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Does color influence eye movements while exploring videos?
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Although visual attention studies consider color as one of the most important features
in guiding visual attention, few studies have investigated how color influences eye
movements while viewing natural scenes without any particular task. To better
understand the visual features that drive attention, the aim of this paper was to
quantify the influence of color on eye movements when viewing dynamic natural
scenes. The influence of color was investigated by comparing the eye positions
of several observers eye-tracked while viewing video stimuli in two conditions:
color and grayscale. The comparison was made using the dispersion between
the eye positions of observers, the number of attractive regions measured with a
clustering method applied to the eye positions, and by comparing eye positions to
the predictions of a saliency model. The mean amplitude of saccades and the mean
duration of fixations were compared as well. Globally, a slight influence of color on
eye movements was measured; only the number of attractive regions for color stimuli
was slightly higher than for grayscale stimuli. However, a luminance-based saliency
model predicts the eye positions for color stimuli as efficiently as for grayscale stimuli.
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Introduction

Visual attention has been conceptualized in theories
such as the Filter Model (Broadbent, 1958) and the
Feature Integration Theory (FIT) (Treisman & Gelade,
1980). The latter is one of the most cited theories
of attention, and divides the processes of attention
into two stages: a pre-attentive and a focused one.
According to the FIT, elementary visual features such
as intensity, color and orientation are processed in
parallel at the pre-attentive stage, and subsequently
combined to drive the focus of attention. Based on this
theory, Wolfe and colleagues introduced the Guided
Search Model (GSM) and studied the elementary visual
features that are involved in guiding attention using
visual search tasks (Wolfe, Cave, & Franzel, 1989).
These studies provided a list of the most important
visual features that drive visual attention which is
in accordance with the selectivity of the cortical cells
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of the visual system to the features (Hubel, Wiesel,
& Stryker, 1977). Both the FIT and the GSM were
developed and justified through behavioural experi-
ments using simple and artificial stimuli, without eye-
tracking experiments.

Several studies have been conducted to determine
the contribution of different features to the deploy-
ment of attention. Wolfe and Horowitz (Wolfe &
Horowitz, 2004) classified the visual attributes when
performing a visual search from undoubtedly guiding
attributes—color, motion and orientation—to other-
wise non-guiding attributes, such as intersection and
light sources. According to that study, color is one of
the most guiding attributes.

Several recent studies also investigated the role of
color information in visual perception using equilu-
minant stimuli (Krauskopf, 1999; Hawken, Gegenfurt-
ner, & Sharpe, 1999; Rhea & Eskew, 2009). These
researches indicate that, contrary to the conclusion of
early studies (Livingstone & Hubel, 1987), the color
vision system is as efficient as the luminance vision
system in perceiving and processing the visual infor-
mation. But, the results of these studies on equilu-
minant stimulus could not be extended to the natural
visual scenes. Additionally, the red-green color vision
system evolved after the luminance vision system was
already operating (Nathans, 1999; Dominy & Lucas,
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2001). The question is why the trichromatic color vision
evolved? What does color information add to the
luminance information? The most common answer is
to distinguish edible fruit from green one (Sumner &
Mollon, 2000) or young leaves (Sumner & Mollon, 2000;
Dominy & Lucas, 2001). However, psychophysical
investigations show that the role of color vision might
be more general. Studies on natural images show that
color attributes significantly improves the recognition
memory of natural scenes (Gegenfurtner & Rieger,
2000; Wichmann, Sharpe, & Gegenfurtner, 2002) and
the identification of the gist of scenes (Castelhano
& Henderson, 2008). Contrary to the large number
of studies dealing with the importance of color for
visual perception, few studies directly assess whether
color influence or not visual attention through eye
movements.

