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Introduction 

Modelling human cognition and behaviour in rich 
naturalistic settings and under conditions of free move-
ment of the head and body – “in the wild” – is a major 
goal of visual science and experimental brain research. 
Understanding complex behaviour in information-rich 
real 3D environments – such as driving, aviation and 
sports – requires a highly interdisciplinary effort. Devel-
oping explicit computational models of the motor pat-
terns – and their underlying neurocognitive basis – re-
quires combining methods from behavioural and brain 
sciences, engineering, and computer science, in addition 
to the more traditional experimental psychology ap-
proach. The methods and theories have applications in 
engineering, ergonomics, entertainment, and education. 

Here, eye tracking has turned out to be an excellent 
physiological means to investigate the sensory, motor and 
cognitive processes involved in our interactions with the 
real world. Eye movements provide a useful window into 
the workings of the nervous system, not least because in 
eye movement studies subjects can be engaged in tasks 
involving eye–hand coordination (e.g. tool manipulation), 

social interaction, and even locomotion (either on foot or 
in a vehicle). Thus, integrative visual function can be 
observed in a natural ecological context, which is gener-
ally not the case with, say, brain imaging methods such as 
fMRI, or basic neurophysiological methods such as sin-
gle-cell recording. 

This means that eye tracking methods are ideally suit-
ed for taking experimental behavioural research outside 
of the lab and into the real world, while still maintaining 
high standards of rigorous and precise measurement. This 
is important, because it has long been acknowledged that 
excessive focus on confined experimental designs, based 
on strictly controlled but potentially unnatural or unin-
formative stimuli and responses, can hamper theory de-
velopment in psychology and cognitive science (Newell, 
1973; Neisser, 1976; Broadbent, 1991). 

Relatively inexpensive measuring technologies (phys-
iological sensors, positioning equipment) as well as large 
localization datasets are available both commercially and 
in the open source/open data domain. High-fidelity dy-
namical and rendering simulation models suitable for 
creating immersive 3D virtual environments are also 
available, both as open source projects and commercially. 
However, no “off the shelf” solutions exist for integrating 
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these data sources into computational models of behav-
iour – let alone automatic algorithmic solutions for opera-
tions relevant to addressing research questions in the 
behavioural and brain sciences. Innovative research ideas 
and methodological development are still necessary to 
take advantage of the opportunities presented by the 
available technological developments. 

With mobile measuring equipment becoming ever 
more inexpensive and widely available, the past 25 years 
have seen a proliferation of studies that venture out of the 
laboratory and “into the wild”, to study human visual 
behaviour in naturalistic settings and outside the re-
strictions and confines of traditional laboratory experi-
ments. This line of research has led to important insights 
into the visual strategies humans use in coping with the 
complexity and ambiguity of real-world tasks (for re-
views see Steinman, Kowler & Collewijn, 1990; Regan & 
Gray, 2000; Land, 2006, 2007; Tatler et al., 2011).  

Naturalistic research is necessary to determine which 
of the many possible visual strategies made possible by 
the flexibility of the human oculomotor system are actu-
ally used in a task, and what roles eye movements serve 
in these strategies. On the other hand, controlled laborato-
ry experiments can reveal the internal workings of ocu-
lomotor mechanisms at a level of physiological detail that 
is not attainable in a naturalistic setting. But this comes at 
the cost of restricting the behavioural context to much 
simplified sensory and motor tasks, and often imposing a 
rather artificial trial–structure. These approaches there-
fore complement, rather than compete with, one another. 

This review takes a philosophical look at the ad-
vantages (the Good) and the disadvantages (the Bad) in 
approaches with different levels of ecological naturalness 
(low- and high-fidelity simulators, fully naturalistic real-
world studies). We also look at the methodological pit-
falls (the Ugly), and how the unreflecting application of 
lab-based terminology, methods and tacit assumptions 
may result in poor experimental design or even spurious 
results. 

The paper is written from the point of view of a re-
searcher or a team wanting to implement the available 
methods to do basic research on the human mind and 
behaviour. The idea is not to present a “cookbook” of 
things to do, or even a roadmap of steps to take. Many of 
the themes are sufficiently complex to warrant a careful 
review in their own right, and the danger with default 

solutions or even heuristic rules of thumb is that they 
become enshrined as “best practices” that may be applied 
without sufficient consideration and forethought. The 
paper should be considered more as a tool for building up 
one’s mental checklist of things to consider, in order to 
make an informed choice when one is weighing one’s 
options on the level of ecological naturalness in the eye 
tracking setup and experimental design. Is it better to go 
for maximum control and clarity of analysis, at the ex-
pense of ecological naturalness and generalizability? Or 
should one do a field experiment, so that one can be con-
fident what one observes is more or less what happens in 
natural conditions in the real world? (But where limita-
tions in analysis methods and experimental control mean 
that one may not understand what is happening as clear-
ly). There is no one correct way to go about this, and in 
reality a compromise must be struck between maximal 
control or maximal ecological validity. This review is 
written in part to raise awareness of some of the special 
concerns that doing naturalistic research brings about. 

We start off by looking at the advantages and the dis-
advantages of experimental approaches with different 
levels of ecologicality. Then, some specific concerns 
about “high-fidelity simulators” (easily presumed to be 
“more naturalistic” and hence ecologically valid) are 
raised. Finally, we consider some fundamental issues that 
crop up when one wants to do research in naturalistic 
contexts. In particular, differences in the required analy-
sis methods and conceptual approach – compared to the 
“received” lab–based methods, conceptual terminology, 
tacit assumptions and analysis methods – are discussed. 
The issue of defining a “fixation” as a class of gaze be-
haviour is examined in more detail. 

Naturalistic Studies “in the Wild” vs. 
Laboratory Experiments (The Good and the 

Bad) 

Much of what we know (or think we know) about the 
involvement of different oculomotor control circuits in 
complex tasks is based on extrapolating from simple 
laboratory experiments. These typically isolate a specific 
oculomotor event (OE) type, and then proceed to model 
the underlying circuit behaviour. The (implicit) assump-
tion is that these OE circuits act as “modules” selected 
and activated in naturalistic tasks according to task de-
mands. Many concepts, analysis methods, terminology 
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and assumptions (explicit or tacit) are borrowed directly 
from the lab-based tradition of OE classification and 
analysis – even when the experimental task and stimulus 
context sometimes go well beyond the original domain of 
application. 

Some theoretical and methodological papers analyse 
the geometry and linked dynamics of the eye, the head, 
and the body with a good deal of sophistication, and 
develop methods for gaze analysis in mobile applications 
(e.g. Epelboim et al., 1995; Duchowski et al., 2002; 
Reimer & Sodhi, 2006; Munn, Stefano & Pelz, 2008; 
Munn & Pelz, 2009; Vidal, Bulling & Gellersen, 2011; 
Kinsman et al., 2012; Hayhoe et al., 2012; Diaz et al., 
2013a; Larsson et al., 2014). Others unfortunately attempt 
to use the manufacturer-provided event detection algo-
rithms to parse the gaze signal – perhaps a sign of imma-
turity of the field. When this is done unreflectingly, with-
out careful consideration of the implications that real or 
simulated locomotor/head movement have on the proper 
analysis of gaze data (indeed the very definition of what 
counts as a “fixation” vis-à-vis other classical oculomotor 
events such as pursuit, VOR, or optokinetic reflex), then 
results from different studies can become difficult to 
accumulate. 

There are both advantages and disadvantages in natu-
ralistic task settings, compared to restricted laboratory 
designs. Simulators, depending on the level of visual 
complexity and physical fidelity, may be closer to one or 
the other (simulators are discussed in the next section). 
The individual researcher will need to weigh the im-
portance of each of the advantages and each of the disad-
vantages – as well as more practical restrictions such as 
the availability of equipment and analysis methods – 
relative to the inherent interest in the research questions 
that could be addressed. 

