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Introduction 

Multimedia learning materials increasingly make use 
of animations and interactive simulations to supplement 
or replace static (book-style) illustrations (Moreno & 
Mayer, 2007). Although such multimedia learning 
environments would appear to offer more powerful 
pedagogical tools than those with only static illustrations 
(Paas et al., 2007), their impact on learning is not yet 
clear. For example, according to Paik and Schraw’s 
illusion of understanding hypothesis (2013), when people 
are learning with multimedia presentations, animation 

affects metacognitive monitoring such that they perceive 
the presentation to be easier to understand and develop 
more optimistic metacomprehension. Consequently, 
learners invest less cognitive effort when learning with 
animation. 

Learning effects can be different depending on the 
type of animation, representational, or referential. 
Representational animation, typically used to portray 
behavior of dynamic systems over time, may have a 
negative effect on learning by creating an illusion of 
understanding. In contrast, referential animation, by 
including elements of cueing of the viewer’s attention 
toward a particular region of an image (e.g., flashing, 
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change of colors), may have a positive effect on learning 
by highlighting relevant visual elements that help the 
learner to integrate aural and visual components of 
multimedia (Paik & Schraw, 2013). 

We are just beginning to understand when animation 
or interaction can foster learning and when it can 
overburden the learner’s cognitive system (Mayer, 2010; 
Boucheix & Lowe, 2010). Interactive media, in contrast 
to animation, which allows the user to manipulate 
graphical elements, e.g., with the use of a mouse, is 
generally thought to offer learning benefits primarily due 
to the highly specialized experience afforded by the 
interaction. Interaction affords a self-paced, customized 
presentation of the material that the learner constructs via 
direct manipulation of the interactive tools. Compared to 
mass-produced video intended for a large audience, 
affording customization mainly via the familiar  “VCR 
control” metaphor (e.g., pause, play, rewind, etc.), 
interaction offers a highly individualized learning 
experience. 

Positive learning effects of interactive multimedia, if 
any, may derive either from its potential for 
individualized customization or perhaps from its potential 
for directing visual attention (e.g., its directive effect 
similar to that of referential animation). However, 
research designed to evaluate learning tends to focus on 
the measurement of retention and comprehension and not 
necessarily on the measurement of attentional distribution 
(Hegarty, 2004). Supplementing established empirical 
metrics of retention and comprehension, eye tracking 
methodology offers direct evidence of the distribution of 
visual attention during learning. Previous eye tracking 
studies have effectively utilized traditional eye movement 
metrics such as fixation counts and fixation durations, 
supplemented by heatmap and scanpath visualizations. 
Analysis of gaze transitions can provide additional 
insight into how attention switches between visual 
elements of the learning environment. 

The purpose of this paper is to introduce the use of 
high-level analyses of eye movements, in particular 
entropy-based statistical comparison of transition 
matrices, into the multimedia learning domain. Although 
transition matrices have been employed previously in this 
context (multimedia learning), their use has been limited. 
Following a review of past work, we introduce K. Krejtz 
et al.’s (2014, 2015) framework for computing transition 
matrices given a set of Areas Of Interest (AOIs) defined 

atop the stimulus area (e.g., computer screen). We 
provide details on how these matrices are quantitatively 
compared using empirical entropy, which allows 
computation of statistical significance between two or 
more conditions. 

We use transition matrix analysis to compare visual 
attention when learning to solve the Towers Of Hanoi 
(TOH) problem using different forms of visualizations—
static illustration, self-paced animation, or interactive 
simulation, each accompanying related textual 
information. We consider differences of visual attention 
distribution in relation to learners’ working memory 
capacity. 

Background 
In this survey of previous work on multimedia 

learning, we focus on efforts in which eye tracking was 
used, noting that a statistical comparison between gaze 
transition matrices has not previously been applied in this 
context. Assuming that humans attend to and process 
visual information under fixation (Just & Carpenter, 
1980; Hyönä, 2010), eye tracking is used to delve deeper 
into the cognitive processing that occurs during 
integration of textual and pictorial content. 

