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A probabilistic real-time algorithm for detecting blinks, saccades,
and fixations from EOG data

Miika Toivanen and Kati Pettersson and Kristian Lukander
Brain Work Research Centre, Finnish Institute of Occupational Health

We present a computationally light real-time algorithm which automatically detects
blinks, saccades, and fixations from electro-oculography (EOG) data and calculates
their temporal parameters. The method is probabilistic which allows to consider the
uncertainties in the detected events. The method is real-time in the sense that it pro-
cesses the data sample-by-sample, without a need to process the whole data as a batch.
Prior to the actual measurements, a short, unsupervised training period is required.
The parameters of the Gaussian likelihoods are learnt using an expectation maximiza-
tion algorithm. The results show the promise of the method in detecting blinks, sac-
cades, and fixations, with detection rates close to 100 %. The presented method is
published as an open source tool.
Keywords: electro-oculography, blinks, saccades, fixations, probabilistic modeling,

algorithms

Introduction
Real-time monitoring of human physiology can pro-

vide relevant health and performance related metrics
for various applications ranging from observing the
physical status of a worker to monitoring the cogni-
tive states of a user. As one such signal, eye move-
ments serve as a rich source of contextual user-related
information and electro-oculography (EOG) provides
a light-weight, robust, and relatively non-intrusive
means for measuring them. EOG signal is generated
from the changes in the orientation of the corneo-retinal
potential which can be measured with electrode-pairs
on opposite sides of the eye. From this signal, fixations,
saccades, and blinks can be detected.

While the spatial accuracy of EOG is apprecia-
bly lower than what is achievable with, e.g., video-
oculography (VOG), the typical EOG registration is
run at considerably higher frame rates, allowing for
various parameters of the eye to be computed accu-
rately (Heide et al., 1999). Especially, the durations
of saccades and different stages of a blink can be es-
timated with high precision. EOG has thus been uti-
lized in many applications, such as monitoring sleepi-
ness, tiredness, and fatigue (Ingre et al., 2006; Morris &
Miller, 1996; Papadelis et al., 2007), detecting changes
in cognitive workload (Ryu & Myung, 2005; Veltman &
Gaillard, 1996), recognizing the context from gaze pat-
tern behavior (Bulling et al., 2011), and even sleep stage
classification (Virkkala et al., 2007).

Various methods for detecting saccades and blinks
from eye movement signals exist. Some of the meth-

ods utilize VOG for obtaining the signal but the un-
derlying principles could be applied to both EOG and
VOG measurements. For instance, Engbert & Kliegl
(2003), Engbert & Kliegl (2004), and Engbert & Mergen-
thaler (2006) make VOG measurements and Jammes et
al. (2008) and Pettersson et al. (2013) make EOG mea-
surements to detect saccades and/or blinks by using
the derivative of the eye movement signal with vari-
ous methods for determining the threshold; Behrens et
al. (2010) consider the deviation of acceleration values
from the EOG signal; Daye & Optican (2014) utilize so-
phisticated particle filtering for detecting the events in
eye movement signal captured with VOG; Vidal et al.
(2011) use a supervised kNN method to cluster data in
the subspace formed by various features of EOG sig-
nals; and Niemenlehto (2009) uses constant false alarm
rate detection method to detect events from the EOG
signal. In addition, Czabański et al. (2013) and Pander
et al. (2014) use fuzzy c-means clustering for detecting
events from the clinical electronystagmus signal. How-
ever, these methods typically use a harsh threshold for
detecting the events, focus either on blinks or saccades,
use supervised learning, and/or are batch methods for
offline processing.

In this paper, we present a probabilistic, computa-
tionally light real-time algorithm for automatically de-
tecting blink, saccade, and fixation events from EOG
data (here we assume that only blinks, saccades, and
fixations occur). The method also calculates the tempo-
ral parameters (starts and durations) of the classified
events. The method requires a short training period,
during which samples of each class (fixations, blinks,
and saccades) are present. However, the training is per-
formed completely unsupervised and the class iden-
tities are automatically detected. To the best of our
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knowledge, the presented method is the first real-time
probabilistic algorithm for detecting blinks, saccades,
and fixation which uses unsupervised training.

To test the algorithm, we registered data in a sim-
ple task where the users were instructed to fixate on
a dot on a display and shift their gaze when the dot
jumped to another position on a varying screen dis-
tance. Occasionally between the saccades, the sub-
jects were instructed to blink with a visual cue. The
results show that the method is accurate in detecting
the EOG events. In addition, the algorithm is fairly
simple, making it robust and easy to implement. The
method is published as open-source for anyone to use
and amend.

Method

The EOG data contains horizontal and vertical sig-
nals which capture the eye movements in these direc-
tions. In our framework, each signal sample is assumed
to be part of a saccade, blink, or fixation, and detect-
ing, e.g., a saccade means that a sample (or sufficiently
many successive samples) is being classified as a sac-
cade. The detection method is probabilistic, assigning
a probability for each sample as being one of these so
that the probabilities always sum to unity. The ap-
proach resembles fuzzy clustering, used by, e.g., Pan-
der et al. (2014), but a philosophical difference exists be-
tween the two as in fuzzy logic a sample belongs partly
in many classes whereas in a probabilistic framework
each sample can belong to only one class while there
is a (subjective) probability about this belonging (Duda
et al., 2000). The algorithm contains filtering, feature
extraction, training, and actual event detection stages.
It is described as pseudocode later in the text (in Algo-
rithm 1).