Visual attention and eye movements are correlated.
In fact, visual attention precedes an eye movement to
its goal, (Rizzolatti, Riggio, Dascola, & Umiltá, 1987;
Hoffman & Subramaniam, 1995). Therefore, visual
attention can be quantified via eye movement analysis
when viewing complex stimuli—static natural scenes
(Santella & DeCarlo, 2004; Tatler & Vincent, 2008;
Bindemann, 2010; Ho-Phuoc, Guyader, & Guérin-
Dugué, 2012), as well as dynamic scenes (Carmi &
Itti, 2006; Dorr, Martinetz, Gegenfurtner, & Barth,
2010; Mital, Smith, Hill, & Henderson, 2010; Coutrot,
Guyader, Ionescu, & Caplier, 2012).

Several computational models of attention have
been developed based on the FIT and GSM (Itti, Koch,
& Niebur, 1998; Itti, 2005; Frintrop, 2005; Le Meur,
Le Callet, & Barba, 2007; Marat et al., 2009). These
models predict regions that might be gazed while
exploring natural scenes, generating saliency maps.
Features such as intensity, color and spatial frequency
are considered to determine the visual saliency of
regions in static images, and motion is also considered
in the case of dynamic scenes.

All the computational models cited above use color
as a feature that drives the attention, except the model
proposed by Marat and colleagues (Marat et al., 2009).
The latter considers only luminance features for com-
puting the saliency maps. Unfortunately, this model
was only tested on grayscale videos. Very recently, we
have shown that the incorporation of color features into
this model significantly improves its performance in
predicting eye positions (Hamel, Guyader, Pellerin, &
Houzet, 2015). But, the video stimuli used in this pre-
vious study to evaluate the model had the specificity to
include only person-present scenes.

As in computational models, in eye-tracking experi-
ments, the influence of color on eye movements when
viewing natural scenes is still being debated. Some
eye-tracking studies suggest that color has very little
effect (Baddeley & Tatler, 2006) or no effect on eye
position, but Ho-Phuoc and colleagues report an effect
on fixation duration with shorter fixations for color

images (Ho-Phuoc et al., 2012). Another study shows
that the effect depends on the category of images (Frey,
Honey, & Knig, 2008). Frey and colleagues investi-
gate the saliency of different color features (saturation,
red–green and yellow–blue contrasts) within seven se-
mantic categories of images: face, flower and animal,
forest, fractal, landscape, man-made, and rainforest.
They report that the contribution of color features
to attention depends on the category of the images.
Color information increases the congruency of fixation
position between participants in rainforest, while in
fractal color decreases the congruency.

All these studies only address the case of static scene
whereas natural scenes are mostly dynamic. In fact,
motion is found to be one of the most crucial features in
guiding eye movements (Itti & Baldi, 2009; Mital et al.,
2010; Marat et al., 2009). Therefore, the present study
aims at evaluating the contribution of color to guiding
eye movements for dynamic scenes.

In this study, we compared the eye movements of
different participants when viewing color videos and
the same videos in grayscale, to determine whether
color information influences eye movements. Quanti-
fying the influence of color might be of interest for com-
putational models of visual attention. Because differ-
ences were found in static images as a function of their
semantic category (Frey et al., 2008), we chose videos
with various contents and videos that can be classified
into different categories, where color might be more or
less important. We examined the effect of color, both
globally and as a function of the category, on different
parameters extracted from recorded eye movements:
the eye positions, the duration of the fixations, and
the amplitude of the saccades. The comparison was
made both on average over the whole video and frame-
by-frame taking into account the course over time of
the video. Such a methodology was already used in
a previous study analysing the influence of sound on
eye movements (Coutrot et al., 2012). Finally, we
measured the influence of color by comparing the eye
positions recorded for color and for grayscale videos to
a luminance-based saliency model (Marat et al., 2009).

Method

Participants
Thirty-seven volunteers, (17 women and 20 men,

aged from 18 to 47 years, mean = 29 ± 5.5) took part
in the experiment. All reported normal or corrected to
normal visual acuity, while their normal color vision
was tested using Ishihira color plates, presented on
the experimental display. All participants gave their
consent to take part in the experiments.