Some of the major advantages (Good) and disad-
vantages (Bad) are listed in Table 11. Moving from left to 
right, realism increases in terms of task organization and 
stimulus information – but at the cost of reduced experi-
mental control and increasing uncertainty over which 
stimulus information is actually used by the subject, and 
how. In the leftmost column, we have the typical eye 

                                                
1 This Table reflects recurring themes the author has 
encounterd in papers and during review processes. They are 
probably familiar to most researchers with behavioural science 
methods training and experience in running experiments. 

movement studies in the laboratory (with tasks like read-
ing a text, looking at pictures on a computer screen, per-
forming visual search, or responding to geometrically 
simple visual targets). In the other columns, we move 
towards progressively “less domesticated” experimental 
paradigms, in simulator settings and ultimately fully 
naturalistic real-world experiments “in the wild”. 

In a lab experiment, typically the body and the head 
do not move and the head may be restrained with a chin 
rest or a bite bar. Oculomotor control in this case reduces 
to controlling the movement of the eyes in their sockets. 
The main characteristics of eye movement patterns in 
these conditions are fairly well established in the eye 
tracking literature. The canonical OE types identified in 
laboratory studies are fixations, (micro)saccades, pursuit 
movements, optokinetic nystagmus, vestibulo-ocular 
reflex, and vergence and their oculomotor parameters 
have been exhaustively researched for over 100 years 
(e.g. eye velocity, event duration, frequency of occur-
rence with different stimuli or task conditions etc.). 
Moreover, oculomotor circuit behaviour underlying the 
canonical eye movement patterns have been modelled in 
great detail (for reviews, see Ilg, 1997; Miles, 1997; 
Scudder, Kaneko & Fuchs, 2002; Sparks, 2002; Krauzlis, 
2004; Martinez-Conde, Macknik & Hubel, 2004; Munoz, 
2004; Angelaki & Hess, 2005; Thier & Ilg, 2005; Eng-
bert, 2006; Collewijn & Kowler, 2008; Barnes, 2008; 
Martinez-Conde et al., 2009; Rolfs, 2009; Ibbotson & 
Krekelberg, 2011). What is more, the procedures for 
identifying them – nowadays increasingly by using dedi-
cated oculomotor event detection and classification algo-
rithms – have been codified to the point where many “off 
the shelf” solutions exist, bundled with eye trackers or 
available commercially or as open source projects.  

Because the human oculomotor system provides such 
a large suite of movement patterns that can be quite flexi-
bly integrated into ongoing behaviour, there are very 
many different possible ways humans might be using 
controlled gaze stabilization and gaze shifts to accom-
plish a given task. So we can only know from experiment 
which ones are actually used. (See for example Ballard & 
Hayhoe, 1995; Grasso et al., 1996, 1998; Pelz & Canosa, 
2001; Hayhoe et al., 2003, 2012; Itkonen, Pekkanen & 
Lappi, 2015). 

The main advantages of highly naturalistic studies are 
that they can reveal what visual cues are used (or at least 
fixated) in a given task, and how the sampling of visual 
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information from the 3D scene is arranged in time, de-
pending on the imminent sub–goals in each task phase 
(Regan & Gray, 2000; Hayhoe & Ballard, 2005; Land, 
2006; Tatler et al., 2011). 

Laboratory settings also have many advantages that 
are absent in more ecologically realistic paradigms. First, 
in a laboratory setting, the stimulus can be largely con-
structed from nothing but known physical parameters, 
including the ones of theoretical interest to the experi-
menter. Second, the task can be designed to be simple, at 
least potentially dependent on the chosen stimulus pa-
rameter of interest (the stimulus contains most of the 
available information relevant to the task). Third, behav-
iour is easy to express in parametric terms (e.g. reaction 
time from stimulus presentation). Finally, the task can be 
explicitly instructed, and the level of task difficulty con-
trolled. These are all Good. 

Extrapolating from laboratory experiments and simu-
lator studies into the real world is not always as sound as 
one might hope, however. It is all too easy to leave the 
relation between the much simplified task and stimulus 
set–up in the experiment, and some putative real–world 
task at the level of intuitive analogy, or just an introduc-
tory vignette (which is of course Bad). To draw sound 
conclusions from laboratory/simulator findings, it is nec-
essary to validate the assumption that the behaviour of 
interest is quantitatively (or at least qualitatively) similar 
in the experimental task and in the real world – at the 
level of dependent variables or specific performance 
measures.  

Field experiments and laboratory/simulator experi-
ments therefore need one another: field data are needed 
for validating laboratory (and simulator) results, and 
laboratory (and simulator) data are needed to test alterna-
tive mechanistic hypotheses underdetermined by data 
from fully naturalistic tasks.  

The kind of precise control of stimulus parameters 
and behaviour available in laboratory studies, which is so 
useful to differentiate between hypotheses, is not possible 
in the wild. This means that at the moment field experi-
ments can rarely identify oculomotor mechanisms or 
establish causal dependencies between specific stimulus 
variables and behaviour with sufficient rigor.  

In fact, the modelling aim in most naturalistic studies 
is actually better characterized as attempting to (1) identi-

fy systematic pattern in behaviour (ideally using compu-
tational parameterization of the geometry of oculomotor 
and/or locomotor behaviour, but typically still painstak-
ing manual frame-by-frame annotation), and to (2) identi-
fy strategies and/or stimulus parameters that are used to 
control this behaviour (this typically requires an accurate-
ly measured model of the stimulus environment).  

In a laboratory experiment, the relevant stimulus pa-
rameters are known – because they are chosen and con-
structed by the experimenter. With richer naturalistic 
stimuli (including realistic simulators), instruction and 
task structure increasingly make a difference to the cue 
value of stimuli. Thus, uncertainty over what stimuli the 
subject is actually using increases.  

In the wild, choosing what to represent about the 
”stimulus” or the “environment” become the essential 
methodological challenges. Parameterizing the behaviour 
and the stimulus in the first place, and doing this in a way 
that facilitates uncovering systematicity in fragments of 
behaviour under the control of stimulus parameters, is a 
fundamental aim of modelling complex behaviour in 
naturalistic environments. 

For example, in the context of car driving, it is evi-
dent that drivers “look where they are going” or “look at 
the road”. But this is unilluminating. Most studies of 
curve negotiation have followed Land and Lee (1994) in 
parameterizing gaze in terms of tangent point orientation 
(i.e. gaze direction samples classified by whether they fall 
within a threshold distance from the tangent point), inter-
preted to reflect strategies where the driver is “steering by 
the tangent point” (Land & Lee, 1994; see also Raviv & 
Herman, 1991; Land, 1998). Now, the generality of this 
strategy may be contested (for review see Lappi, 2014), 
and other parameterizations can reveal complementary 
information (Lappi, Pekkanen & Itkonen, 2013; Itkonen, 
Pekkanen & Lappi, 2015). The fundamental point is that 
progress beyond simple visual inspection of gaze overlaid 
on scene images (“car drivers are looking at the road”) is 
made by developing and refining the parametric represen-
tation of stimulus and gaze. An eye tracker can reveal 
where in the scene gaze is directed, but not what stimulus 
features or task goals have determined that gaze should 
be there, at that particular point in time. (We will be re-
turning to this issue, and this example, later). 
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Table 1. 
Rather than one type of research environment being superior to the other across the board, laboratory experiments, low- and high-
fidelity simulators and fully naturalistic real-world experiments all offer complementary advantages (“the Good”, marked as + ) and 
disadvantages (“the Bad”, marked as – ). 