Filtering
EOG data is inherently noisy (Heide et al., 1999). In

order to increase the signal-to-noise ratio, the signals
are filtered with a low-pass filter. When the cutoff fre-
quency of the filter is decreased, the signal-to-noise ra-
tio increases and the detection of the features gets eas-
ier. However, such heavy low-pass filtering smoothens
the eye movement signal causing distortions to the
temporal parameters (Jäntti et al., 1984). Hence, in or-
der to compute the temporal values more accurately,
the original signal should also be filtered with another
filter with a higher cutoff frequency – resulting in two
differently filtered signals (or four since there are verti-
cal and horizontal signals).

Feature extraction
In order to use a classifier we must first have some-

thing to classify. For this, features are extracted from
data. The features should be chosen such that the
events to be classified differ as much as possible from
each other in the feature space. Here, two features are
used. The first one, denoted as Dn, is the norm of the
derivative of the filtered horizontal and vertical EOG
signals:

Dn =

s✓
dH
dt

◆2
+

✓
dV
dt

◆2
, (1)

where H and V denote the horizontal and vertical com-
ponents of the EOG signal. The rationale here is that
for fixations, the norm is ideally zero (and in practice
at the level of the noise of the signal) as a steady signal
produces zero derivative. On the contrary, during sac-
cades and especially blinks the value of the derivative
is high. Hence, this feature is useful in separating fixa-
tions from blinks and saccades. The second feature, de-
noted as Dv, is used for separating blinks from saccades
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Figure 1. An example of a first derivate of a filtered vertical signal during a blink (left) and a saccade (right). Note the difference
in the amplitudes.
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and is based only on the derivative of the vertical EOG
signal. With the positive electrode for the vertical EOG
located above the eye (signal level increases when the
eyelid closes), the feature is defined as the difference
between successive maxima (max) and minima (min) of
dV
dt , subtracted with the absolute value of the sum of

these:

Dv = max�min� |max+min| . (2)

If vertical EOG is registered with the electrode sites
swapped, one simply needs to interchance the min and
max in (2). The reason behind (2) is that a blink pro-
duces a distinctively symmetrical pattern in the deriva-
tive of the vertical signal and should thus have a higher
value for Dv than a saccade (see Figure 1). For comput-
ing Dv, local maximum is stored and compared to the
subsequent local minimum.

The probabilistic model
Let us denote a fixation, saccade, and blink with f ,

s, and b, respectively. We are interested in the probabil-
ity of an event e given the observed data: p(e|D), e 2
{ f ,s,b}. As described above, the data is being “com-
pressed” into two features (1) and (2), so that D =
{Dn,Dv}. Let us take the probability of an event being a
fixation to be independent of Dv so following the Bayes’
theorem we get

p( f |D) = p( f |Dn) =
p(Dn| f )p( f )

p(Dn)

=
p(Dn| f )p( f )

p(Dn| f )p( f )+ p(Dn| f )p( f )
, (3)

where f in the normalization factor denotes a “non-
fixation” event, i.e., an event which is a saccade or a
blink. When forming the probability of a saccade, the
“fixation / non-fixation” state is marginalized out so
that

p(s|D) = p(s| f ,D)p( f |D)+ p(s| f ,D)p( f |D)

= p(s| f ,Dn,Dv)p( f |Dn,Dv) = p(s|Dv)p( f |Dn)

=
p(Dv|s)p(s)

p(Dv)
p( f |Dn)

=
p(Dv|s)p(s)

p(Dv|s)p(s)+ p(Dv|b)p(b)
p( f |Dn) , (4)

where the probability of observing a saccade given that
we observe a fixation is trivially zero (p(s| f ,D) = 0), the
probability of observing a saccade given that we ob-
serve a non-fixation and the two features are depen-
dent only on Dv (p(s| f ,Dn,Dv)= p(s|Dv)), and where the
probability of observing a non-fixation given the data is
simply

p( f |D) = p( f |Dn) = 1� p( f |Dn) (5)

as they are complementary events. For blinks we get
an equation similar to (4):

p(b|D) =
p(Dv|b)p(b)

p(Dv|s)p(s)+ p(Dv|b)p(b)
p( f |Dn) . (6)

Hence, for each data sample we first compute the prob-
ability of it stemming from a fixation by extracting Dn
and using (3) and then compute the probability of it
stemming from a saccade or a blink by extracting Dv
and using (5), (4), and (6).

In order to implement the above formulas we must
insert some probability distributions for the likelihoods
p(Dn| f ), p(Dn| f ), p(Dv|s), and p(Dv|b). A widely used
and typically robust distribution is a Gaussian 1 which
is our choice although the actual distributions may not
be exactly Gaussian; this issue is dealt with in Discus-
sion. We set the distributions to be asymmetric Gaus-
sians so that, for instance, if Dv exceeds the mean value
for blinks (µb), which should always be higher than the
mean value for saccades, the likelihood is the maxi-
mum value of the distribution:

p(Dv|b) = N(Dv|µb,sb) if Dv  µb

p(Dv|b) = N(µb|µb,sb) if Dv > µb (7)
Figure 2 shows the forms of the four likelihoods in Dn
and Dv coordinates.

Training
The learning scheme is unsupervised which means

that the class identities of the training samples are un-
known. The problem is thus to fit the likelihoods into
the training data most optimally, that is, to find optimal
values for the eight parameters of the Gaussian distri-
butions – mean and variance for each of the four likeli-
hoods – and the prior probabilities p(e).