Reading and scene perception yield different eye 
movement patterns. During reading, fixations last on 
average about 200-300 ms, however, when exploring a 
scene, fixations can range from under 100 to over 500ms. 
in duration, averaging about 300ms. (Rayner, 1998). 
Fixation duration and fixation counts are treated as 
indices of cognitive effort in information processing. For 
example, longer fixation durations on stimuli are 
indicators of greater processing difficulty. More 
important elements of a scene receive more attention 
(more and longer fixations), than scene elements that are 
less relevant to the task (Christiansen, Loftus, Hoffman & 
Loftus, 1991). Similarly, a number of eye tracking studies 
on reading has demonstrated that not all words are fixated 
equally. Longer, less frequently occurring content words 
are more likely to be fixated (Rayner, Pollatsek, Ashby & 
Clifton, 2012) than, for example, function words e.g., 
articles such as “the”, “and”, etc. (Rayner & McConkie, 
1976). 
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Differences in reading and scene viewing are even 
more pronounced in saccadic characteristics. Due to 
typically higher stimuli density, shorter saccades of about 
2 degrees are typical for reading, whereas saccades twice 
as long are observed during scene perception (Rayner, 
1998). 

Scanpath Comparison 
In the context of multimedia learning, previous eye 

tracking studies mainly focused on visual attention 
deployed to animations with different design features 
such as spoken or written text (Schmidt-Weigand, 
Kohnert & Glowalla, 2010), different forms of cues 
(Boucheix & Lowe, 2010), or different presentation 
speeds (Meyer et al., 2010), taking into account learner 
characteristics such as prior knowledge (Jarodzka et al., 
2010). Thus far, few studies explicitly investigated the 
process of information acquisition from multimedia 
learning materials with scanpath analysis (temporal 
sequence of gaze fixations), which allows for careful 
investigation of attention allocation by the analysis of 
transitions between different parts of the learning 
material (Duchowski, 2002). 

An interesting example of scanpath analysis in the 
context of multimedia learning comes from Yoon and 
Narayanan (2004), who tested whether mental imagery 
used as a strategy of solving a problem is reflected in eye 
movement patterns. They reported that scanpaths of 
participants engaged in mental imagery while looking at a 
blank display reflected their scanpaths recorded when 
they previously looked at the diagram. Their scanpaths 
differed from those of participants who did not engage in 
mental imagery. 

Scanpath analysis has also been used to compare eye 
movement patterns of experts and novices (Bednarik & 
Tukiainen, 2008; Rosengrant, 2010). For example, 
Bednarik and Tukiainen (2008) observed how 
programmers visually attend to program code and its 
animation. Novices relied on animation to formulate their 
mental model of the program, whereas experts first 
formed a mental model of the code and then used the 
animation to verify their hypotheses of the program’s 
functionality. 

In a special issue on eye tracking in the context of 
learning, Hyönä (2010) reviewed traditional eye 
movement metrics, including analyses based on fixation 
counts, durations, as well as scanpath similarity. 

Transition matrices were not highlighted in the review. 
Although a good deal is known regarding animations and 
learning, most of the knowledge centers around product-
related measures, e.g., what has been gleaned from 
comprehension (de Koning et al., 2010). Much less is 
known about how learners visually attend to instructional 
animations, that is, indicating the real-time perceptual 
and cognitive processes involved. Evaluations of the 
proportion of the number of fixations in each of a number 
of AOIs along with the proportion of total time fixated on 
each AOI are typical, but transition matrices could be 
helpful by indicating attentional switching between the 
AOIs. 

Lowe and Boucheix (2011) note the sophisticated 
nature of cognitive processing of animation and the need 
for a better understanding of the various perceptual and 
cognitive activities that it involves. When animation 
accompanies text, quantitative analysis of the frequency 
of gaze transitions is likely to be helpful. Lowe and 
Boucheix compared attention distribution in terms of 
fixation durations between static and dynamic segments 
of the stimulus but they did not evaluate transitions per 
se. 

More recently, Eitel et al. (2013) examined the 
socalled scaffolding assumption with analysis of recorded 
eye movements. They used heatmaps and rose diagrams 
as well as quantitative metrics to gauge the effect of 
audio inclusion in pictorial diagrams of pulley systems. 
Transition diagrams were not employed. 

Van Meeuwen et al. (2014) used transition matrices 
but only evaluated mean transition differences, i.e., 
differences in the mean number of transitions between 
one pair of AOIs differing from a transition between 
another pair of AOIs. This is similar to SchmidtWeigand 
et al.’s (2010) two-celled transition matrix analysis. Both 
approaches essentially considered pairwise AOI 
transitions piecemeal, limiting the analysis to a small 
number of AOIs and transitions between them. Our 
matrix-based approach allows comparison of transitions 
between any number of AOIs and, via computation of 
entropy, offers a holistic comparison between all 
transitions performed (e.g., by individual participants in a 
given experimental condition). 