Stimuli
Our dataset consisted of 20 video clips, each for

about 20 seconds. These clips were created by con-
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catenating 134 short video snippets of from one to
three seconds, called video snippets. We concatenated
the snippets to increase the heterogeneity of the vi-
sual stimuli and to reduce possible top–down pro-
cesses (Carmi & Itti, 2006; Marat et al., 2009). The snip-
pets were extracted from various color video sources,
including professional videos, such as films, TV series,
and documentaries, and also amateur videos of urban
roads. The stimuli had a spatial resolution of 640×480
pixels (25×19 degrees of visual angle) and a temporal
resolution of 25 frames per second.

The chosen snippets were classified according to
their contents into the following categories: daylight
outdoor scenes (42 snippets), night light outdoor scenes
(26 snippets), indoor scenes (37 snippets) and urban
road scenes (29 snippets). The main difference be-
tween urban road and daylight outdoor categories was the
presence of traffic signs in the former. Because traffic
signs are considered particularly salient in a scene (Itti,
2005), the videos including them were considered as a
separate category. Figure 1 shows some frames from
each category in color and grayscale.

Figure 1. Example frames in color (first and third rows)
and grayscale (second and fourth rows). The columns
from left to right correspond to the categories daylight
outdoor, night light outdoor, indoor, and urban road.

Initially, the videos were in different compressed
formats. We converted all videos to uncompressed AVI
format.

The eye-tracking experiment was setup to collect the
eye movement data recorded for two stimulus condi-
tions: color and grayscale. In order to only measure
the influence of color on eye movements, we need to
ensure that the luminance information is unchanged
between the two stimulus conditions. But, color to
grayscale conversion is a lossy operation that modifies
the luminosity features of the video stimuli. Color to
grayscale conversion is required in many applications
such as in rendering color videos to a monochrome
device, printing color documents in grayscale. It might

Figure 2. Spectral power distribution for light emitted
by the red, green, and blue phosphors of the
experimental display and the CIE 1931 luminosity
function of the standard observer, V (λ).

also be a pre-processing step in the context of vision
algorithms, for example in stereo matching algorithms.
According to the applications several grayscale conver-
sion methods have been developed trying to preserve
the perceptual properties of the original color image
(Gooch, Olsen, Tumblin, & Gooch, 2005; Kim, Jang,
Demouth, & Lee, 2009; Benedetti, Corsini, Cignoni,
Callieri, & Scopigno, 2010).The NTSC conversion is
maybe one of the most common methods which is
extracted from the ITU recommendation 601. This
method is based on a weighted sum of the R, G and
B channels that considers the luminosity function of
standard observer, V (λ), and also the spectral distribu-
tion of the primaries of the display. But the weights of
R, G and B channels do not correspond to all display
types. Here, we used a grayscale conversion method
that still corresponds to a weighted sum of the R, G and
B channels, but considers the characteristics of display,
Equation 1.

L = 0.5010×R+0.4911×G+0.0079×B (1)

The weights of the R, G and B channels were calculated
according to the experimental display characteristics
to fit V (λ), the CIE 1931 luminosity function of the
standard observer. The display characteristics were
obtained by measuring the light emitted from a com-
puter controlled display using a Photo Research PR650
spectrometer. Figure 2 presents the spectral power
distributions of the R, G and B channels. This conver-
sion method is adopted to our experimental display
and supports the luminance matching between the
grayscale and the color versions of the stimuli.

Apparatus
An LCD color monitor of 21 inches at a refresh

rate of 85 Hz was used to display the video clips.
The participants were at a distance of 57 cm from the
display, resulting in a visual stimulus over 25 × 19
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degrees of visual angle. The eye movements were
recorded with an SR research Eyelink 1000 eye-tracker.
The eye-tracker was used in a pupil-tracking mode
at a frequency of 1000 Hz. The stimulus presen-
tation, synchronization, and recording were carried
out by software developed in our laboratory (Ionescu,
Guyader, & Guérin-Dugué, 2009). Only the dominant
eye of each participant was tracked.