For estimating these parameters we utilize the con-
ventional method, the expectation maximization (EM)
algorithm for Gaussian mixture model (GMM). The EM
algorithm can be considered a probabilistic version of
the classic Lloyd’s algorithm used to find k-means clus-
tering. In brief, EM-GMM is an iterative method for
unsupervised clustering of data in which the points are
assumed to be members of Gaussian distributions (ker-
nels) with unknown parameters (Bishop, 1995; Duda et
al., 2000). The prior probabilities p(e) are the average
posterior probabilities of each kernel, i.e., the member-
ship weights computed by EM-GMM. When extracting
the Dn features from the training data, only the values
at local maxima are used. Moreover, the Dv values are
extracted only for those peaks for which p( f |Dn)> 2/3;
this ensures that the most probable event in this case
is a saccade or a blink. The smaller of the two kernel
mean values in the Dn space is taken to correspond to
the fixation likelihood and in the Dv space to the sac-
cade likelihood. An example of the estimated Gaus-
sian parameters and the resulting likelihoods is given
in Figure 2.

1 The functional form of the Gaussian distribution is
N(x|µ,s) = 1

s
p

2p e�
(x�µ)2

2s2 .
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Figure 2. Illustrative figures of the likelihoods in Dn and Dv coordinates. p(Dn|bs) denotes the likelihood p(Dn| f ). The param-
eters of these distributions were estimated from a training data that was used in the experiments.

Detection
Having trained the model, that is, estimated the like-

lihood parameters and prior probabilities, each new
sample of EOG signal can be classified. The method
considers an event to occur as long as it has the high-
est probability. The start of a blink typically produces
saccade samples since the Dv value increases from zero
along the eyelid closing period and reaches the max-
imum value not until the eyelid is again opening at
the fastest rate. Also, the samples after the minimum
value of dV

dt receive high probabilities for being saccade
samples as the Dv value is low but Dn is high. Hence,
a blink actually forms a saccade-blink-saccade sequence

where the events overlap. From this it results that the
blink can be detected (with high probability) only after
its midpoint. There might also be a few fixation sam-
ples during the tiny moment when the eyelid is closed
as Dn is low as well as few saccade samples after it be-
fore the Dv values get high enough for the samples to
be classified as blink. To prevent the saccades ”fram-
ing” the blink sequences to be misclassified, they are
abandoned if the next blink starts before they end or if
the previous blink ends after they start. In addition, we
set a minimum gap (e.g., 100 ms) between the ending
of the previous saccade and the beginning of the next
saccade and for the fixation probability mass between
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Figure 3. Examples of signals produced by a saccade (left panel) and a blink (right panel). p(f), p(s), and p(b) refer to the
posterior probabilities of a fixation, a saccade, and a blink; dV and dH refer to the first derivatives of the vertical and horizontal
signals; Dn refers to the feature (1); Dv refers to the feature (2). Note the different scaling in the vertical axis in the right figure
where the derivatives of the signals as well as the Dv values are divided by ten to have a better fit. The reader is referred to a
color version for a decent viewing experience.
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those. This also prevents double detection of dual sac-
cades which may occur when a second saccade corrects
the first (typically large) saccade which has missed a
target slightly. Hence, there will be a slight delay as
the saccade can be reported only when the minimum
gap has elapsed since the ending of the saccade. Fur-
thermore, we set a lower limit for the event durations
and for the probability mass of the subsequent event
samples because the noise in the signal may some-
times falsely produce spurious high probabilities for
saccades or blinks. The computation of the event du-
rations is described in the next Subsection. In Figure 3,
a clip with a saccade and a blink and the corresponding
probabilities are illustrated.

Computing the temporal values for the features

Once a saccade or blink is detected and estimated
as completed, its temporal values can be estimated.
For accurate estimates, we use signals that are filtered
with the higher cutoff frequency. Previous values of Dn
from this signal are constantly stored in a buffer whose
length is defined as the maximum possible saccade
length. For estimating the starting index, the buffer is
explored from its maximum value towards its begin-
ning and the sample point where the values start to in-
crease is marked as the beginning of a saccade. Like-
wise, the ending of a saccade is found at the first zero
crossing of the first derivative of the buffer that occurs
after the buffer’s maximum value (see Figure 4 for an
illustration). For estimating the exact temporal dimen-
sions of a blink, two buffers are formed, the first from
the vertical EOG signal (V ) and the other from its first
derivative. The length of the buffers are defined as the
maximum blink length. The derivative values are ex-
plored from their maximum value (assuming that the
vertical values increase when the eye looks down, that
is, with the positive EOGv electrode above the eye) to
the beginning and the point where the values go under
one tenth of the maximum value is considered as the
starting point of a blink. The midpoint of a blink is es-
timated as the point where the buffer of V values is at
its highest and the duration of a blink is thus defined as
two times the difference between midpoint and starting
point. The temporal values and the computed features
are illustrated in Figure 4.

Algorithmic form

A practical realization of the method is presented as
pseudocode in Algorithm 1. Matlab implementation of
the algorithm is published online (see Additional infor-
mation at the end of the text). Each detected event can
be assigned a detection probability which can be, e.g.,
the highest or the average probability during the event.