Our approach is perhaps most similar to that of Jian et 
al.’s (2014) use of transition diagrams, however, as with 
previous examinations of transitions, only pairwise 
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transition comparisons were made. In other words, while 
employing transition diagrams, Jian et al. effectively 
compared transitions between corresponding diagram 
edges. Our transition matrices contain this information 
implicitly (matrix elements represent diagram edges), but 
due to computation of entropy, we are able to compare 
between two transition matrices (complete diagrams) 
holistically instead of element by element, i.e., computing 
a single number per transition matrix. 

Before demonstrating the use of our transition matrix 
analysis in the particular context of multimedia learning, 
we first review prior work in this area, with emphasis on 
why multimedia learning environments are thought to 
offer potential for deep learning (Marton & Säljö, 1976). 
We also review the concept of working memory capacity 
and consider how it is likely to impact learning from 
interactive multimedia materials. We then present results 
of our eye tracking study in which we measured what is 
attended to using traditional eye movement metrics, and 
then employ transition matrices to gain insight into: (a) 
how much attentional switching there is between 
different media components, (b) which components are 
linked together during attentional switching, (c) how 
readers choose entry points and reading paths, and (d) 
how they integrate text and media when making sense of 
novel content. 

Interactive Multimedia Learning Materials 
Multimedia learning materials consist of at least two 

modal contents, namely textual and pictorial (Mayer, 
2002). This definition also includes static (book-style) 
illustration accompanying text. Combining verbal and 
non-verbal knowledge representations can enhance 
understanding of the material (Schnotz & Horz, 2010; 
Krejtz et al., 2012). On the one hand, the learner’s 
understanding of presented material may improve from 
an increase in the perceptual processing of relevant 
portions of the illustration (Holsanova et al., 2009). On 
the other hand, dynamic animations may interfere with 
knowledge acquisition by overloading cognitive 
resources (Ayres & Paas, 2007). 

Currently, interactive multimedia learning is often 
associated with interactive applications providing multi-
directional communication between the learner and 
instruction (Moreno & Mayer, 2007). Interaction makes a 
substantial difference on how knowledge is acquired. 
Students construct their knowledge in a selfpaced style by 

selecting, organizing, and integrating new information, 
e.g., by manipulating graphical elements on the screen. 
This may require substantially more cognitive resources, 
but it may also lead to better understanding of learned 
material. For example, Nusir et al. (2012) showed that 
teaching children basic mathematics skills with 
multimedia materials affected their attention especially 
when cartoon characters were used. Similarly, in the 
context of medical education, Holzinger et al. (2009) 
presented evidence that interactive multimedia are 
cognitively demanding but are beneficial when additional 
guidance is provided and when students have sufficient 
previous knowledge of the topic. 

Traditionally, most of the work evaluating interactive 
multimedia learning materials has focused on its 
instructional design principles such as spatial and 
temporal contiguity (Moreno & Mayer, 1999), the type of 
delivery media used (Mayer, 2002), cognitive load 
(Moreno & Valdez, 2005), or sense modalities used to 
receive information (Moreno & Mayer, 2001). Although 
multimedia learning requires complex cognitive 
processing, the relationship between multimedia learning 
and working memory, the core concept of recent 
cognitive theories, is less clear (Dutke & Rinck, 2006; 
Unsworth & Engle, 2007). 

Impact of Working Memory Capacity 
Working memory capacity (WMC) is an individual’s 

ability to simultaneously process a primary task, maintain 
new information, and retrieve relevant information 
regarding the current task goal (Unsworth & Engle, 
2007). Working memory theories differentiate working 
memory into subsystems which are responsible for 
processing information from different modalities and 
executive functions which control processing and 
integration of newly acquired information (Baddeley et 
al., 1998). Baddeley’s (2000) model of working memory 
describes a central executive system, associated with 
controlled processing and attention, which coordinates 
operations of three subsystems: the phonological loop for 
speech-based information, the visuospatial sketchpad for 
visuospatial-based information, the episodic buffer 
(responsible for integrating information). The subsystems 
have limited capacity for parallel information processing 
(Baddeley, 1999). Working memory is strongly 
associated with the effectiveness of learning, and the 
mental processes of text comprehension and reading 
(Baddeley, 1986). High working memory capacity is 
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favorable for performance of complex cognitive tasks 
including attentional control (Engle & Kane, 2004), and 
mathematical performance (Ashcraft & Kirk, 2001). 