Experimental design
Each experiment session was divided into two

parts. During the first part, the participants watched
one-half of the video clips in one stimulus condition
(color/grayscale), while during the second part, the
participants watched the other half of the videos in
the other condition (grayscale/color). Thereby, each
color video snippet was observed by 18 subjects, and
each grayscale video snippet was observed by 19
subjects. Each part started with a 9-point eye-tracker
calibration. Moreover, each video clip started with a
drift correction. A new calibration was run if the drift
error was above 0.5 degrees. Each video was followed
by a gray background displayed for 2 s. Both parts
took place on the same day in a darkened room in the
presence of the experimenter. The participants were
asked to carefully watch the video clips while keeping
their head immobile on a chin rest.

Data
During the experiment, the eye movements of the

participants were recorded. The eyelink software re-
ported, in a data file at each millisecond, the raw eye
positions and some detected events, such as saccades,
fixations, and blinks. We extracted the eye positions
of the participants on the video frames, the duration
of the fixations, and the amplitude of the saccades for
each participant.

Eye Positions. For each participant, 40 raw eye posi-
tions per frame were recorded. These 40 positions were
summarized into a median position with median x and
median y coordinates, referred to as the eye position
of one participant per frame. To simplify the notation,
the eye positions recorded under the color stimulus
condition are called color positions (C), whereas eye
positions under the grayscale stimulus condition are
called grayscale positions (GS).

Duration of Fixations and Amplitude of Saccade.
The EyeLink 1000 tracker parser detects saccades ac-
cording to three thresholds: motion (degrees), velocity
(degrees/sec), and acceleration (degrees/s2). Here, the
acceleration, velocity, and motion thresholds were set
to 30 degrees/s, 8000 degrees/s2 and 0.15 degrees,
respectively. We analysed both the amplitude of the
saccades and the duration of the fixations.

Eye position analysis metrics

Dispersion. To evaluate the variability of the eye
positions between the participants, we used a metric
called the dispersion (Marat et al., 2009; Salvucci &
Goldberg, 2000). This metric was computed using the
leave one out method (Torralba, Oliva, Castelhano,
& Henderson, 2006). First, the Euclidean distances
between the eye position of one participant and the
eye positions of the other participants were calculated.
Then the final dispersion for each frame was obtained
by averaging the dispersion over all participants,

D =

√
1

N2 ∑
i, j<i

di, j
2 (2)

where N is the number of eye positions for a frame and
di, j is the Euclidean distance between the eye positions
of participants i and j.

The dispersion was calculated for each frame sep-
arately, for C positions of each frame (DC) and GS
positions (DGS). It measures the variability between
the eye positions of the participants for each stimulus
condition. Lower values of the dispersion are observed
when the eye positions are located in similar positions:
this is interpreted as a high level of inter-participant
consistency.

Clustering. The salient objects of a visual scene cor-
respond to the regions of interest of a scene fixated
by a group of participants at the same time. These
regions can be estimated for each frame by clustering
the recorded eye positions. Here, we clustered the eye
positions to compare the number of regions of interest
between the color and grayscale conditions.

Clustering methods use distance metrics between
the eye positions to find the regions of interest. K-
means is one of the clustering methods previously
used to cluster eye positions (Follet, Le Meur, & Bac-
cino, 2011; Privitera & Stark, 2000; Latimer, 1988).
This method has one main drawback: the number
of clusters must be determined a priori. Another
clustering method, which leads to consistent results, is
the mean-shift method. Santella and DeCarlo (Santella
& DeCarlo, 2004) employed this method on eye fixa-
tions to quantify visual areas of interest. The mean-
shift algorithm is a non-parametric clustering tech-
nique which does not require prior knowledge of the
number of clusters, and does not constrain the shape of
the clusters. In this study, we employed this method to
cluster the eye positions per frame. In this clustering
method, a distance parameter is required. Since all
video clips have the same size, we set empirically this
distance to 100 pixels, equal to approximately four
degrees of visual angle.
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Saliency map analysis

Visual saliency models have been developed to pre-
dict the regions that have the highest probability of
attracting the gaze of observers. The fixated regions
are differed from non-fixated regions according to their
low level features. Here, we compared the C and
GS eye positions to a luminance-based computational
saliency model (Marat et al., 2009).

