

2
 + cx + d. (1) 
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Figure 10 shows plots of the coefficients a, b, c and d 

against the average normalized pupil-glint Y for the left 

eye.  Similar trends were found for the right eye.  Table 3 

shows the respective R
2
 values for the left and right eyes. 

The relationships could thus be written as follows: 

a = a1y + a0 

b = b1y + b0 

c = c1y + c0, 

d = d3y
3
 + d2y

2
 + d1y + d0 

Substituting these into the general equation (1) above, 

we get 

X = a1x
3
y + a0x

3
 + b1x

2
y + b0x

2
 + c1xy + c0x 

+ d3y
3
 + d2y

2
 + d1y + d0. (2) 

This is a small difference from the model used in 

Blignaut (2013) as in the latter study a linear relationship 

was used between d and the target Y coordinate. 
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 Figure 10. Coefficients a, b, c and d in the regression 

formula for the target X coordinate against the nor-

malized Pupil-Glint Y for the left eye. 

Relationship between (Pupil Y – Glint Y) and PoRy 

Figure 11 shows the relationships between the target 

Y coordinate and the average normalized pupil-glint Y 

(PGY) of 130 data sets (26 participants with 5 sets each) at 

15 distinct X coordinates for the left and right eyes. 

From Figure 11 it can be inferred that a straight line 

should fit each one of the 15 relationships very well. The 

following relationship was found between the normalised 

pupil-glint differences and the Y-coordinate of the target 

for the left eye at X=326: 

Y = 287.85y + 1220.7,  R
2
 = 0.9979. 

The R
2
 values at the other X-positions of the tar-

gets are given in Table 4. In general terms, the rela-

tionship can be written as 

Y = ay +b  (3) 

In Blignaut (2013) this relationship between the target 

Y coordinate and PGy was expressed as a second order 

polynomial. 
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Figure 11. Target Y coordinate against average nor-

malised pupil-glint Y of 26 participants at 15 distinct X 

coordinates for the left eye (top) and right eye (bottom). 

Table 3. R2 values of the polynomial fits for the coeffi-

cients in the regression formula for the target 

X coordinate against the normalised pupil-

glint Y for the left and right eyes. 

 a b c d 

Order of fit 1 1 1 3 

R2 left eye 0.97 0.84 0.97 0.96 

R2 right eye 0.91 0.88 0.92 0.94 

Table 4. R2 values for the regression formulas for Y 

at specific values of X. 

Eye 
Target Y coordinate 

326 416 506 596 686 776 866 956 

Left 0.9979 0.9983 0.9997 0.9995 0.9989 0.9991 0.9983 0.9993 

Right 0.9997 0.9995 0.9993 0.9991 0.9994 0.9998 0.9997 0.9993 

         

 1046 1136 1226 1316 1406 1496 1586  

Left 0.9994 0.9994 0.9992 0.9992 0.9991 0.9996 0.9996  

Right 0.9991 0.9991 0.9989 0.9996 0.9982 0.9956 0.9961  

 

Figure 12 shows plots of the coefficients a and b 

against the average normalized pupil-glint X for the left 

and right eyes.  It is evident that the trends of the plots 

change at when the normalised pupil-glint vector changes 

from negative to positive or when the glint moves to the 

other side of the pupil (cf. Figure 1).  Therefore, it might 

be an option to have separate polynomial fits for PGX > 0 

and PGX < 0, but that could cause sudden transition 

jumps when the glint moves to the other side of the pupil. 

Table 5 shows the R
2
 values of second and fifth order 

polynomial fits for the left and right eyes. An important 

consequence of a fifth order polynomial is that we will 

need at least six distinct X values for a calibration proce-

dure and that there are calibration points at the edges of 

the area of interest to limit the impact of end-effects. 

Table 5. R2 values of polynomial fits for the coefficients in 

the regression formula for the target Y coordi-

nate against the target X coordinate for the left 

and right eyes. 

 a b a b 

Order of fit 2 2 5 5 

R2 left eye 0.906 0.910 0.962 0.952 

R2 right eye 0.949 0.963 0.981 0.979 

The fifth order relationships could be written as fol-

lows: 

a = a5x
5
 + a4x

4
 + a3x

3
 + a2x

2
 + a1x + a0 

b = b5x
5
 + b4x

4
 + b3x

3
 + b2x

2
 + b1x + b0 

Substituting these into the general equation (3) above, 

we get 

Y = ay + b 

= a5x
5
y + a4x

4
y + a3x

3
y+ a2x

2
y+ a1xy + a0y 

+ b5x
5
 + b4x

4
 + b3x

3
 + b2x

2
 + b1x + b0 (4a) 

Since fifth order polynomials would need a large 

number of calibration points, the relationships were also 

approximated with second order polynomials: 

a = a2x
2
 + a1x + a0 

b = b2x
2
 + b1x + b0 

yielding 

Y = ay + b 

= a2x
2
y+ a1xy + a0y + b2x

2
 + b1x + b0 (4b) 
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Figure 12. Coefficients a and b in the regression formu-

las for the target Y coordinate against the normalized 

Pupil-Glint X for the left eye (top two) and right eye 

(bottom two). Second and fifth order polynomial fits are 

shown. 