Controlling for working memory capacity may 
explain variability in learning outcomes (Andrade, 2001). 
When faced with complex material, WMC may influence 
the strategies used to learn (Schuler et al., 2011). 
Gyselinck and Meneghetti (2011) reviewed studies 
focused on the role of working memory in processing text 
containing illustrations and reported consistent finding of 
the involvement of the visuospatial working memory 
during processing of illustrations. They pointed to the 
value of working memory in examining mechanisms 
involved in complex cognitive tasks. 

Gyselinck et al. (2000) compared high and low 
working memory individuals on text comprehension in 
two conditions: with and without accompanying static 
illustration. Only learners with high visuospatial working 
memory benefited from the illustration. Gyselinck et al. 
concluded that sufficient visuospatial working memory 
capacity is required for effective illustration processing. 

In an eye tracking study, Sanchez and Wiley (2006) 
tested comprehension in three conditions: text-only, text 
with relevant pictures, and text with irrelevant pictures, 
among high and low WMC individuals. Comprehension 
of text was lower for low WMC individuals when 
irrelevant pictures were presented. Monitoring of eye 
movements showed that learners with high WM capacity 
spent less time looking at irrelevant pictures, which 
suggests better control of attention. 

An integrated cognitive model of text and picture 
comprehension put forth by Schnotz and Bannert (2003) 
describes how knowledge from different modalities is 
simultaneously acquired and integrated into mental 
representations. The integration and interaction between 
different modalities (textual and pictorial) starts at the 
early stages of information processing. The side effect of 
the early integration of different modalities is the high 
requirement for working memory resources. Assuming 
sufficient cognitive resources, continuous integration 
fosters creation of a common mental model that is 
modality-unspecific. 

Dutke and Rinck (2006) presented empirical evidence 
for the link between working memory capacity and 
processing information from two modalities. They 
showed that integration of elements from different 

sources (verbal descriptions and pictorial depictions) 
posed more demands on working memory resources than 
integrating information from one modality. In another 
study, segmentation of multimedia material facilitated 
deep learning and allowed high working memory 
capacity individuals to outperform those with lower 
working memory capacity (Lusk et al., 2008). 

In our study, we expected to observe differences in 
visual attention distribution and patterns of gaze 
dynamics when learning from text accompanied by 
different types of visualization (static illustration, self-
paced animation, and interactive simulation). Compared 
to the other two conditions, interactive simulation 
requires action (manipulation of parts of the simulation) 
in addition to comprehension and as such is more 
cognitively demanding. We expected that interactive 
simulation would induce continuous integration of textual 
and pictorial content which may depend on working 
memory capacity. We test this hypothesis by tracking eye 
movements, and use recorded gaze as an indicator of 
deployment of overt visual attention to the different 
visualization forms. 

Hypotheses 
In the present study, we use recorded scanpaths to 

ascertain how learners make use of graphical and textual 
information. Relying on the eye-mind hypothesis (Just & 
Carpenter, 1980), assuming gaze direction is linked with 
one’s overt focus of attention, recorded eye movements 
offer insights into how and when cognitive load occurs 
and, in turn, how readers’ eyes move in response to 
interaction. 

To evaluate the efficacy of multimedia learning 
materials, we used an online learning web page with one 
of three types of visualizations of the Towers Of Hanoi 
algorithm: static illustration, self-paced animation 
(video), or interactive simulation. We hypothesized that 
patterns of attention allocation would differ as a function 
of type of visualization accompanying text, and of the 
learner’s working memory capacity. 

By referring to Schnotz and Bannert’s (2003) 
integrated model of text and picture comprehension, we 
predict that interactive simulation fosters knowledge 
integration, inducing more systematic visual examination 
of the learning material (text and visualization) but at the 
same time poses more cognitive demands. 
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Method 
The present study is a mixed design eye tracking 

experiment with the type of visualization (static 
illustration vs. self-paced animation vs. interactive 
simulation) as a between-subject manipulated factor and 
the type of Area Of Interest (lines of text and 
visualization) as a within-subjects factor with working 
memory capacity as a main controlled variable. 