The computational saliency model of Marat and
colleagues consists of two visual pathways: static and
dynamic, dedicated to different types of visual fea-
tures. These pathways are only based on the lumi-
nance information, and emphasize the regions that
differ from their surroundings in terms of the spatial
frequencies and orientations for the static pathway , Ms,
and in terms of the motion amplitude for the dynamic
pathway, Md , Figure 3.

A classical metric for comparing eye positions to a
computational saliency map is the Normalized Scan-
path Saliency (NSS ) (Itti, 2005). We used this metric to
compare the C and GS eye positions with the saliency
map of the corresponding scene. To compute this
metric, first the saliency maps are normalized to zero
mean and unit standard deviation. The NSS value of a
given frame corresponds to the average of the values of
the normalized saliency map at the eye positions.

A high positive NSS value indicates that the eye
positions are located on the salient regions of the com-
putational saliency map. An NSS value close to zero
represents no relation between the eye positions and
the computational saliency map, while a highly neg-
ative value of NSS means that the eye positions are
not located on the salient regions of the computational
saliency map.

Results

The aim of this study was to determine how color in-
fluences eye movements during free viewing of videos.
The main question was whether color influences the
location of the gaze. The design of our experiment
allowed us to compare the eye positions recorded while
viewing color and grayscale stimuli. We studied the
influence of color on the variability between the eye
positions of the different participants using the dis-
persion metric. We also compared the number of
regions of interest under color and grayscale conditions
using the mean-shift clustering method. These two
metrics, dispersion and clustering, were computed for
each frame. Moreover, we compared the duration
of the fixations and the amplitudes of the saccades
under both conditions. Finally, we compared the eye
positions under the two stimulus conditions to the
computational saliency maps.

We analysed the effect of the stimulus category (day-
light outdoors, night light outdoor, indoor, or urban
roads) and the effect of the stimulus condition (color

Figure 3. The spatio-temporal saliency model: Md is the
luminance-based dynamic map, Ms is the luminance-
based static map (Marat et al., 2009).

or grayscale) on the different metrics obtained from
the eye-tracking experiment: Dispersion, number of
clusters, duration of fixations, amplitude of saccades,
and NSS. All the statistical analyses were run per item
(video snippets correspond to observations).

We also studied the temporal evolution of these met-
rics frame-by-frame. We limited the temporal analysis
to the first 65 frames of each snippet, because most of
the snippets have at least 65 frames and the influence
of a top–down attention on the participants would
be minimal this way. We defined three periods of
observation: early (frames 1 to 15, 600 ms), middle
(frames 16 to 40, one second) and late (frames 41 to
65, one second). The terminology is similar to that
used by Follet and colleagues (Follet et al., 2011) for
static images. These metrics were computed frame-by-
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frame and were averaged over all frames for each video
snippet.

Dispersion of eye positions

First, the dispersion was analysed on average over
the whole snippet. Figure 4 shows the mean disper-
sion under color and grayscale stimuli according to
the stimulus category. Repeated measures ANOVA
were run with the Stimulus Category as a between-item
factor and the Stimulus Condition (color, grayscale) as a
within-item factor.

We observed a principal effect for the Stimulus Cate-
gory (F(3,130) = 4.09, p < 0.01). But, no effect of the
Stimulus Condition (F(1,130) = 2.06, p = 0.15), or in-
teraction of the Stimulus Condition × Stimulus Category
(F(1,130) = 1.28, p = 0.29) was observed.

We ran Bonferroni multiple comparison tests to com-
pare the mean dispersions obtained for the different
categories. The mean dispersion for night light outdoor
category was lower than those for the categories day-
light outdoor and indoor (p < 0.01). This was expected,
because in this category a limited region has been
illuminated that makes observers looking only at these
regions.