Algorithm 1 A practical realization of our blink and
saccade detector method.
Initialize
Set values for: the parameters of the filters (two filters
with low and high cutoff frequencies), duration of the
training period (ttr), limits for the event durations, and
minimum gap between two successive saccades.

while receiving EOG signals do

Filter the signals with both filters separately
if t < ttr then

Save the samples filtered with lower pass filter
end

if t = ttr then

Go to the Training stage
end

if t > ttr then

Update the buffers of filtered samples
Go to the Detection stage

end

end

Training stage
1. Compute the derivatives of both signals and the
norm (1) for all the training samples
2. Extract all the peaks in the norm data, mark these as
D(train)

n
3. Get the mean and variance of the distributions
p( f |Dn) and p( f |Dn) as well as p( f ) and p( f ) by apply-
ing EM-GMM to D(train)

n
4. Extract all the peaks in the derivative of the vertical
signal for which p( f |Dn)> 2/3, compute the feature (2)
for those, and mark these as D(train)

v
5. Get the mean and variance of the distributions
p(b|Dv) and p(s|Dv) as well as p(b) and p(s) by
applying EM-GMM to D(train)

v

Detection stage
1. Compute the features (1) and (2)
2. Compute the probabilities for each event with equa-
tions (3) - (6)
3. If the probability mass for successive blink or sac-
cade samples exceeds a threshold, mark the event as
detected and compute its time values as described in
the text

Experiments

While aiming to use our solution in non-controlled,
natural viewing conditions, for evaluation purposes
we need controlled experiments with known, triggered
events.
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Figure 4. Left: an example of the Dn feature (1) during a saccade. Right: an example of the vertical signal V (red line) and its
derivative (black line) during a blink. Estimated points of beginning and ending of the events are marked with dashed lines
(for the blink also the midpoint).

Experimental setup

Data was recorded from five test subjects (1 male, 30-
37 years-old). All of the subjects had normal vision and
did not report any health problems. The subjects were
informed about the objectives and conditions of the
study which complied with the Helsinki Declaration
and was approved by the ethics committee of the Hos-
pital District of Helsinki and Uusimaa, Finland. The
attachment of the AgAg-Cl electrodes (Ambu, Ballen-
rup, Denmark) is illustrated in Figure 5. The electrode
for the ground signal was attached on the left mastoid.
For recording the signals we used a NeurOne amplifier
(Mega Electronics Ltd., Kuopio, Finland) with a sam-
pling rate of 500 Hz, alternating current (AC) measure-
ment, and a lowpass filter whose cutoff frequency was
set at 125 Hz (this device’s internal filter is not to be
confused with the two filters used in the filtering stage
of the algorithm). During registration, the signal was
high-pass filtered with the NeurOne device’s default
high pass filter (-3 dB at 0.16 Hz).

As training data for the method, an image was
shown to the subjects for one minute prior to the actual

Figure 5. The configuration of the electrodes used in the ex-
periments.

experiment. The image – which is shown in Figure 6 –
contains five black dots whose size was one degree of
the viewing angle. The subjects were instructed to fix-
ate the dots for random durations and in random order
and to blink whenever they felt like it (however, mul-
tiple times during the one minute). As the method is
unsupervised, the times of the occurrence of the events
was not needed. An example of the estimated Gaus-
sian parameters and the resulting likelihoods from the
training data of measurement M1 is given in Figure 2.
The distance from the test persons’ eyes to the display
was fixed to 80 cm in every part of each experiment.

For testing the performance, we used two differ-
ent schemas, with fixed and randomized saccade in-
tervals. The experiment with fixed saccade intervals
was used to evaluate the performance as function of
saccade angles whereas the purpose of the experiment
with random saccade intervals was to mimic more nat-
ural viewing. In both experiments, the subjects were in-
structed to fixate a black dot, whose size was again one
degree, which occasionally shifted to random locations.
After every third saccade, the dot changed its color to
gray, instructing the subject to blink. After the blink
stimulus the dot stayed at the same location for two
more seconds so the stimuli formed a repetitive saccade-
saccade-saccade-blink sequence (however, with different
dot locations in each sequence). The scale of the train-
ing pattern was different between the experiments; the
largest distance between two adjacent dots, that be-
tween the rightmost and topmost dot, corresponded to
a viewing angle of 7.1 degrees in experiment 1 and 17.5
degrees in experiment 2.

In experiment 1, the dot shifted to new location
every two seconds, making the saccade-saccade-saccade-
blink sequence last eight seconds (see Figure 6). The
on-screen distance of the transitions of the dot was 10
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cm for the first minute and then decreased for 2 cm af-
ter each subsequent minute until it was 2 cm. Assum-
ing the gaze vector to be perpendicular to the screen
plane the corresponding stimulus angles were 7.1, 5.7,
4.3, 2.9, and 1.4 degrees. The testing stage thus lasted
five minutes during which 111 saccade stimuli and 37
blink stimuli were presented. For two of the five test
subjects, experiment 1 was conducted twice on sepa-
rate days, making the total number of measurements
seven. Thus, the total number of saccade and blink
stimuli were 777 and 259. In the results, these mea-
surements are referred as M1,...,M7. Example clips of
each five stimulus angles are shown in Figure 7. Note
how the saccades of two smallest angles, especially 1.4
degree, are difficult to separate from the noise level of
the signals, at least visually.

Experiment 2 was similar to experiment 1 except
for the duration of the period that the dot stayed un-
changed which was randomized with uniform distri-
bution between 0.5 and 3.5 seconds and for the saccade
angles which were also randomized between 2.2 and
35.7 degrees. This setting should better correspond to
natural viewing. The seed for the random number gen-
erator was fixed to achieve comparable stimulus se-
quence. The second experiment was conducted with
four test subjects (a subset of the five subjects that were
used in experiment 1); these measurements will be re-
ferred as M8,...,M11.