Participants 
Sixty-three senior high school students took part in 

the study (15 F, 48 M, mean age 19). The school was 
chosen because it was profiled as one with its main focus 
on mathematics and computer science, consequently it 
provided a relatively unified sample due to motivation for 
learning mathematics and mathematical skills. 
Participants signed a consent form and were obliged to 
provide a signed consent from their legal caregiver. Due 
to technical problems during the experiment (calibration 
errors and low eye tracking ratio) the final sample 
consisted of 43 participants. The calibration error was is 
reported separably on the x-axis (M=0.57, SD=0.16) and 
and on y-axis (M=0.56, SD=0.21). The average tracking 
ratio was 88.36% (SD=9.40). Participants with poor 
calibration were invited to complete the experimental 
procedure for ethical reasons. 

Stimuli and Procedure 
The experimental procedure consisted of two tasks 

presented in random order. Participants began either with 
a working memory task or with a learning task. When 
learning, participants’ eye movements were recorded. 

Learning task. For the present study we chose the 
Towers Of Hanoi (TOH) as the algorithm that 
participants were asked to learn. The TOH problem is a 
classical puzzle-solving situation that does not involve 
domain-specific knowledge and hence is often used to 
investigate basic cognitive mechanisms such as search 
and decision-making mechanisms (Richard et al., 1993). 
The problem is usually presented as a planning task 
whose difficulties involve planning consecutive and 
correct moves, not as a problem involving restructuring. 
According to Richard et al. (1993), solving the TOH 
problem calls for elimination of misconceptions that are 
not consistent with the solution process. Although the 
solution to the problem can lead to modeling of 
understanding and solving a problem in general, we 

mainly use the problem to investigate gaze switching 
mechanisms. However, we do not model gaze switching 
per se, rather we show that it differs when interactive 
tools are made available to the learner. 

Zanga et al. (2004) point out that the TOH is a 
welldefined problem in that the learner has access to all 
the information they need, namely a specific goal, 
described in the form of a state, and the rules for 
transformation. Often a self-paced animation is shown to 
participants, and testing situations arise where specific or 
non-specific goals are also depicted to viewers. We use a 
self-paced animation of the solution as one of our test 
conditions. 

We use the classical TOH problem (Tijus et al., 
2006), which consists of a stack of n disks of decreasing 
diameter stacked on one of three pegs, with two other 
pegs initially empty. The problem requires relocation of a 
stack of disks from the first peg to the third observing 
two rules: only one disk can be moved from one peg to 
another, and a disk with larger diameter cannot be placed 
atop one with a smaller diameter. The middle peg can be 
used in the process. The problem is discussed in many 
sources, including the text by Graham et al. (1994). 

Learners were given the description of the problem in 
three consecutive web pages presented on separate 
screens describing the TOH problem. Each web page was 
presented in MS Internet Explorer 8 in full screen mode. 
Each participant’s task was to learn about the problem. 
There was no time limit for learning. The first screen 
included an introduction and presentation of the problem 
along with plain text information on how to solve it. The 
next screen included a more specific description of the 
solution with specific steps that need to be performed in 
order to arrive at the solution, see Figure 1. On the same 
screen, together with the textual description of the 
problem, learners were presented with one of the three 
variants of visual aid: 

1. a static illustrated sequence of 7 consecutive 
snapshots for each move for n=3, see Figure 1(a); 

2. a self-paced animation, showing a visualization 
of continuous movements of 3 disks, which could 
be repeated on demand, see Figure 1(b); or 

3. an interactive simulation (also with 3 disks) 
allowing the user to manipulate the disks with the 
use of a mouse, see Figure 1(c). 
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The analyses presented in this article were performed on 
data collected during learning from the second page of 
the learning task, which differentiated the experimental 
conditions, see Figure 2. 

Working memory task. Participants’ working memory 
capacity was measured with a computerized version of 
the Visual Digit Span Task (backward version) (Conway 
et al., 2005), wherein a participant is presented with a 
series of digits, each appearing for one second on the 
screen. The goal is to remember the digits and then to 
immediately recall all numbers in reverse order. 
Successful trials are followed by ones where the number 
of digits is increased by one. The procedure stops with 
the second failed trial. The score is calculated as the 
maximal length of digits correctly recalled during all 
trials (Woods et al., 2011). 