 Laboratory Simulator (simple) “In the Wild” 
 Simulator (high–fidelity) Naturalistic (real–world) 

St
im

ul
us

 

(–) Simple, sparse  
(+) Constructed from 

physical parameters chosen 
by the experimenter: pa-

rameterized a priori, varies 
along the dimensions of 

theoretical interest (“inde-
pendent variables”) 

(–) Usually restricted to 
sedentary settings 

(–) Information available 
to subject (visual cues) 

highly restricted 
(+) But the cues are known 

(+) Subject is isolated as 
much as possible from 
“confounding” stimuli 

(–) Simpler than real world 
(–) Resolution/field of view 

limitations 
 (+) Typically more realistic 

than lab stimuli  
(+) Constructed from physical 

parameters chosen by the 
experimenter: largely reduced 

to dimensions of primary 
theoretical interest 

(–) The subject may not al-
ways use the intended cues 

(only) 

(+) Complex, rich 
(–) Resolution/field of view 

limitations 
(+) Constructed to repro-

duce physical parameters of 
real world.  

(–) Limited locomotor 
dynamics 

(–) The richer and more  
complex (“realistic”) the 
stimulus, the more con-
founds found in natural 
settings are reproduced 

(–) The most relevant in-
formation and the required 

fidelity to achieve good 
behavioural validity is not 

usually known. 

(+) Complex, rich 
(+) Full field of view of unlim-

ited resolution 
(+) The stimulus is real physi-

cal world 
(+) Completely natural loco-

motor dynamics 
(–) Rarely known with good 

accuracy (instead of modelling 
the 3D layout of the scene or 
workspace, gaze is typically 

projected onto a scene camera 
image) 

(–) Parameterization usually 
not known a priori 

(–) Information available in-
cludes all the “confounds” 

occurring in natural settings 

Ta
sk

 

 (–) Given by instruction 
(–) Rarely naturalistic 

(require practice) 
(–) Discrete “events”: 

experimenter–imposed trial 
structure 

(+/–) Repetitively per-
formed at the experiment-

er’s discretion 

(+) Embedded in ongoing 
behaviour (continuous dy-
namic interaction with the 

simulation) 
(–) Given partly by task in-

struction/framing  
(+) Can be quite naturalistic 

(some training required) 
(+) Subtasks may be isolated 
and repeated at the experi-

menter’s discretion 

(+) Embedded in ongoing 
behaviour  

(+) Quasi–naturalistic 
(+/–) Subject to ecological 
task constraints (optimiza-
tion strategies or heuristics 

adapted to real-world) 
(+) Subtasks may be isolat-
ed and repeated at the ex-

perimenter’s discretion 

(+) Embedded in ongoing 
behaviour  

(+) Naturalistic (well–learned 
before experiment) 

(+/–) Subject to ecological task 
constraints (optimization strat-
egies or heuristics adapted to 

real-world) 
 (–) Occurrence of (sub)tasks 

of interest constrained by real–
world events 

B
eh

av
io

ur
 

(–) Restrained movements 
(+) Critically depends on 
known stimulus features 

(“confounding” behaviours 
prevented)  

(–) Only simple discrete 
actions (e.g. button press, 

eye saccade) 
 (+) Straightforward to 

express parametrically and 
epoch (e.g. reaction time 

from stimulus onset) 
(+) Eye movement physi-
ology, and the procedures 
for identifying and report-
ing eye movement patterns 

well established in the 
literature 

 (–) Fully or partially re-
strained head movement, 

sedentary 
(–) Only simple actions (but 

continuous, e.g. steering) 
(–) Limited or minimal (simu-
lated) locomotor kinematics 

& dynamics 
(+) Straightforward to express 
parametrically (but may not 

present clear epochs) 
(–) Eye movement physiology 
and eye tracking methods less 

well established 

(+) Free head movement, 
simulated and/or real body 
motion (vection, moving 

base) 
(+) Complex multi–joint 

sequential actions 
(–) Many degrees of free-
dom, challenging to meas-

ure, model and analyse: 
requires sophisticated signal 

analysis 
(–) Eye movement physiol-
ogy and eye tracking meth-

ods less well established 

(+) Free head and body move-
ment & locomotion 

(+/–) Complex multi–joint 
sequential actions 

(–) Many degrees of freedom, 
challenging to measure, model 
and analyse: requires sophisti-

cated signal analysis 
(–) Eye movement physiology 
and eye tracking methods less 

well established 
(+/–) Eye movements cannot 
be considered in isolaton as 
oculomotor events: gaze be-

haviour essentially consists of 
head and body movement, 

which need to be modelled in 
3D as well 
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The same applies to modelling the spatiotemporal or-
ganization of the behaviour itself: it cannot be trivially 
parameterized as e.g. response reaction times to discrete, 
a priori determined stimulus events.  

Simulator Studies – the Best of Both Worlds? 
Simulators are widely used as a tool for operator 

training in commercial aviation, maritime industries, and 
the military (air, ground and sea forces). The automotive 
industry uses simulators in driver evaluation as well as 
research and development of vehicle dynamics and driver 
assistance systems (both road car manufacturers and 
racing teams). In research, simulators are increasingly 
used as a complementary or even an alternative to doing 
labour intensive fieldwork. 

Compared to field experiments, on the one hand, and 
traditional laboratory tasks on the other, simulator studies 
potentially combine the best of both worlds. They offer 
the unique potential for combining the richness of natu-
ralistic behaviour and ecologically realistic tasks of field 
research with a relatively noise-free environment, highly 
repeatable conditions, and experimenter control of stimu-
lus parameters. They also offer possibilities for experi-
mental manipulation that are difficult or impossible to 
implement physically.  

In the real world, the stimulus situation is complex, 
dynamic, and constantly evolving; it is not always imme-
diately clear how the behaviour itself should be expressed 
parametrically, or how to determine the relevant stimulus 
parameters controlling that behaviour. Notably, “the 
stimulus” is not presented on a rigid trial-by-trial basis, 
but instead changes dynamically depending on the sub-
jects’ motor actions (locomotion and eye movements). 
These aspects of naturalistic behaviour can be captured 
and partially brought under experimental control when 
physical events are simulated in dynamically interactive 
virtual reality environments with realistic displays and 
controls. Simulators offer a relatively cost-effective alter-
native to fully naturalistic, physical setups – with the 
added benefit that the complex 3D stimulus environment 
need not be measured and modelled. Instead, the re-
searcher can construct an environment, customize it to 
the needs of a specific research question, and manipulate 
it in a way that would not be possible or practical in a 
physical environment. However, the more complex and 
rich the simulation environment, the more one is present-

ing potentially confounding stimuli to the participants, 
making analysis of the results and validation of the simu-
lator more difficult.  

Maximum Realism: Good or Bad? 
There is always a danger that impressionistic assess-

ments of “realism” get substituted for experimentally 
demonstrated validity of a simulator as a research tool. 
Impressions can be swayed by a few superficial, or task-
irrelevant properties (such as how naturalistic the textures 
look, what the angular extent of the field of view is, or 
whether kinaesthetic/vestibular feedback is present). For 
sure, these may be important features for particular appli-
cations, but introspection alone cannot establish how 
important they are for a particular task (or which features 
are the most important ones to get right), and whether 
they are reproduced sufficiently accurately (what are the 
tolerances for “sufficiently accurate” reproduction).  

Realism is no substitute for validity, and therefore a 
high-fidelity simulator is not by default Good, and low-
fidelity simulator Bad. Indeed, research on virtual envi-
ronments has shown that the sense of presence (“being 
there”) is less dependent on whether the display is visual-
ly rich and impressively rendered, and quite dependent on 
features such as frame rate, sound, and response rate in 
head tracking (the faithful replication of a number of 
“minimal cues”, Slater, 2002). Increasing the complexity 
of the system may in fact increase the chance of imper-
fections that can shatter the illusion of presence! 