Analysis
Since the actual blink events may not always follow

the stimuli, due to the subject missing a blink or mak-
ing an extra blink, the midpoint of each blink was man-
ually scored from the EOG data by one of the writers of
this article (who was not involved in making the analy-
sis) according to the AASM Manuals for the Scoring of
Sleep and Associated Events (Iber et al., 2009). We as-
sume that this manually scored reference midpoint of
each blink is between the beginning and ending times-
tamps that were detected by the method. For saccades,
we rely on the timestamped stimuli and assume that
saccades start within 0.5 s (1.0 s in experiment 2) after
the dot has switched location. The reference fixation
period, defined as a period during which there should
be no blinks nor saccades, is taken to be the time be-
tween the ending of a previous event window and be-

A = 7.1 A = 5.7 A = 4.3 A = 2.9 A = 1.4

Vo
lta

ge
 (a

.u
.)

Figure 7. A cascade of five example clips of raw EOG signals
from different parts of experiment 1. The horizontal signal is
shown in blue (on top) and the vertical in red (on bottom).
The thick green vertical lines depict the border between the
clips and the black dash lines indicate the occurrences of the
stimuli. The labels in the x axis refer to the corresponding
saccade angle (in degrees) of the clip. There are two blinks in
the cascade, during the clips A=5.7 and A=2.9.

ginning of the next one; the saccade window was taken
to begin from the saccade stimulus onset and end after
0.5 s (1.0 s in experiment 2) whereas the blink window
was taken to begin 0.5 s before the manually scored
midpoint and end 0.5 s after the midpoint.

The method contains only a few parameters. In these
experiments, the signals were filtered (after being low-
pass filtered inside the measurement device with 125
Hz cutoff frequency) with two separate 150th order
Butterworth low-pass filters with cutoff frequencies at
1 Hz and 40 Hz. The filter with the lower cutoff fre-
quency was used for computing the features of the
signals whereas the other filter was used for comput-
ing the temporal values. The minimum and maximum
blink durations were 30 ms and 500 ms and the mini-
mum and maximum saccade durations were 10 ms and
150 ms. These figures reflect typical durations for spon-
taneous blinks and saccades (Holmqvist et al., 2011).

t = 0 − 2 s t = 2 − 4 s t = 4 − 6 s t = 6 − 8 s

Figure 6. Left: The training pattern used in the experiments. The images right from the training pattern illustrate the progress
of the 8-second long test stimulus sequence of experiment 1. Note that each dot location in each sequence was different. Each
last two seconds of the sequence is dedicated to a blink. None of the images is in scale.
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Table 1
The parameter values used in the experiments.

Parameter Value
Cutoff fr. of filter 1 1 Hz
Cutoff fr. of filter 2 40 Hz
Min. blink duration 30 ms
Max. blink duration 500 ms
Min. saccade duration 10 ms
Max. saccade duration 150 ms
Default min. gap between saccades 100 ms

The minimum gap between two successive saccades
was set to 100 ms, unless otherwise noted. For clarity,
the values of these parameters are tabulated in Table
1. For simplicity, the estimated detection probabilities
were not utilized in evaluating the performance (that
is, the classifier was binary here, reporting either detec-
tion or no-detection).

For measurement M4 of experiment 1 (see Tables 2
and 3), we discarded the last 40 seconds of data due to
the eyes of the subject drying, causing her to close her
eyes. No other data was discarded.

Performance measures

For evaluating numerical detection figures we used
the conventional true positive rates (TPR), also known
as sensitivity or recall, and positive predictive values
(PPV), also known as precision, defined as

TPR = 100
TP

Ntrue
and (8)

PPV = 100
TP

Nmethod
, (9)

where TP indicates the number of true positives, i.e.,
the correctly identified events, Ntrue is the total number
of true events, and Nmethod is the total number of events
detected by the method. Hence, a method that, e.g., de-
tects blinks whenever there was a blink but also detects
false blinks (i.e., false positives) has a high TPR but
low PPV whilst a method that detects only a few blinks
has high PPV but low TPR. For an ideally performing
method both rates would be 100 %. The TPR and PPV
values can be combined as their harmonic mean, i.e.,
the F-score, defined as

F = 2⇥ TPR⇥PPV
TPR+PPV

. (10)

For fixations, Nmethod was computed as the sum of false
and true positives, where a false positive occured when
there was no blink nor saccade when there should have
been a blink or a saccade.
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Figure 8. The F-scores of the saccades in experiment 1 as
function of the stimulus angle. The blue dashed lines show
the scores for each measurements whose mean is depicted
with the solid red line.
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Figure 9. The saccade durations (mean ± std) in experiment
1 as function of the stimulus angle.

Results

Experiment 1
The detection rates for blinks in experiment 1 are

given in Table 2 demonstrating the high performance
in detecting blinks. The mean duration of the detected
blinks was 183 ± 53 ms which is in line with the values
reported in literature (Caffier et al., 2003; Holmqvist et
al., 2011; Stern et al., 1984).

The detection rates for saccades and fixations are
tabulated in Tables 3 and 4 for each saccade stimulus
angle. The rates for saccades are high for all but the
smallest angles and the decrease of PPV of fixations is
due to increase in Nmethod, caused by misdetected sac-
cades with small angles. Saccades with the smallest an-
gles are more difficult to detect as the signal generated
by these is hard to differentiate from the ambient noise
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Table 2
The detection rates for blinks in experiment 1 for each measurement and their mean and median values.

Measurement
M1 M2 M3 M4 M5 M6 M7 Mean Median

TPR 97.5 100.0 100.0 100.0 100.0 100.0 100.0 99.6 100.0
PPV 100.0 100.0 97.4 94.6 100.0 100.0 100.0 98.9 100.0

F-score 98.7 100.0 98.7 97.2 100.0 100.0 100.0 99.2 100.0

0 0.1 0.2 0.3 0.4
Estimated latency (s)

Figure 10. A histogram of the estimated latencies of all the
observed saccades in experiment 1 (N = 649).

level of the signal (as can be seen from Figure 7).