Apparatus 
The Visual Digit Span was performed on a standard 

15-inch PC screen. During the learning task, eye 
movements were recorded at 250Hz by an SMI eye 
tracking system, with spatial resolution of 0.03 degrees of 
visual angle, and gaze position accuracy of 0.4deg., 
according to the manufacturer. Participants were seated in 
front of a computer monitor (1680 ×	1050 resolution; 22-
inch LCD, 60Hz refresh rate). SMI’s Experiment Center 
software was used to present stimuli and to synchronize 
with recorded eye movements. SMI’s BeGaze software 
was used for fixation and saccade detection and raw data 
cleaning, with default settings used to classify fixations 
and saccades via High Speed Event Detection, a velocity-
based algorithm (Salvucci & Goldberg, 2000). The peak 
velocity threshold was set to 40deg./s, the minimum 
saccade duration was set to 22ms., and the minimum 
fixation duration was set to 50ms. 

Independent Variables 
The experiment followed a factorial design with the 

type of visualization as a main independent variable at 
three levels: static illustration vs. self-paced animation vs. 
interactive simulation accompanying textual description. 
For the transition matrix analyses a withinsubjects 
independent variable Areas of Interest was created. AOIs 
were drawn around each line of the textual algorithm 
description (eight lines) and one around the visualization. 
Working memory capacity was a continuous predictor. 

Dependent Variables 
Results were analyzed in terms of time to learning 

completion, and eye movement characteristics. Eye 
movement characteristics were calculated for Areas of 
Interest around the textual description of the TOH 
algorithm and its visualization. 

Learning completion time. Time to learning 
completion was calculated as the time from the onset of 
the second learning page to its offset. The learning time 
was self-paced. Participants were allowed to spend as 
much time with the page as they needed. Time to learning 
completion may be an indicator of effort required to 
understand the TOH algorithm. 

Fixation count. Fixation count is a number of 
fixations on the second learning page during the whole 
learning completion period. Fixation count is an indicator 
of visual processing of selected stimuli during the 
learning process (e.g., the textual portions of the 
stimulus). We expected different types of visualizations 
to have an affect on fixation counts over multimedia 
learning materials. 

 

	

(a) static illustration                               (b) self-paced animation                            (c) interactive simulation 

Figure 1. Example of Towers of Hanoi visualizations on screen 2.  
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Fixation duration. Fixation duration is an average 
duration of fixation measured in milliseconds. According 
to the literature, a longer fixation duration is associated 
with a deeper and more effortful cognitive processing of 
visual information, see (Just & Carpenter, 1980). For 
instance, more complicated texts or more complicated 
grammatical constructs increase fixation durations 
(Rayner, 1978, 1998; Rayner et al., 2012). Fixation 
duration may thus be considered as an indicator of effort 
needed for visual information processing.  

Transition matrices. Gaze patterns were summarized 
for all participants with transition matrices (Ponsoda et 
al., 1995; Acartürk & Habel, 2012; K. Krejtz et al., 2014, 
2015). In the present study, transition matrices were 
constructed from AOIs drawn around each line of the 
algorithm description and one AOI around the 
visualization and white space (rest of the stimuli/second 
page).  

Each transition matrix cell represents the number of 
transitions from the AOI represented in the row to the 
corresponding column AOI. The value of each cell was 
normalized by the marginal sum of each cell’s row, 
resulting in a probability score. Transition matrices were 
calculated for the second page of the TOH problem (the 
page with the visual aid for each visualization type). 

Empirical entropy. To investigate how careful the 
reading was, empirical entropy,  , was calculated for 
normalized transition matrices. Empirical entropy  was 
calculated individually for transition matrices for each 
participant allowing us to treat it as a dependent variable 
in the statistical analysis. For technical details, see Gaze 
Patterns and Transition Matrices in the Results. Low 
entropy values may be associated with higher 

predictability of eye movements (transitions between 
different AOIs) while high values of entropy indicate 
more random transition processes. 