The concept of realism has been analysed and devel-
oped in the literature on complex virtual reality. A differ-
ence is made between immersion and presence (Sanchez-
Vives & Slater, 2005; Slater & Wilbur, 1997; Slater et al., 
2009). Immersion refers to the degree of physical fidelity 
of sensory stimuli representing the simulated virtual envi-
ronment (and the isolation of the participant from those 
stimuli in the real world that would be in conflict with the 
representation). These include the instantaneously visible 
display field of view (FOV), and rendering details such as 
correctness of the geometry, response latencies, resolu-
tion, stereoscopy, texture, lighting and frame rate. Pres-
ence, on the other hand, refers to the subjectively report-
ed experience of “being there”. This is distinct from im-
mersion because it cannot be assessed based on the tech-
nical specifications of the system alone, it can only be 
assessed behaviourally.  Immersion is not the only factor 
affecting presence: also, the motivation and engagement 
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of the subject, the level of naturalism in the task, and 
persuasiveness of the instruction given, and the framing 
of the task can make a big difference. 

For using simulators as a research tool (i.e. a more 
controlled surrogate for real-world experimental settings), 
external validity is the most essential measure of realism, 
however. Like presence, external validity is different 
from immersion – it cannot be assessed from the tech-
nical specifications of the setup. But whereas presence is 
a holistic concept, referring to behaving, feeling and 
thinking in the VR/simulation environment “as you 
would in similar real-world circumstances”, validity 
refers to more specific correspondence between specific 
performance measures (or physiological measures) of 
interest. Methodologically, there is also the difference 
that presence can be assessed by self-report question-
naires (asking about feelings, thoughts, physical sensa-
tions and the subjectively judged similarity of behaviour), 
whereas establishing external validity requires validation 
experiments that can show the correspondence in the real-
world and simulator data (for further discussion of differ-
ent types of simulator validity see Kemeny & Panerai, 
2003). 

Ideally, what is needed is that one should be able to 
demonstrate (convincingly by validation experiments) 
that: 

1. The relevant variables (“minimal cues”) have been 
reproduced with high fidelity. These are the ones that 
make a difference to the measures of theoretical interest, 
and the ones people have been shown to actually use 
(external validity). 

2. Spurious variables that can be used to perform the 
simulator task (in the restricted simulator environment) in 
a different way to real-world performance have not been 
introduced. In other words: the cue value of stimulus 
variables have not been inadvertently dramatically 
changed. 

3. In abstracting from the real environment and real 
task constraints, the task analysis or priority ordering for 
the participant have not been inadvertently changed in 
some essential way. 

The more complex the simulator, the more difficult it 
is to validate these assumptions. High fidelity and immer-
sion perhaps give a simulator “more realistic” face value, 
but can lead to problems as well. There are more varia-

bles to validate, and there may be more variables that are 
not reproduced with sufficient fidelity to maintain behav-
ioural validity. For example, the physical intensity or 
timing to the dynamic events may be off. This may de-
tract from the cue value of the variable, compared to the 
real world (a cue that is important in the real world is not 
used in the simulator because the information is not accu-
rate enough). This may lead to behavioural strategies 
different from those used in the ecologically normal sit-
uation. Low-fidelity input may have a detrimental effect 
on overall performance. For example, vestibular stimula-
tion that is subtly out of sync with other simulated events 
may even worsen the sense of motion, a possible source 
of disorientation and simulator sickness. In this case, it 
might actually be better if the cue were not reproduced at 
all.  

In a complex simulation, there are also more varia-
bles, in addition to the variable(s) experimental interest 
that act as confounds and make the analysis of behav-
ioural data more difficult. This actually detracts from one 
of the attractive properties of the simulator compared  to 
the real world: the researcher being in control of the rele-
vant stimulus variables. 

Any simulator, however crude, will resemble real 
physical environments in some respects, and any simula-
tor, however sophisticated, will likewise differ from the 
real-world physical stimuli in some respects. For a simu-
lator to be a useful tool for research, the assumption must 
be made that some behaviour of interest is qualitatively 
or quantitatively similar in the simulator and in the real 
world, so that behaviour in the real world can be ex-
plained and predicted by behaviour in the simulator.  

So, how realistic, and hence how complex “should” a 
simulator be? One should be wary of the tendency to 
view maximally realistic high-fidelity immersive simula-
tors that reproduce the phenomenology of “being there” 
as being the best. While this may be the case for enter-
tainment purposes, for doing research this is not so clear-
cut. The more complex the simulator is, the more difficult 
it is to validate empirically. Likewise, the challenges in 
the analysis of patterns in the data become closer and 
closer to the difficulties in real-world studies (in particu-
lar the problems of parameterizing the complex behav-
iour and identifying the relevant stimulus parameters).  

The richness of the stimuli and the complexity of the 
task is what differentiates a simulator from sparse stimuli 
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and simple laboratory tasks, which abstract a very re-
stricted set of stimulus variables and behaviours for de-
tailed study. As one moves from tightly controlled set-
tings “into the wild”, the same problems of analysis and 
interpretation arise – even if the environment is virtual 
rather than physical. There is thus an argument to be 
made that it is not probably useful to try and reproduce, 
in a simulator, everything as close as possible to the way 
it is in the in real world.  

The more complex and realistic the simulation, the 
less one can fall back on established lab–based OE analy-
sis methods, and instead one needs to adopt the methodo-
logical and conceptual approach typical of naturalistic 
studies. 

Methodological and Conceptual Issues 
Specific to Eye Tracking “in the Wild” (The 

Ugly) 

Compared to traditional laboratory eye movement 
studies, extra layers of complexity in the analysis and 
classification of eye movements are generated by free 
head movement and locomotion. This is not entirely due 
to the difficulty of reliable measurement, but also the 
more conceptual issue of relativity physical motion to the 
choice of a frame of reference. When analysing eye-
tracking data in the wild, specifying the appropriate coor-
dinate systems and transformations to represent the data 
is the key to capturing phenomena of interest.  

In a sedentary laboratory task with the head fixed, the 
head, body and laboratory (allocentric) frame of reference 
are identical2. In contrast, when the eye, head, body and 
the 3D scene can all move relative to one another, com-
plex frame of reference transformations are at the very 
heart of understanding the pattern of eye movements 
(Figure 1).  

In the head-fixed condition, rotation of the eye in its 
socket and rotation of gaze in the 3D scene are equiva-

                                                
2 "Frame of reference" is used here to refer to a set of reference 
directions that is fixed to objects or locations that maintain 
their spatial arrangement over time. A frame of reference can 
be used to represent space, i.e. as a basis for a coordinate 
system for representing space. Specifying a "coordinate system" 
requires, in addition, a distance metric and a point of origin. 
Therefore, the head and the laboratory can be said to have 
identical frames of reference, but different coordinate systems. 

lent. (This is indicated in Figure 1A by the dashed boxes 
and arrows for eye-in-head and head-in-world coordinate 
system transformations: they can be ignored when the 
point of vantage is fixed, e.g. by a bite bar). 

However, in head–unrestrained locomotor settings 
(Figure 1B), changes in the eye-in-head angle (oculomo-
tor events, OE) are no longer equivalent to gaze behav-
iour (GB, i.e. rotation and translation of the line of sight, 
the 3D vector from the point of vantage to the point of 
fixation). This has implications for the calibration of the 
eye tracking equipment (mapping the eye tracker signal 
to scene objects), the range of application of traditional 
oculomotor event detection and classification algorithms, 
the theoretical interpretation of the eye tracker signal, and 
the different ways to define “a fixation”. 

The choice of reference frames also becomes a major 
consideration for the representation of stimuli and behav-
iour. Should one think of stimuli as 3D objects in the 
allocentric scene, or bundles of visual features in the 
subject’s visual field? Does one use a head-centred or 
body centred visual field? Or should one think of “the 
stimulus” as the image pattern on the retina (theoretically 
appealing, but in practice very difficult to measure)?  

Likewise, should one think of “eye movement behav-
iour” in terms of sampling the 3D world with the point of 
fixation, or in terms of sampling the visual field with the 
point of regard? Or should one follow the lab-based defi-
nition of eye movements as rotation of the eye in the head 
(equivalent to POR movement in the head-centred visual 
field, but not in the body–centred or locomotor visual 
fields)? There is no one right answer to these questions, 
or even a general “best practice” to fall back on as a de-
fault choice. (For detailed discussion of the trigonometry 
involved in making the choice, see Epelboim et al., 1995; 
Duchowski et al., 2002; Diaz et al., 2013a). 