Figure 4. Mean dispersion according to stimulus cate-
gory for color stimuli (red columns) and for grayscale
stimuli (blue columns). Error bars represent the
standard error (standard deviation divided by the root
square of the number of items).

We also studied the temporal evolution of the disper-
sion. Figure 5 shows the evolution of the mean disper-
sion for the color and grayscale stimuli as a function of
the viewing time (frame rank), through three periods
of observation: early(frame 1 to 15), middle (frame
16 to 40) and late (frame 41 to 65). The two curves
followed the same pattern for both stimulus conditions.
In the early period of observation, the mean dispersion
reached its minimum value (color,3.2 , grayscale,3.1)
and increased during the middle and the late periods.
Because we did not observe any principal effect of the
Stimulus Condition for the global analysis we did not
further analyse the effect of the Period of Observation.

Figure 5. Mean dispersion according to the stimulus
condition (color and grayscale) in degrees of visual
angle across time (frame rank). Error bars represent the
standard error (standard deviation divided by the root
square of the number of items).

Number of clusters in eye positions.
Clustering the eye positions emphasizes the most

attractive regions of scene. Figure 6 shows the mean
number of clusters for color and grayscale stimuli
according to stimulus category. As for dispersion, a
repeated measures ANOVA was run with the Stimulus
Category as a between-item factor and the Stimulus
Condition (color, grayscale) as a within-item factor. A
principal effect was observed for the Stimulus Category,
F(3,130) = 4.4; p < 0.005), as well as for the Stimulus
Condition, F(1,130) = 4.9; p < 0.03). However, no effect
of the interaction of Stimulus Condition × Stimulus
Category was observed, (F(3,130) = 0.374;ns).

Bonferroni multiple comparison tests showed that
the mean number of clusters for the night light outdoor
category was lower than that for the daylight outdoor
and indoor categories (p < 0.01). This result reinforced
the previous result on the smaller dispersion for this
category.

Contrary to the dispersion metric, clustering metric
showed a significant effect of the color. The mean
number of clusters for color stimuli was higher than
for grayscale (1.62 versus 1.58). Even the effect of color
was small regarding the mean number of clusters, it
might reveals that color increases the number of fixated
regions and hence the number of salient regions. Figure
7 shows an example frame with the regions of interest
for color (red ellipses) and those for grayscale ( green
ellipses).

Finally, we analysed the temporal evolution of the
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Figure 6. Mean number of clusters according to
stimulus category. Error bars represent the standard
error (standard deviation divided by the root square of
the number of items).

Figure 7. An example scene depicting the different
clusters. The ellipses depict the clusters of eye positions
obtained from the mean-shift clustering method. Red
ellipses represent the clusters extracted from color
eye positions and green ellipses represent the clusters
extracted from grayscale eye positions.

mean number of clusters, Figure 8. We ran repeated
measures ANOVA with the Stimulus Category as a
between-item factor and the Stimulus Condition (color,
grayscale) and Period of Observation (early, middle and
late) as within-item factors. We observed a principal
effect of the Stimulus Condition (F(1,112) = 9.7; p <
0.001), a principal effect of the Period of Observation
(F(2,224)= 2.46; p< 0.001), and a principal effect of the
Stimulus Category (F(3,112) = 2.9; p < 0.05). A signifi-
cant effect of the interaction of the Stimulus Condition
× Period of Observation was also observed, (F(2,224) =
14.5; p < 0.0001). Finally, no effect of the triple in-

teraction was observed. As shown in Figure 8, in
the early period of observation there is no significant
difference between the mean number of clusters for
color and grayscale stimuli. But, in the middle period
of observation, the mean number of clusters for color
stimuli is higher than that for grayscale (1.67 vs 1.61),
and this effect persists in the late period of observation
(1.86 vs 1.82).

Figure 8. Mean number of clusters according to
the stimulus condition over time (frame rank).Error
bars represent the standard error (standard deviation
divided by the root square of the number of items).