To demonstrate the decrease in the performance of
the method to detect saccades as function of the stim-
ulus angle visually, the F-score is plotted in Figure
8. Saccades above four degrees are detected reliably.
With saccades of three degrees the method performs
adequately, whereas saccades below two degrees can-
not be detected. The estimated durations of the sac-
cades as function of the stimulus angle are illustrated
in Figure 9. Again, the durations coincide with those

found in literature (A. Bahill et al., 1981; T. Bahill &
Stark, 1977; Becker & Jürgens, 1990), especially with
the ”duration= 2.2⇥amplitude+21” relation, suggested
by Carpenter (1988). A histogram of the estimated la-
tencies, that is, the lags of the saccade starting times
estimated by our algorithm compared to the stimulus
times, is depicted in Figure 10 which shows that the
subjects indeed made the saccades within the 0.5 s time
window after the stimulus was shown, with the mode
of the latencies at 150ms.

We originally set the minimum gap between two
successive saccades in the algorithm at 100ms. How-
ever, as this setting might miss nearby actual saccades
in natural viewing conditions, we investigated the ef-
fect of decreasing the minimum gap. We re-computed
the detection rates for measurement M2 (since it per-
formed worst) with stepwise reduction of the mini-
mum gap from 100 ms to 10 ms. The results are pre-
sented in Figure 11 which shows that the minimum
gap has no significant effect on the performance of the
method when the gap is set above 30 ms.

Another interesting parameter to vary is the length
of the training period. For this experiment we chose
measurement M6 since it contained many blinks dur-
ing the training period. Figure 12 shows how the F-
scores for blinks and saccades (over all the saccade an-
gles) vary as the length is shortened from 60 seconds to
5 seconds with 5 seconds step. According to the figure,
the detection performance is constant as long as the du-
ration of the training period exceeds approximately 10
seconds. The first five seconds of the data contains only

Table 3
The detection rates for saccades in experiment 1 as function of the saccade stimulus angle, for each measurement, and their
mean and median values.

TPR PPV

Angle (degrees) Angle (degrees)
Meas. 7.1 5.7 4.3 2.9 1.4 7.1 5.7 4.3 2.9 1.4

M1 100.0 100.0 100.0 60.0 0.0 100.0 100.0 100.0 100.0 0.0
M2 100.0 100.0 100.0 65.0 4.8 100.0 90.9 87.5 81.2 50.0
M3 100.0 100.0 100.0 100.0 0.0 95.2 95.2 95.5 100.0 0.0
M4 100.0 100.0 95.2 100.0 19.0 95.2 100.0 100.0 95.2 33.3
M5 100.0 100.0 100.0 75.0 0.0 100.0 100.0 100.0 100.0 0.0
M6 100.0 100.0 100.0 85.0 4.8 100.0 87.0 87.5 89.5 100.0
M7 100.0 100.0 100.0 95.0 4.8 100.0 100.0 100.0 100.0 100.0

Mean 100.0 100.0 99.3 82.9 4.8 98.6 96.2 95.8 95.1 40.5
Med. 100.0 100.0 100.0 85.0 4.8 100.0 100.0 100.0 100.0 33.3
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Table 4
The detection rates for fixations in experiment 1 as function of the saccade stimulus angle, for each measurement, and their
mean and median values.

TPR PPV

Angle (degrees) Angle (degrees)
Meas. 7.1 5.7 4.3 2.9 1.4 7.1 5.7 4.3 2.9 1.4

M1 100.0 96.3 100.0 96.4 100.0 100.0 100.0 100.0 77.1 56.2
M2 100.0 92.6 92.6 88.9 100.0 100.0 100.0 100.0 77.4 57.4
M3 92.6 92.6 96.3 96.3 100.0 100.0 100.0 100.0 100.0 56.2
M4 100.0 96.3 96.3 93.1 72.7 100.0 100.0 96.3 100.0 48.5
M5 100.0 96.3 100.0 96.3 100.0 100.0 100.0 100.0 83.9 56.2
M6 100.0 85.2 92.6 92.6 100.0 100.0 100.0 100.0 89.3 57.4
M7 100.0 96.3 100.0 96.3 100.0 100.0 100.0 100.0 96.3 57.4

Mean 98.9 93.7 96.8 94.3 96.1 100.0 100.0 99.5 89.1 55.7
Med. 100.0 96.3 96.3 96.3 100.0 100.0 100.0 100.0 89.3 56.2
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Figure 11. The F-scores for saccades of measurement M2 (in
experiment 1) as function of the minimum gap between two
successive saccades.

a single blink into which a distribution (with positive
variance) is impossible to fit.

Finally, we studied the influence of training the sys-
tem with a different saccade angle than used for testing.
For this, we chose measurement M7 and discarded its
initial training period (with which the F-score was 100
%). Instead, we used each of its five one-minute clips in
turn as training period and used the algorithm to clas-
sify the events in the rest of the one-minute clips. This
way, each of the training data sets corresponded to dif-
ferent saccadic angles. To make the comparison fair, the
test data contained only three largest saccade angles.
The result is illustrated in Figure 13 which shows that
when using the smallest angle saccade stimulus data as
training data the detection is understandably poor. For
angles above this, the performance for blinks is perfect
whereas for saccades the detection rates reach 100 %
when the training data contains the largest saccade an-
gle.
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Figure 12. The F-scores for saccades and blinks of measure-
ment M6 (in experiment 1) as function of the length of the
training period.