How to Define “a Fixation” in the Wild? (And 
Why it Matters) 

An eye tracker measures the position and orientation 
of the eye relative to the head (wearable eye trackers) or 
relative to elements in the fixed 3D scene (cameras in 
remote eye trackers). This gives the origin and orientation 
of the line of sight (gaze vector). Points of regard can be 
computed if the eye tracker is calibrated to a reference 
surface fixed to the head (wearable scene camera) or the 
allocentric frame of reference of the lab (a display).  
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Figure 1. Descriptive terminology used to refer to eye movement patterns in different frames of reference (f.o.r.). The “moving bits” 
(potentially variable signals) in each case are indicated with red dots. Top: In a sedentary task with head restraint, the head, body 
and allocentric 3D scene frames of reference are identical. Eye position directly specifies gaze in 3D, and its projection to a a 2D 
reference calibration surface. Bottom: The decomposition of gaze (eye + head + body) in the 3D scene into point of regard (POR: 
eye) and visual field (VF: head + body). Naturalistic eye tracking using a head–mounted tracker in free locomotion. While “gaze 
targets” (and hence AOI’s) may be identified in an eye trackers VF, determining gaze and the point of fixation (POF) in 3D requires 
accurate positioning of the head in the 3D scene f.o.r. (In physical settings this may be done e.g. by triangulating visible landmarks 
with known 3D locations in the VF image, or by using motion capture – as is required in a VR setting for updating  the virtual 
camera position and orientation). 
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Typically, when the reference surface is a display 
screen the stimuli are geometrical patterns displayed on 
the reference surface. 

For most tasks typical in eye movement research (la-
boratory, simulator and naturalistic alike), the most im-
mediately striking feature of the eye tracker output signal 
is how periods of relative stability ("fixation events") are 
interspersed with rapid eye movements shifting gaze to a 
new location ("saccade events"). This fixation/saccade 
dichotomy is a natural way to set off analysing the signal, 
and most eye movement research is based on identifying 
fixations and/or saccades (or other events such as pursuit 
and vestibulo-ocular responses).  

“Fixation behaviour” is the most commonly reported 
eye movement behaviour in both laboratory and simula-
tor/naturalistic experiments. What is usually reported in 
laboratory studies are results based on oculomotor event 
parameters, such as fixation durations, total fixation time 
on target, saccade velocities or latencies, or microsaccade 
frequencies etc. The motivation for this approach is that 
fixations are considered to be of interest because they 
stabilize gaze relative to the stimulus, creating a time 
window for the acquisition of high–resolution visual 
information required for higher level perceptual and cog-
nitive processing. The same rationale is usually present, 
explicitly or implicitly, in naturalistic studies. What is 
most often reported are “fixation” locations, counts, (cu-
mulative) durations, and gaze position distribution in the 
scene. For example dwell times within “areas of interest” 
(AOI’s). The eye movements themselves – what the “fix-
ations” are like – is rarely quantitatively described.  

But as “fixation” here usually refers to stability of the 
point of regard (at or near a visual target defining the 
AOI), or keeping the point of fixation at a physical object 
or location, it follows that insofar as head rotation or 
locomotion is present the oculomotor event type is actual-
ly a pursuit movement (“tracking fixation”), comple-
mented by compensatory eye movements (optokinetic 
and vestibulo–ocular slow eye movements). This then 
implies that a very different physiological state – differ-
ent oculomotor circuit activity – is involved as far as the 
theoretical definition of “a fixation” is concerned.  

Also pertinent to the present issue is that event detec-
tion algorithms for fixation detection from eye–in–head 
position signal will not work: what is required is gaze 
fixation detection not oculomotor fixation detection.  

The term “fixation” originally refers to oculomotor 
fixation, and under this interpretation has a definite phys-
iological meaning: stabilizing the eye in the head. When 
the observer moves in relation to the environment (and 
the environment moves in relation to the observer) 
movement or stability of the eye in relation to the head 
does not correspond to movement or stability in relation 
to a visual target. Maintaining a visual target in foveal 
view may involve the optokinetic reflex and/or smooth 
pursuit when the target moves in relation to the observer 
and when the observer moves in relation to the target. In 
this case, a functionally defined “fixation“ – looking at an 
object stationary with respect to the external world – will 
require a slow eye movement in the egocentric frame of 
reference. Gaze fixation as an eye movement class thus 
may consist of multiple oculomotor events: oculomotor 
fixation, smooth pursuit, vestibulo-ocular and/or optoki-
netic reflex.  

As an example, consider again the case of a car driver 
“fixating” a point on his future path (for example a pud-
dle on the road appearing over a crest or from behind a 
bend in the road). As he approaches the visual target, the 
horizontal eccentricity and the vertical declination of the 
target point change continually. Thus, a functional “fixa-
tion” that maintains the target on the fovea is actually a 
pursuit movement in driver centered egocentric frame of 
reference. Additionally, this pursuit movement corre-
sponds in magnitude and direction to the large-scale opti-
cal flow of road texture at and around the location of 
interest, thus, potentially, recruiting the optokinetic re-
flex. Finally, VOR will stabilize gaze against perturba-
tions caused by bumps in the road. 

Localizing gaze in a complex 3D scene with free mo-
tion implies that instead of a reference surface stationary 
relative to both the 3D scene and the subject, the point of 
vantage and the point of fixation can be represented in a 
3D model. (Objects moving in the scene, such as the 
participant’s hand, also should be tracked and the track-
ing data synchronized with the eye tracker to determine 
points of fixation on the objects).  

Gaze shifts (combined eye–head saccades: gaze shift 
= eye movement + head movement) and oculomotor 
saccades are functionally similar but, again, the oculomo-
tor characteristics differ. The eye–in–head velocity and 
amplitude no longer fall on the main sequence which is 
the operational definition of the oculomotor saccade OE 
class. This is because the movement of the eye is accom-
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panied by a synergistic head movement, and the OE char-
acteristics (eye-in-head velocity) depend on the contribu-
tion of synergistic head rotation (Collewijn et al., 1992). 

Thus, both the definition and identification of a “fixa-
tion” (gaze fixation, not oculomotor fixation) and “sac-
cade” (gaze shift, not main sequence OE) need to incor-
porate compensatory eye movements. At a terminological 
level, confusion may occur when the same term is used 
both for stabilizing the eye in the head and for maintain-
ing an object or location as the current target of foveal 
gaze. When the head and body are fixed to the 3D frame 
of reference these are the same thing, but when move-
ment is free they are not. And unless this is taken into 
account in processing the eye tracker output into “fixa-
tions”, spurious results may be generated. For example 
fixation duration and counts may be highly unreliable 
unless compensatory vestibulo–ocular and optokinetic 
eye movements are properly taken into account (Kinsman 
et al., 2012), and a tracking fixation can be a pursuit 
movement – possibly fast enough to be confusable with 
saccades on gaze velocity alone (Hayhoe et al., 2012).  

In complex naturalistic settings, accurately describing 
eye movement behaviour or “fixation behaviour” is not as 
straightforward as in a sedentary head–stabilized setup, 
and cannot ignore the contribution from head rotation on 
the stability and lability of gaze.  Multiple frames of 
reference and the intricate ways they are interrelated must 
be considered, and OE and gaze behaviour (3D rotation 
of the visual axis, or the 2D scanpath of the POR in the 
visual field) no longer correspond to each another. 

Oculomotor Event Identification vs. 3D Gaze 
Behaviour 

Before one can compute global variables that can be 
tested statistically, and given a psychological interpreta-
tion, several processing steps are applied to the raw gaze 
position signal from the eye tracker (Figure 2). Typically, 
it is partitioned it into oculomotor events drawn from a 
small number of different OE “types” (usually the canon-
ical classification separating fixation, saccade, and the 
slow eye movements, namely pursuit, VOR and OKR). 
This process is often referred to as event identification.  