Duration of fixations and amplitude of saccades
To assess the influence of color information on eye

movements, we also studied the duration of the fixa-
tions and the amplitude of the saccades. Two separate
repeated measures ANOVA were run with the Stimulus
Category as a between-item factor and the Stimulus
Condition (color, grayscale) as a within-item factor.

For the mean duration of the fixations, a principal
effect of Stimulus Category (F(3,130) = 11.71, p < 0.001)
was observed. But, we observed no effect of Stim-
ulus Condition (color, 318 ms versus grayscale, 324
ms, F(1,130) = 0.36, p = 0.55), or of the interaction
of Stimulus Condition × Stimulus Category (F(1,130) =
0.52, p = 0.68). Bonferroni multiple comparisons were
run to determine which categories were different from
the other categories. The mean duration of the fixations
for the night light outdoor category was higher than for
the other three categories (night light outdoor: 373 ms
versus daylight outdoor: 307, indoor: 290 and urban
roads: 314 ms, p < 0.01).

We also observed a principal effect of Stimulus Cat-
egory on the amplitudes of the saccades, (night light
outdoor: 3.89 , daylight outdoor: 4.52, indoor: 4.41 and
urban roads: 4.52 degrees , F(3,130)= 11.71, p< 0.001).
But, no effect of Stimulus Condition (color, 4.35 degrees
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versus grayscale, 4.41 degrees F(1,130) = 0.36, p =
0.55), or of the interaction of Stimulus Condition × Stim-
ulus Category (F(1,130) = 0.52, p = 0.68) was observed.

Bonferroni multiple comparisons determined that
the mean amplitude of the saccades for night light
outdoor category is higher than for daylight outdoor
(night light outdoor: 3.9 degrees, daylight outdoor:
4.52 degrees, p < 0.05).

In summary, the results show that the stimulus
categories that were used in this experiment do not
influence eye movements, except for the night light
outdoor category. Independent from the stimulus condi-
tion, for night light outdoor, we observed that the mean
dispersion and mean number of clusters are lower
than other categories, the mean duration of fixations
is higher and the mean amplitude of saccades is lower.
These results might be because of the particular com-
position of the night light outdoor category, where only
a limited part of the scene is illuminated. The analysis
of the eye positions recorded under the free viewing
of color and grayscale videos shows that the color
information influences neither the between-participant
congruency (the inter-participant dispersion) nor the
amplitudes of the saccades nor the duration of the
fixations.

The clustering of the eye positions indicates that
color information increases the number of fixated re-
gions, which suggests that color information makes
some new regions salient.

Saliency model
We studied the performance of a luminance-based

saliency model, the one proposed by Marat and col-
leagues (Marat et al., 2009), to predict the two data
sets of eye positions. If the prediction efficiency of
the model for both color and grayscale eye positions
is similar, we might conclude that only the luminance
information is necessary to predict the gazed regions
even for color stimuli.

The two datasets of eye positions C and GS were
compared to the saliency maps of the model of Marat
and colleagues (Marat et al., 2009), Figure 3. The NSS
score was used to compare the C and GS positions
to the saliency maps. The NSS score for color and
grayscale eye positions is similar (0.89 versus 0.91).
We did not observe any effect of Stimulus Category
(F(1,132) = 1.60, p = 0.19) neither of Stimulus Con-
dition (F(1,132) = 2.47, p = 0.12). No effect of the
interaction of the two factors was observed, either
(F(1,132) = 1.72, p = 0.19).

Discussion
In this study, we measured the influence of color

information on the eye movements recorded during
the free exploration of videos. We compared the eye
positions for color and grayscale stimuli. We used

a display-dependent grayscale conversion method to
ensure the luminance matching between color and
grayscale stimuli. The grayscale version of stimuli
were obtained from the weighted sum of color channels
to fit V (λ). However, this conversion method is still
lossy and the V (λ) corresponds to the average standard
observer while the response of photo-cells varies from
one observer to another and the random cone mosaic
of human eye might affect equiluminance thresholds
(Alleysson & Meary, 2012).