Results 
Statistical analyses were conducted using R (R 

Development Core Team, 2011). To test the hypotheses a 
series of Multilevel Linear Models (MLMs) was 
constructed. These models allowed us to verify the 
influence of different types of visualizations and working 
memory capacity on dependent variables as well as to 
control for learning task completion time as a covariate. 
The MLMs also allow for estimation (and simple 
comparison) of means across different levels of 
predictors (Field et al., 2012). Eye tracking data were 
nested in the Areas of Interest (text vs. visualization). 
Contrasts for the type of visualization predictor assumed 
the static illustration as a baseline. 

Prior to the main analyses with MLM, a check for 
outlying data points was performed for each dependent 
variable separately within each of the experimental 
conditions. The outlying data points were defined as 
those which lied beyond the extremes 
(upper=Q3+1.5×IQR, where Q3 is 3rd quartile and IQR 
is the inter-quartile range; lower extremes were defined 
analogously). Three data points for fixation count and 
four for learning task completion were identified as 
outliers and changed to mean plus or minus two standard 
deviations (M±2SD). No outliers were found for fixation 
duration or transition matrix empirical entropy. A 
normality check for each condition was performed with 
the use of K=kurtosis/2SEkurtosis and 
S=skewness/2SEskewness   indicators. 

	

(a) static illustration                    (b) self-paced animation                         (c) interactive simulation 

Figure 2.  Towers of Hanoi problem with three types of multimedia instructional materials with recorded representative eye gaze 
scanpaths of relatively high working memory capacity individuals (static text at left is in Polish and explains the recursive algorithm).  
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Time to Complete Learning 
Our first hypothesis posited that an interactive 

simulation would prolong the time spent with the learning 
materials and that this relation would depend on working 
memory capacity of the learner. The tested model 
consisted of two fixed predictors, the type of 
visualization, and working memory capacity. The 
analyses revealed that the type of visualization had a 
statistically significant influence on learning time, 
χ2(2)=6.49, p<0.05 with AIC=−1038.75 and 
BIC=−1026.84. The analysis also revealed that working 
memory capacity had a marginally significant influence 
on learning time, χ2(1)=3.61, p=0.057, AIC=−1040.36, 
BIC=−1026.07. The contrast coefficients are reported for 
the latter model. 

Time to completion was significantly longer while 
learning with the interactive simulation (M=39253.37ms., 
SE=3376.59) than with static illustration 
(M=28735.28ms., SE=3548.65), b=10518.09, t(36)=2.21, 
p<0.05. The difference in learning completion time 
between self-paced animation (M=25943.16ms., 
SE=4842.40) and static illustration was not significant, 
b=−2792.121, t(36)=−0.48, p>0.1. 

Working memory capacity influenced the learning 
completion time at a marginally significant level, 

b=22677.86, t(36)=1.87, p=0.069. This suggests that the 
higher the working memory capacity the longer the time 
spent on learning with multimedia materials. 

The interaction term between working memory 
capacity and the type of illustrations was not significant, 
χ2(2)=3.73, p>0.1. 

Deeper Learning with Interactive Simulation? 
We hypothesized that the interactive simulation 

would elicit more attentive learning and that working 
memory capacity would moderate this relation. To verify 
this hypothesis, two MLM analyses were performed on 
fixation count and fixation duration as dependent 
variables. In these analyses two predictors, namely 
visualization type (static vs. self-paced vs. interactive) 
and working memory capacity, were included. 
Additionally, for the analysis on fixation count we treated 
the learning time completion as the covariate. 

Fixation count. The MLM analyses on fixation count 
revealed that learning completion time significantly 
influenced the overall number of fixations, χ2(1)=30.49, 
p<0.001, AIC=711.56, BIC=723.47. In line with the 
hypothesis, the analyses also showed that the type of 
visualization influenced fixation count, χ2(2)=9.03, 
p<0.02, AIC=706.53, BIC=723.21. The model coeffi-
cients are reported for the latter model. 

	

(a) Average fixation count                                  (b) Average fixation duration 

Figure 3.  Fixation count and duration depending on visualization type. The whiskers represent ±1SE. 
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The longer the learning completion time, the more 
fixations were captured, b=0.01, t(36)=6.37, p<0.001. A 
significant effect of visualization type revealed that 
participants exhibited significantly fewer fixations while 
learning with the interactive simulation (M=24.40, 
SE=3.45) than when learning with materials containing 
the static illustration (M=38.70, SE=3.50), b=−14.30, 
t(36)=−2.82, p<0.01, see Figure 3(a). Learning with the 
self-paced animation differed marginally from learning 
with the static illustration in terms of fixation count 
(M=26.95, SE=95), b=−11.75, t(36)=−2.00, p=0.053. 