Experiment 2

In conducting experiment 2, all the model parame-
ters were the same as in experiment 1. However, we
had to change the acceptance window between the on-
sets of stimulus and an assumed saccade because the
latencies here were naturally slower than in experiment
1 as the reaction times to variable non-predictable stim-
ulus shifts increased. Hence, we increased the window
for automatically associating a saccade with a tempo-
ral trigger defining stimulus onset (that is, associating
stimulus-response pairs) to one second (it was 0.5 sec-
onds in experiment 1).

The results of experiment 2 are tabulated in Table
5. Blinks seem to be detected with approximately the
same accuracy as in experiment 1. The TPR values
being lower than 100 % can be probably attributed
to small saccade angles involved in the experiment
whereas the PPV values being lower than 100 % is
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Table 5
The detection rates for blinks, saccades and fixations in experiment 2 for each measurement, and their mean and median
values.

Blinks Saccades Fixations
Meas. TPR PPV F-score TPR PPV F-score TPR PPV F-score

M8 97.0 84.2 90.1 88.0 86.3 87.1 98.5 94.9 96.7
M9 100.0 97.1 98.5 93.0 85.3 89.0 97.7 95.6 96.6
M10 100.0 100.0 100.0 94.0 87.9 90.8 97.0 95.5 96.2
M11 100.0 100.0 100.0 97.0 90.7 93.7 99.2 97.8 98.5

Mean 99.2 95.3 97.2 93.0 87.5 90.2 98.1 95.9 97.0
Median 100.0 98.5 99.3 93.5 87.1 89.9 98.1 95.5 96.6

A = 7.1 A = 5.7 A = 4.3 A = 2.9 A = 1.465
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Figure 13. The F-scores for saccades and blinks of measure-
ment M7 (in experiment 1) as function of the saccade angle of
the training period.

probably due to the sporadic behavior with occasion-
ally very fast (⇠0.5 s) stimulus location changes caus-
ing subjects to make additional corrective saccades.

Comparison with other
methods

Comparing with existing algorithms is somewhat
challenging because of the lack of standardized per-
formance metrics, public datasets, and published algo-
rithm codes. To alleviate future comparison, we have
published our algorithm code online (see Additional
information at the end of the text).

Behrens et al. (2010) report on an improved algo-
rithm for automatic saccade detection in EOG data
using adaptive thresholding automatically calculated
during the measurement. However, they fail to re-
port any performance figures, only providing demon-
strative plots of the algorithm at work over two sep-
arate use cases (driving a car and microsleep detec-
tion). Jammes et al. (2008) reported on a blink detection
algorithm intended for drowsiness detection employ-
ing empirically selected threshold values based on cal-
ibration EOG recordings. The algorithm’s performance

was compared to manually processed EOG data over
30 hours and the TPR values among test subjects were
between 95.9 and 99.8 % and the PPV values between
98.0 and 100.0 %. Daye & Optican (2014) introduce a
method for saccade detection using a particle filter as a
Bayesian estimator. Their method removes the baseline
velocity component of the eye movement signal and
they claim that this allows for reliable detection using
a fixed threshold. While the method is able to perform
the analysis online, they admit that it has a high com-
putational burden. They do not report detection rates
but instead provide a noise sensitivity analysis for tem-
poral performance values over a generated eye move-
ment signal, exemplary signal plots in various appli-
cations, and report that the algorithm ”detected all the
saccades in the trial despite the wide range of ampli-
tudes”. Vidal et al. (2011) report on their work toward
an online detection algorithm for eye movements based
on EOG signal features. They conclude that the perfor-
mance of their k-nearest-neighbour classifier is above
80% for both precision and recall. Bulling et al. (2011)
reported F-scores for their offline method for detecting
blinks and saccades (angle not given), both of which
were 94 %. The value, however, was a maximum over
a parameter sweep and may hence be overfitted to the
training data; for novel test data, the value is likely to
be smaller. The saccade detector of Niemenlehto (2009)
report F-scores for simulated data up to 95.5 %, de-
pending on the parameter value and the noise level.
Pettersson et al. (2013) detect saccades and blinks of-
fline. For saccades of 5 and 7.5 degrees they report the
mean TPR value to be 95.5 % and for blinks they report
the TPR value to be 97 % while having PPV at 94 %.

Our method performs at least equally well with the
referenced methods above. For blink detection, our av-
erage TPR, PPV, and F-score values were 99.6, 98.9, and
99.2 % for experiment 1 and 99.2, 95.3, and 97.2 % for
experiment 2. For saccades, the results depend on the
saccade stimulus angle; for angles 7.1, 5.7, and 4.3 of
experiment 1, the average F-scores were 99.3, 98.0, and
97.4. For detailed results, see Tables 2 and 3. In exper-
iment 2, the average TPR, PPV, and F-score values for
saccades were 93.0, 87.5, and 90.2 %.

Table 6 shows a qualitative comparison between the
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Table 6
A qualitative comparison between various methods. The features ’b’, ’s’, and ’f’ refer to blinks, saccades, and fixations. In the
column ’other features’, (*) refers to activity recognition, (**) to smooth pursuit, and (***) to smooth pursuit, vergence, and
vestibulo-ocular reflex. The ’-’ mark in the column describing the computational load indicates that the load is unknown. R-T
refers to real-time (if ’no’, the method is a batch method).