Results 

Comparison of polynomial models and calibration 

configurations 

Table 6 shows the average accuracy over 130 data 

sets (26 participants with 5 data sets each) for selected 

calibration configurations (See Table 1 for details about 

each model).  The second Mitsugami model (Mitsugami 

et al., 2003) gives the best results for the 9-point calibra-

tion configuration (0.87°) while no model gives accepta-

ble results with 5 calibration points.  The original 

Blignaut model provides the best accuracy with all cali-

bration configurations with 14 or more points.  The small 

improvement of 23 points over 14 points might not justi-

fy the extra effort. 

Table 6. Average accuracy over 130 data sets (26 par-

ticipants with 5 repetitions each) per model and calibra-

tion configuration.  The headers refer to the model num-

ber and configuration of points, e.g. 14 (3434) means 14 

points configured in 4 rows with 3, 4, 3 and 4 points re-

spectively (see Figure 7). The best accuracy for every 

calibration configuration is boldfaced. 

No. 
Calibration configuration 

5 (212) 9 (3x3) 14 (3434) 18(11X,9Y) 23 (54545) 135 (15x9) 

1 1.40 1.29 1.15 1.16 1.14 1.11 

2 1.37 1.09 0.96 0.94 0.94 0.90 

3 2.94 0.91 0.76 0.75 0.73 0.68 

4 4.93 0.87 0.72 0.70 0.68 0.64 

5 1.50 1.09 0.95 0.96 0.94 0.90 

6 1.72 0.93 0.84 0.83 0.81 0.78 

7 3.43 0.80 0.62 0.62 0.60 0.56 

8 6.17 2.06 0.58 0.56 0.53 0.48 

9 6.24 2.09 0.62 0.59 0.57 0.53 

10 7.76 4.74 0.70 0.67 0.62 0.55 

11 7.32 3.07 0.62 0.60 0.57 0.52 

12 8.74 5.53 0.70 0.67 0.62 0.54 

Distribution of Accuracy 

Figure 13 shows a bubble chart of the average error 

over all 130 data sets (26 participants with 5 data sets 

each), represented by the size of a bubble, against the X 

and Y coordinates of the validation targets for model 4 in 

combination with the 9-point calibration configuration.  

Although the average accuracy over the entire display 

area is reasonable (0.87°), there is a large area at the bot-

tom of the screen where the accuracy is unacceptably 

bad.  Figure 14 shows similar bubble charts for model 8 

in combination with the 14- and 23-point calibration con-

figurations.  Not only is the average accuracy considera-

bly better (0.58° and 0.53° respectively), the errors are 

also distributed more evenly across the entire screen. 

Discussion 

Using a data set with 26 participants, watching five 

sets of 135 gaze targets in a 15×9 grid, the effectiveness 

of a mapping function that was derived in an earlier study 

(Blignaut, 2013) was confirmed. 
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Figure 13. Bubble chart showing accuracy for model 4 in com-

bination with the 9-point calibration configuration. 
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Figure 14. Bubble charts showing accuracy for model 8 in 

combination with the 14- (top) and 23-point (bottom) cali-

bration configurations. 

It was proven again that a simple system with one 

USB camera and a single infrared source is capable of 

achieving accuracy values that compare well with that of 

industrial systems (see discussion above).  It is also not 

necessary to apply a complex mathematical model for 

gaze estimation.  Mapping the pupil-glint vector to gaze 

coordinates can work as long as the mapping function is 

carefully selected along with the optimum configuration 

of calibration targets. 

A systematic approach towards the selection of an ap-

propriate mapping function was illustrated.  Visual in-

spection of calibration data in one dimension while con-

trolling for the other, can be used to discover relation-

ships between the dependent (PoR) and independent (pu-

pil-glint vector) variables.  This approach can be used to 

derive a mapping function that will result in good (0.5°) 

accuracy values, provided that 14 or more calibration 

points are used.   It was shown that complex, high-order, 

relationships do not necessarily provide better results 

than a model that was derived in an earlier study 

(Blignaut, 2013). 

It is important to note that accuracy should not be sac-

rificed for the sake of calibration speed.  It is believed 

that a few more seconds for the calibration routine is a 

worthwhile investment towards better results during stud-

ies.  A proper implementation of the calibration proce-

dure should allow participants to blink or even look away 

during the process in order to reduce eye fatigue.  While 

capturing data for this study, participants completed a set 

of 135 gaze targets within three minutes, meaning that a 

calibration procedure with 23 targets should take less 

than 30 seconds to complete. 

The best combination of mapping function and cali-

bration configuration should ensure an even distribution 

of inaccuracy.  The bubble chart in Figure 13 shows that 

there might be sudden occurrences of bad accuracy as 

well as regions where the accuracy is much worse than 

the average. 

It was also motivated above that a good average accu-

racy might not be acceptable.  Application of the often 

used 9-point calibration grid in combination with the 

Mitsugami model on the data in this study resulted in an 

average error 0.87° which is within the typical range of 

video-based systems (Hansen and Ji, 2010).  The uneven 

distribution of error (Figure 13) might make the system 

unusable for gaze interaction as certain targets might be 

inaccessible. 
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As a consequence of the results in this study it follows 

that the accuracy of an eye tracking system cannot be 

expressed in absolute terms and depends on several fac-

tors that include hardware configuration as well as soft-

ware algorithms, procedures and parameters.  Manufac-

turers may, therefore, provide regular updates to the so-

called firmware – the software that resides inside the ma-

chine itself and which is actually responsible for the eye 

tracking data that is provided to the researcher.   

In other words, stating the accuracy of an eye tracker 

without reference to the calibration procedure that was 

used can be misleading.  Researchers should also specify 

the version of firmware along with the make and model 

of the eye tracker that was used for a study. 
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