Color and grayscale eye positions were compared
using various metrics: the dispersion and the mean
number of clusters to directly compare the eye posi-
tions, the mean amplitude of the saccades, the mean
duration of the fixations, and finally, the similarity
of the eye positions to the predictions of a saliency
model. All the comparisons were also done taking into
account the semantic category of the dynamic scene.
We studied different categories : daylight outdoor, night
light outdoor, indoor, and urban roads. Evidences from
research of Frey and colleagues (Frey et al., 2008) show
that the influence of color on eye positions depends on
the semantic category of the image. The latter study
introduced two extreme categories of static images:
fractal and rainforest. In fractal, color information ren-
ders the participants’ fixation patterns more dissimilar,
whereas in the rainforest category, color increases the
participants’ consistency significantly. Based on the
conclusions of that study, we had anticipated that the
influence of color on eye positions would be related
to the category of the video snippet. Here, we instead
found that the influence of color remains insignificant
across different categories of videos. Concerning the
influence of category, independent from the stimulus
condition, we found that for videos belonging to the
night light outdoor category eye movements are differ-
ent from the ones for the other categories.

Concerning the effect of stimulus condition, we
found that color does not influence the dispersion
metric, i.e., the variability of the eye positions among
participants. Yet, the number of clusters of the eye
positions showed that there are slightly more clusters
for color eye positions than for grayscale eye positions.
These results might suggest that color information
increases to certain extend the number of salient
regions in the dynamic scenes. Moreover this effect
was not constant across the periods of viewing time
being larger in the middle period (frame 16 to 40).

The temporal analysis of eye positions showed a
typical shape for the evolution of the mean dispersion
and the mean number of clusters according to the
frame rank. Note that this evolution is independent
of the stimulus condition. In the early period of
observation, eye positions are influenced by the central
bias (Tatler, 2007; Bindemann, 2010; Marat, Rahman,
Pellerin, Guyader, & Houzet, 2013). This could be
observed on the two curves of figures 5 and 8. Due
to this bias, a high consistency of the eye positions of
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participants is observed about 400 ms (the 10th frame)
after the onset of a stimulus, which is in accordance
with the low dispersion, as well as the small number
of clusters for color and grayscale eye positions. Then
both metrics increase to reach a plateau.

In addition, for dynamic scenes, we found that
color information does not influence the duration of
fixations neither the amplitude of saccades; this result
differs from a previous study on static images (Ho-
Phuoc et al., 2012). This difference between static and
dynamic scenes, concerning the influence of color on
eye movements, could be due to the temporal changes
and dynamic nature of the video stimuli. Moreover,
the viewing time in the present experiment is shorter
than those for the mentioned experiments with static
images (Ho-Phuoc 5 sec, Frey 6 sec, present study 2 to
3 sec depending on the duration of the stimulus).

Finally, we compared the two data sets of eye po-
sitions, recorded for color and grayscale videos, to a
saliency model. The luminance-based saliency model,
initially developed by Marat and colleagues (Marat et
al., 2009) has similar prediction efficiency for color and
grayscale stimuli. Therefore, a saliency model simply
based on luminance information is efficient to predict
eye positions recorded for color video stimuli. Note
that this main result differs from our previous study for
which we found that incorporation of color informa-
tion to the luminance-based saliency model proposed
by Marat, significantly improves the performance of
the model (Hamel et al., 2015). However these different
results might be explained by the fact that in the
previous study we used very specific stimuli depicting
only person-present scenes. In this new experiment we
used video stimuli with more various content. Future
experiments might generalize these results to a larger
database.

To conclude, the results of present experiment do
not reveal a significant influence of color information
on the eye movements when exploring natural video
stimuli, even a slight effect of color on the mean num-
ber of clusters is found (with a significant effect in the
middle period of viewing time). These observations
might suggest that color features might have a small
contribution in performance of saliency models, at least
for models that predict the gazed regions in videos
with various contents.
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