Tracked features
Method b s f other load R-T Training Classifier
Behrens et al. (2010) x - yes no (adapt. thresh.) thresholding
Bulling et al. (2011) x x x (*) - no cross-validation SVM
Daye & Optican (2014) x (**) high yes tuning parameters Bayesian state
Jammes et al. (2008) x - no expert rules rule-based
Niemenlehto (2009) x low yes no (adapt. thresh.) thresholding
Pettersson et al. (2013) x x low no automatic thresh. thresholding
Vidal et al. (2011) x (***) low no cross-validation kNN
Presented method x x x low yes unsupervised (EM) probabilistic

current method and earlier work referenced above. De-
spite having performance similar to that of the ref-
erence methods, our method has several advantages
which many of the reference methods lack. 1) As op-
posed to batch methods, the real-time feature of the
method allows for real-time monitoring of, e.g., human
physiology which can provide relevant health and per-
formance related metrics. 2) The unsupervised learn-
ing period that we use should only contain examples of
each event type without manually labeled data. This al-
lows for running studies in natural environments with
no pre-set instructions or calibration sequences – al-
most any short patch of natural viewing data should
provide the necessary blinks, saccades, and fixations.
3) Our method assigns a detection probability for each
event which can be, e.g., the highest or the average
probability during the event. Unlike a binary classi-
fier, such probabilistic approach enables the considera-
tion of uncertainties in classification when making de-
cisions based on the detected events. For instance –
when classifying data between three conditions: blinks,
saccades, and fixations – two blinks, one detected with
a 34 % and one with 100 % probability might both be
crudely classified as blinks with a binary classifier if
the blink with 34% probability is the most likely event
out of the three possibilities. 4) Many of the referenced
methods focus on either blinks or saccades; we detect
both of these, as well as fixations, with the same algo-
rithm. To the best of our knowledge, the presented
method is the first published method that 1) is real-
time, 2) uses unsupervised training, 3) is probabilistic,
and 4) detects blinks, saccades, and fixations. In addi-
tion, our method is computationally light. Finally, one
more advantage of our probabilistic model is the small
number of parameters (only the mandatory filter pa-
rameters, thresholds for event durations, the minimum
gap between saccades, and the duration of the training
period) of which the last two are likely to have largest
effect on the performance but as the results demon-
strate, the F-scores were not sensitive to these param-

eters. This implies that the method should be robust
and the detection rates are likely to be equally good in
other conditions, too.

Discussion
The likelihood distributions were taken to be (asym-

metrical) Gaussians but there is no guarantee that natu-
ral blinks and saccades follow a Gaussian distribution
in our chosen feature space. However, the Gaussian
distribution is typically a robust model and the results
of this paper justify the choice. We tried log-normal dis-
tribution for the likelihoods in the Dv space but with in-
ferior results. Nevertheless, future work might include
testing with other distributions to gain even better per-
formance.

The results indicate that the angles of the saccades to
be detected do not need to be same as those used for
training the system. In addition, although our train-
ing period lasted one minute, clearly shorter periods
resulted in equally good results as long as the training
data contained at least two examples of each class. As
for possible future development of the system, the EM-
GMM algorithm could be implemented as a recursive
version resulting in a truly online model which would
update itself after each observation. In this scenario
there would be no separate training period but the esti-
mation of the parameters of the model would improve
over time.

We originally set the minimum distance between
two successive events as 100ms. We experimented with
setting the threshold lower and as Figure 11 shows,
this had no adverse effects on recognition performance.
In natural viewing conditions, a high threshold may
lead to the method misclassifying actual events such
as express, anticipatory, or corrective saccades (Becker
& Fuchs, 1969) with short latencies.

The introduced model assumes only one event to
occur at a time so that the sum of the probabilities of
the three classes is always unity (and ideally one of
the probabilities is unity). However, in reality blinks
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and saccades may overlap. These situations might be
handled by assuming that simultaneously observing
approximately 50 % probability for both saccade and
blink indicates such hybrid event; testing this schema
is left for future work.

The task design of experiment 1 had two issues.
i) There was a constant two-second interval between
stimulus shifts without any jitter. The subjects can
quickly learn to anticipate the following shift, which
in turn might lead to anticipatory saccades with notice-
ably shorter reaction times. Therefore we conducted
experiment 2 with randomized intervals. ii) Another
possible issue was the use of constant stimulus shift
angles in each one-minute window which could result
in a time-on-task effect to affect the subjects’ perfor-
mance. However, as the total test time was only five
minutes and the rate of detected blinks was constant
throughout, this does not appear to affect the perfor-
mance. Hence, the effect of worse classification perfor-
mance for saccades later in the series can be attributed
in whole to the smaller saccade angles and therefore
smaller signal amplitudes.

In this paper, we have presented a probabilistic real-
time algorithm for detecting blinks, saccades, and fixa-
tions from EOG signals. The algorithm uses unsuper-
vised training. According to the results, the method is
well capable of detecting blinks, fixations, and saccades
of any direction with angles above three degrees and to
estimate the temporal values of these with high accu-
racy.

Additional Information

A Matlab implementation of the algorithm is avail-
able online in https://github.com/bwrc/eogert, with
which the signal is processed quicker than recorded
(with a sampling rate of 500 Hz) and the estima-
tion of the likelihood parameters with EM-GMM takes
less than ten seconds (on a Linux Ubuntu with a
2.60 GHz processor). Additionally, the method will
be implemented in Python as open source software
and distributed under the MIT License as a mod-
ule for the MIDAS (Modular Integrated Distributed
Analysis System) framework, allowing integration of
on-line analysis of streaming psychophysiological sig-
nals into applications. The MIDAS framework is de-
veloped at our Research Centre and is available at
http://www.github.com/bwrc/midas.
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