Traditionally, event identification was done by visual 
inspection. Today, algorithmic methods are favoured, 
because they are suitable for analysing large volumes of 
data, and considered “objective”. Nevertheless, expert 
visual inspection still acts as a kind of practical gold 

standard, and algorithm output is typically argued for by 
comparing the results to visual inspection (e.g. Salvucci 
& Goldberg, 2000, p.71, Nyström & Holmqvist, 2010, 
p.197; Mould et al., 2012). 

It is not trivial how these stages of analysis from raw 
eye/gaze positions to fixations (and other events) are 
performed: the choices made can affect the results and 
theoretical conclusions one can draw (Salvucci & Gold-
berg, 2000; Shic, Chawarska & Scassellati, 2008; Shic, 
Scassellati & Shawarska, 2008).  

OE identification is performed after signal prepro-
cessing (filtering, rejection of blinks and bad data). It 
typically consists of sample classification (e.g. finding 
prospective fixations by a position dispersion threshold 
criterion), event detection (e.g. determining fixation onset 
and offset points), event rejection, and merging of detect-
ed events (e.g. combining fixations separated by “small” 
saccades into a fixation with longer duration, and position 
at the average). 

Different algorithms use different eye/gaze–signal 
properties to detect and classify OE’s. These are drawn 
partly from physiological properties of oculomotor be-
haviour established in paradigmatic laboratory tasks, 
partly from rules of thumb in the eye tracking literature.  
There is no one best set of criteria and classification 
rules; differences in equipment (such as sampling rates, 
or signal to noise ratios) and task (such as whether are 
movements or compensatory eye movements are present) 
may require different approaches. 

Event identification algorithms developed for seden-
tary applications may use methods that depend on as-
sumptions about the signal, and the behaviour, that are 
not met in more naturalistic experiments: oculomotor 
fixation detection is not the same thing as gaze fixation 
detection. Lab-based analysis methods, terminology and 
habits of thinking should not therefore be applied in an 
unreflecting way. 

Dispersion based OE identification algorithms identi-
fy a sequence of gaze position observations as a fixation 
if they satisfy a spatial and a temporal constraint. The 
temporal constraint is minimum fixation duration. A 
fixation event is detected by comparing the spread of 
successive gaze position observations against a spatial 
threshold parameter. Different dispersion measures have 
been used. 
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Figure 2. Oculomotor event identification workflow for the most commonly used approaches to partitioning of the eye position signal 
into discrete oculomotor events (OE). Several processing steps occur before OE statistics such as fixation durations or frequencies, 
or saccade amplitudes and velocities are computed. How the steps should be taken, and how decisions at different stages are 
interdependent are generally not very well established in the literature – even for laboratory tasks, let alone more complex simulator 
and real–world settings. I–DT: dispersion threshold identification. I–VT: velocity threshold identification.
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One possible measure is maximum pairwise distance 
(all data points belonging to a fixation must be within a 
specified distance, say, 1°, from all other data points 
included in the same fixation event). This is computa-
tionally costly, because the number of comparisons grows 
exponentially with the number of data points. More effi-
cient is to use maximum centroid distance (all data points 
within a putative fixation must be within a specified dis-
tance from the “moving average position” or centroid of 
the preceding data points in the fixation). But because the 
centroid shifts slightly with each new observation, this 
rule does not ensure that all observations within a fixation 
remain within any given region of space or that the 
pointwise distances remain within any given value. Shic, 
Chawarska & Scassellati (2008) consider this property to 
make the dispersion measure less ”transparent and inter-
pretable”. Note, for example, that a smooth pursuit could 
be classified as a fixation using this dispersion measure, 
but not the other two measures. 

The most often referenced I–DT algorithm (Salvucci 
& Goldberg, 2000) uses the dimensions of a bounding 
box, requiring that the sum of the distances of horizontal 
max and min and vertical max and min values should be 
below threshold. This is quite efficient, as each new ob-
servation need only be compared to the max and min 
values, and they are the only ones that must be kept in 
memory. However, the area (size) of the region of xy 
space within which the fixation points are will depend on 
the shape of the bounding box. 

A sequence of data points satisfying the spatial con-
straint will only be classified as a valid fixation, however 
if they also satisfy a minimum fixation duration parame-
ter. There is no single value for the minimum physiologi-
cally sensible minimum fixation duration. Values be-
tween 50 ms (Rayner, 1998) and 100–200 ms (Salvucci 
& Goldberg, 2000) have been used. (Nyström and 
Holmqvist, 2010, recommend a low value of 40 ms be-
cause they “manually identified several oculomotor fixa-
tions in the data, especially during reading, with durations 
below 50 ms”, p.197). 

Dispersion thresholding is clearly designed to identify 
oculomotor fixation, not gaze fixation when the subject’s 
head or body is in motion.  

Velocity-based OE identification algorithms set a 
minimum velocity parameter. The conceptually most 
straightforward way is to identify time points when the 

eye is moving faster than threshold: in this case the ob-
servation belongs to a saccade, otherwise it belongs to a 
fixation (provided a minimum fixation duration criterion 
is satisfied, as above). However, usually the way the 
velocity signal (derivative of position, difference) is used 
is to first identify velocity peaks, and then, if the peaks 
are fast enough to qualify as saccades, search for saccade 
onset and offset based on velocity profile (e.g. requiring 
that the saccade velocity profile be symmetrical), and 
also some reference values for eye velocity or accelera-
tion to determine saccade launch and landing (Smeets & 
Hooge, 2003; Nyström & Holmqvist, 2010). 

Nystrom & Holmqvist (2010) present an adaptive ve-
locity threshold algorithm, where the saccade peak veloc-
ity threshold is set algorithmically, based on the data, 
rather than chosen a priori by the user. In the first itera-
tion, an initial peak value is used (somewhere between 
100°/s and 300°/s). The mean and SD of valid samples 
(below threshold) are computed. The second-pass thresh-
old is set at six SD above the mean, and the procedure is 
iterated until convergence (when successive threshold 
values do not differ by more than 1°/s). 

Unfortunately, although saccades are called “rapid 
eye movements” (REM), while pursuit and VOR are 
called “slow eye movements” (SEM), the velocity ranges 
overlap so that a simple velocity cut–off point cannot be 
used to define a saccade. Eye velocity during a saccade 
depends on saccade amplitude in an approximately linear 
manner (Robinson, 1964; Becker & Fuchs, 1969; Bahill, 
Clark & Stark, 1975). While large saccades are very rapid 
indeed (eye velocity saturates at around 500°/s), small 
saccades can be quite slow (10–100°/s), while “slow” eye 
movements can be quite fast (pursuit > 100°/s, Lisberger 
et al., 1981, Hayhoe et al, 2012, VOR > 500°/s, see 
Sparks, 2002). Thus, only saccades with a large ampli-
tude are reliably detected by using a velocity criterion, 
and only in the absence of fast target or head movements 
eliciting pursuit/VOR. 

This is a potentially fundamental problem for all algo-
rithms that attempt to classify fixations and saccades 
based on the tacit assumption that during saccades the 
eye moves “rapidly”, whereas during fixation (including 
fixational eye movements, FEM) and SEM the eye moves 
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“slowly”; including more sophisticated methods than 
thresholding3.  

This assumption is problematic, regardless of the so-
phistication of the algorithm, because the velocity signal 
itself simply may not contain sufficient information to 
positively identify OE’s. And with free movement, eye–
in–head/POR velocity does not determine fixation stabil-
ity in 3D at all – head and body movement must be mod-
elled as well.  

Eye acceleration is used as the event detection criteri-
on by, for example, Behrens, MacKeben & Schröder–
Preikschat (2010). The rationale for using acceleration 
rather than velocity – even though it is a potentially more 
problematic signal to estimate, in terms of signal to noise 
ratio and filtering requirements (Nyström & Holmqvist, 
2010) – is the aforementioned overlap in the velocity 
range of different OE types making the velocity signal 
inherently ambiguous. The filtered position signal is used 
to estimate instantaneous acceleration, and the adaptively 
acceleration threshold for saccade detection is computed 
from the acceleration signal variability (they use 3.4 
sigma of the preceding 200ms, provided no saccade was 
detected within that window)  

Using velocity or acceleration–based algorithms re-
quire differentiating the position signal. This can be a 

                                                
3 More advanced eye velocity signal processing methods – still 
based on the eye velocity signal as the basis for OE 
identification – use Markov models or Kalman filters. Instead of 
comparing the data–point pattern to fixed reference values 
directly, the events (fixation, saccade) are thought instead as 
(latent) states associated with different velocity distributions, 
and event detection is the task of estimating the underlying 
hidden state, given observed data. In I–HMM (Salvucci & 
Goldberg, 2000) there is a two–state Markov model, where 
each state is associated with an observation probability 
distribution (the probability of observing each gaze velocity 
value, given the state) and transition probability distribution 
(the probabilities of changing state and remaining in the 
current state). The two states are intended to represent saccade 
and fixations states, respectively, with observation probability 
distributions centered on correspondingly high and low velocity 
values. The algorithm classifies data points by maximizing the 
conditional probability of the observation sequence, given the 
HMM. I–KF (Komogortsev & Khan, 2007; Komogortsev et al., 
2009, 2010) models the eye as a dynamical system – with the 
states position and velocity – going through an observation 
sequence and updating the state estimate based on the new 
observation and the previous state estimate, and a noise model. 
An eye velocity prediction is compared to observed eye velocity, 
using a χ2 test to detect saccade onsets. 

problem if the sampling rate is low (as it often is with 
mobile eye trackers), and because the signal needs to be 
heavily filtered (especially if the noise level is high), 
which can affect subsequent OE parameters. 

As discussed, in naturalistic studies, it is also para-
mount that the parameters of movement (or fixation) of 
the eye must be explicitly based on movement in a specif-
ic frame of reference. The right choice of coordinate 
system is essential both for posing meaningful hypothe-
ses and for being able to compute useful data. Changes in 
eye position (oculomotor events) only really make sense 
in the context of known frame of reference transfor-
mations.  

Handling of the coordinate transformations involved 
in measuring and modelling eye movements in the wild 
present additional methodological challenges – happily, 
they are being addressed increasingly in the technical 
literature (Duchowski et al., 2002; Reimer & Sodhi, 
2006; Munn, Stefano & Pelz, 2008; Munn & Pelz, 2009; 
Vidal, Bulling & Gellersen, 2011; Kinsman et al., 2012; 
Hayhoe et al., 2012; Diaz et al., 2013a; Larsson et al., 
2014). This kind of methodological development is es-
sential for advancement of the field.  

Unfortunately, while many algorithms are available 
both commercially and open source, no generally accept-
ed standards or guidelines have emerged, even for labora-
tory studies – less so field and simulator experiments – 
leaving each research group to tackle the same problems 
over and over, as they go along. It has been long recog-
nized that the current dearth of scientifically rigorous 
standards and guidelines in how the identification of 
OE’s from raw gaze position observations is performed – 
the choice of algorithm and parameters – is hampering 
progress in eye movement research (Karsh & Breiten-
bach, 1983; Salvucci & Goldberg, 2000; Nyström & 
Holmqvist, 2010; Shic, Scasselati & Chawarska, 2008; 
Shic, Chawarska & Scassellati, 2008; Komogortsev et al., 
2009, 2010).  

The quality of the signal (noise levels, sampling fre-
quency, missing data), and the experimental setup (view-
ing a static image under head–stabilized conditions vs. 
free head movement in a dynamic setting) can interact 
with the choice signal analysis (filtering, artefact remov-
al) and event detection methods in subtle and unintuitive 
ways. Different criteria for determining whether or not a 
fixation or a saccade occurs – or when it begins and ends 
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– make it difficult to compare results across studies. What 
is more, a poor choice of signal pre–processing or event 
identification algorithm can create artefacts, or otherwise 
substantially affect the results. It is therefore worrying 
whenever i. identification algorithms are chosen by con-
venience (e.g. using manufacturer provided software 
packages whether or not the present), ii. algorithms are 
described only qualitatively and informally, iii. their fit 
for current purpose is argued only on the basis that some 
previous study has produced “meaningful” or “reliable” 
results with a similar method,  iii. signal pre-processing 
performed in a nonchalant way (using rules of thumb or 
“commonly” used filtering methods). All three worries 
are regrettably often warranted. 

Let us close the discussion on the technical problems 
(and partial technical solutions) of oculomotor identifica-
tion by returning to the more fundamental question: is it 
conceptually or methodologically essential to definitely 
identify the OE “types” or oculomotor “fixations” in 
naturalistic tasks?  

The original motivation for fixation identification, 
remember, is that fixations are considered to be periods 
of acquisition of high-resolution visual information be-
cause they stabilize gaze relative to the stimulus. This is 
true for, say, reading, but not for complex behaviours 
involving full-body self motion and target motion. In this 
case attempting to parse the eye tracker signal without 
taking into consideration the spatial stimulus context of 
gaze control would not work.  

For example, Hayhoe et al. (2012) analysed gaze be-
haviour in squash. They found that about 0.2 seconds 
before the ball bounces from a wall, the point of regard is 
taken near the bounce location in the visual field, and 
after the bounce the gaze tracks the ball with a pursuit 
until shortly before bat contact is made. This is a visual 
strategy that is not based theoretically on OE fixation 
detection, or OE parameters, but consideration of gaze 
stability and lability in 3D and relative to specific task 
events. 

Note also that while the gaze is stable the head and 
body are moving. This means the “fixation” is not an OE 
fixation, and that because the gaze arrives in the bounce 
area before the ball, there is no target feature in the stimu-
lus array at that time (which is precisely why the authors 
are able make an argument for predictive control of 
gaze). 

Problems with Using AOI Methods “in the Wild” 
In practice, gaze behaviour in naturalistic studies is 

often reduced to AOI data, where observations are 
lumped into AOI’s (that is, regions in the visual field 
where the point of regard is within some specified 
threshold of a putative a priori identified target). This 
does not require parsing the eye tracker signal into ocu-
lomotor events, but it does require AOI’s to be decided 
upon. Relative gaze frequencies in different AOI’s are 
then computed for psychological interpretation. (These 
are sometimes referred to as “fixation behaviour” and 
“fixation durations” but, to be precise, the term glance 
behaviour and glance duration or AOI dwell time should 
be used when the oculomotor/gaze behaviour within the 
AOI is not known). Inferences about cognitive processes 
or control strategies are then made based on the back-
ground theory that was used to identify the putative gaze 
target, around which the AOI was formed. 

This is a relatively straightforward methodology and – 
at least with a lot of manual labour – can be performed 
for moving targets as well (these present dynamical AOIs 
that do not occupy a constant position in the visual field). 
The approach is, however, unsatisfactory from a couple 
of perspectives. First, lumping gaze position observations 
into AOI’s loses information about the detailed pattern of 
movement. The method is probably used mostly out of 
convenience. Accurate, reliable and easy to use means to 
parse naturalistic eye tracker data are not well established 
in the field. Also, it may represent baggage from lab-
based studies: in a sedentary task with very high posi-
tional accuracy an AOI method can be a good way to 
identify fixations (although it will lose information on 
fixational eye movements). In a mobile task with high 
noise levels (requiring larger AOI’s), it is much less satis-
factory. 

The size of a useful AOI depends on the positional 
accuracy of the equipment, and this creates perhaps the 
biggest problem for the use of the AOI method with natu-
ralistic settings where measurement accuracy is often 
less. The placement of AOI's is critical for meaningful 
interpretations. In particular: the relevant targets in the 
scene must not be so close together that the AOIs would 
overlap. This becomes a problem when the AOI’s must 
be relatively large because of limited tracking accuracy, 
and their placement is not under the control of the exper-
imenter.  
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If there are multiple hypotheses about which targets 
the subject may be using as cues, the AOI’s derived from 
the different hypotheses must be non-overlapping to be 
able to differentiate between the hypotheses. If one only 
cherry-picks one or a few of the possible alternatives as 
the basis for defining one’s AOI’s and interpreting one’s 
data, serious confirmation bias will result. Hits in an AOI 
cannot be interpreted as support for the hypothesis that 
was used to define the AOI if other potential targets, 
related to other, competing hypotheses, are also present in 
the AOI.  

An example in the field of driving is the analysis of 
curve–driving gaze strategies. (See Lappi, 2014, for a 
more detailed run–down of the argument in this context, 
and Lappi, Lehtonen, Pekkanen and Itkonen, 2013, where 
the argument is worked out with on–road gaze data). On–
road gaze tracking has showed that in curves drivers’ 
gaze is quite stereotypically drawn towards the inside of 
the bend, into the near vicinity of the tangent point (Land 
& Lee, 1994).  In other words, a lot of the time the POR 
can be found in an AOI placed around the tangent point 
(see replications in Chattington et al., 2007; Kandil, Rot-
ter & Lappe, 2009, 2010).  

But how much of this is due to drivers actually look-
ing at the tangent point, and how much is to do with the 
tangent point just being there, geometrically close to 
some other point(s) on the road that the driver is steering 
towards? While most on-road studies (e.g. Underwood et 
al., 1999; Kandil, Rother & Lappe, 2009, 2010) have 
chosen to interpret their findings in terms of replicating 
the “TP orientation” result, some recent studies (Lappi, 
Pekkanen & Itkonen, 2013; Itkonen, Pekkanen & Lappi, 
2015) have cast doubt on the tangent point as “the” point 
that we look when we steer through a bend. Importantly, 
these new results are based on analysing optokinetic 
pursuit parameters – not the standard AOI techniques 
(which can only produce ambiguous data when the alter-
native hypotheses predict gaze targets to fall very close to 
one another in naturalistic settings), or “fixation” counts 
or durations. 

Virtual vs. Physical Settings 
A virtual reality/simulator setup does not automatical-

ly solve the more fundamental problem of how to param-
eterize gaze and behaviour. But it can be useful in that in 
order to render the environment to the participant, it al-
ready needs to have been geometrically modelled. This is 

advantageous not only because a higher calibration accu-
racy can be achieved, but because it facilitates an algo-
rithmic approach to modelling gaze (points of vantage 
and points of fixation in 3D, rather than relying on point 
of regard analysis – especially intensive manual frame–
by–frame analysis of head camera videos is not practical 
for large datasets). For an instructive example, compare 
the aforementioned Hayhoe et al. (2012) study – where 
the gaze strategy was identified – to the follow-up studies 
(Diaz, Cooper & Hayhoe, 2013; Diaz et al., 2013b) where 
the behaviour is investigated in more detail using a VR 
version of the original task. 

This only helps with solving the problem of measur-
ing and modelling the physical environment and localiz-
ing the participant accurately (a big step, admittedly!). 
The problem of parameterizing the stimulus and behav-
iour for the purpose of answering a particular research 
question is a conceptual, not only technical problem.  

Clever design of the experimental paradigm is still 
key to achieving meaningful results. As in the real world, 
good research cannot come from putting people into a 
high fidelity simulator and recording “what they look at”. 
In a simulator this question is at least relatively well 
defined in terms of points of fixation/regard having coor-
dinates in known frames of reference (objects and loca-
tions must have at least some representation before they 
can be presented in a simulator in the first place) – this is 
not often the case in real-world experiments. 

Conclusion 
In contrast to the typical laboratory eye tracking set-

up, most of our everyday behaviour (at least for most 
people in most cultures) does not occur with the person 
stationary in one location, seated in front of a static 2D 
visual display. Instead, humans and animals move about, 
to observe a 3D scene from one point of vantage to an-
other. Running, driving, dancing, bicycling and sports are 
of course “locomotor tasks” – but also cooking, infant 
care, tool use, and many forms of social interaction are 
inherently non-sedentary. If we do not understand how 
active movements of the body and the eye are used to 
update our representation of visual space (and how the 
resulting changes in point of vantage and gaze direction 
are integrated in visual perception and action) then we 
will not understand vision (Ballard, 1991; Tatler & Land, 
2011). 
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But the real world is often a messy place. Experi-
ments in the wild can be fraught with complexities and 
uncertainties that do not present themselves in controlled 
laboratory conditions. Thus, to understand behaviour in 
the real world, methodologies and arguments that rest on 
many kinds of assumptions that apply in the laboratory 
but which may not be valid in the field may need to be 
modified.  

Simulators can offer advantages over more restricted 
laboratory tasks in terms of “realism”. However, as the 
level of realism increases, the same problems confronted 
in the real world start to crop up (with the added problem 
of undetermined behavioural validity). How realistic, and 
hence how complex, “should” a simulator be? There may 
be a tendency to view maximally realistic high-fidelity 
immersive simulators that reproduce the phenomenology 
of "being there" as being the best. But while this is cer-
tainly the case for entertainment purposes, for doing 
research this is not so clear-cut. The more complex the 
simulator is, the more difficult it is to validate, the new 
challenges come up in the analysis and interpretation of 
patterns in the data. In particular, the problems of param-
eterizing the complex behaviour and identifying the rele-
vant stimulus parameters   

When research is taken from simple and controlled 
laboratory task to complex and information rich envi-
ronments – real or simulated – there is a subtle change in 
one’s philosophical approach to model building. The 
emphasis shifts from statistical models of relatively trivi-
ally identified parameters (such as reaction times) to-
wards finding out the behavioural strategies and stimulus 
parameters people actually use when engaged in complex 
naturalistic tasks. As opposed to demonstrating a statisti-
cal dependence of one predefined physiological response 
parameter (such as saccade latency) on a controlled (a 
priori known) stimulus parameter, saccades are instead 
approached as gaze shifts that move foveal gaze from one 
target of interest to another, and fixations as periods of 
relative stability of the gaze in space, rather than the eye 
in the head. The question of interest then becomes: What 
role does the gaze (re)alignment with this visual feature 
serve in the organization of the task? What information is 
gleaned from this fixation? What is the significance of 
stabilization/retinal flow patterns that the eye movement 
pattern generates in the periphery? (See e.g. Regan & 
Gray 1999; Wann & Land 2000; Wilkie, Wann & Alli-
son, 2008).  

These are questions that we are only beginning to ad-
dress – partly because of technical challenges, partly 
because of a preoccupation of the field with “fixation 
behaviour”. For example, asking only when (or how often 
within an average “trial”) foveal gaze falls within a pre–
defined AOI rather than inquiring in detail in the pattern 
of eye movements during gaze stabilization and gaze 
shifts, and how these are coupled to head, hand and body 
movement. 

An eye tracker – when it is calibrated to a reference 
surface or a world model – can tell us where the subject is 
looking, but does not directly tell us what the subject is 
looking at. For example, in the case of predictive gaze in 
squash the player appears to be looking at “the wall” or 
“the floor”, but the real stimulus parameter that is con-
trolling gaze landing is the predicted future bounce point 
of the ball. Classifying these gaze-stability events as 
“looking at the wall” would be uninformative or just 
plain wrong. (This could happen with the use of manual 
video frame annotation without having first analysed the 
task structure and visual strategy as a whole). In the 
driving case the driver is similarly looking at “the road”, 
and the stimulus parameters and cognitive processes 
involved remain to be discovered.  

So, eye tracking in the wild  – visually rich natural-
istic settings, with unrestrained head movement and dy-
namically complex locomotion – cannot be pursued 
simply by putting an eye-tracker on the participant and 
meticulously recording “where they look”. 
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