Finally, neither the working memory capacity 
predictor, χ2(1)=0.70, p>0.1, nor the interaction term, 
χ2(2)=1.30, p>0.1, significantly improved the model fit. 

Fixation duration. In line with the hypothesis that the 
interactive simulation condition is cognitively 
demanding, we predicted longer fixation durations 
compared to the static illustration. A multilevel linear 
modeling analysis on fixation duration revealed that the 
type of visualization significantly predicted the dependent 
variable, χ2(2)=8.57, p<0.02, AIC=992.80, BIC=1007.09. 
Participants in the interactive simulation condition 
produced significantly longer fixations (M=317.35ms., 
SE=21.09) compared to learning with the static 
illustration (M=225.79ms., SE=22.46), b=91.56, 
t(37)=2.97, p<0.01, see Figure 3(b). At the same time, the 
average fixation duration was not significantly different 
between learning with the self-paced animation 
(M=253.57ms., SE=30.75) or with the static illustration, 
b=27.79, t(37)=0.73, p>0.1. 

The effect of working memory capacity on fixation 
duration was not significant, χ2(1)=2.46, p>0.1. The 
addition of the interaction term between visualization 
type and working memory capacity also did not 
significantly improve the model fit, χ2(2)=4.81, p=0.09. 

Gaze Patterns and Transition Matrices 
To discover specific gaze switching patterns during 
learning with different types of visualizations 
accompanying the textual description of the algorithm, 
analysis was carried out with gaze transition matrices. 
This analysis allowed us to disambiguate whether reading 
during learning progressed sequentially, similar to when 
reading regularly (Rayner, 1998), or was more in parallel 
to include the illustration, i.e., switching between text and 
visual. 

There are potentially three different approaches to 
learning with the multimedia learning materials: 

1. reading the textual description and then 
focusingon the visualization, 

2. viewing the visualization and then reading the 
algorithm, or 

3. systematically switching gaze between the two 
ofthem. 

Such strategies may be beneficial for knowledge building 
as they are reflected in more predictable dynamical 
patterns of visual attention. The least effective strategy 
for knowledge acquisition would likely be a random 
(chaotic) pattern of attention switching between different 
elements of the multimedia learning material. We used 
fixation transition matrices and their empirical entropy 
measure to verify whether different types of visualization 
elicit different gaze transition patterns while learning 
with multimedia materials, see Figures 4(a)–4(c). 

Transition Matrix and Calculation of Entropy 
A transition matrix is a tool for sequential gaze 

pattern analysis (see Ponsoda et al. (1995) for an early 
example, where they used Z and χ2 statistics to compare 
matrices, with matrices limited to cardinal (compass) 
saccade directions (i.e., N, NE, SE, etc.). In this paper, 
we present a method of computing transition matrices for 
any number of AOIs, based on Krejtz et al.’s (2014) 
Markov model, and provide a statistical method to 
compare them (Krejtz et al., 2015). Our use of entropy is 
a simplified form used for data aggregation that is 
straightforward to implement, resembling Goldberg and 
Kotval’s (1999) suggested use of matrix density. 

Formally, given a set of AOIs S={1,...,s}	 (the state 
space) and denoting a gaze fixation atop the ith AOI, At=i, 
at time t, (t=1,...,T), the process describing a gaze 
transition from ith source to jth destination AOI is assumed 
to be modeled by a 1st order Markov process, fully 
determined by the initial source state. This allows the 
transition matrix to be defined as P=(pij)s×s,	 where 
pij=P(At+1=j |	 At=i), t=0,…,T−1, is the probability of 
changing gaze position from state i to j over AOI set S. 
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Transition matrix P can be computed in R (R 
Development Core Team, 2011) for each of the AOIs 
defined atop the stimulus image. Matrix elements pij are 
set to the number of transitions from ith source AOI to jth 

destination AOI for all participants and then the matrix is 
normalized relative to each source AOI (i.e., per row), 
such that pij represents the estimated probability of 
transitioning from ith AOI to any jth AOI given the ith AOI 
as the starting point. 

To compare the effect of task on gaze transitions, a 
statistical comparison of transition matrices is performed. 
Empirical entropy is computed via maximum likelihood. 
Empirical entropy  , an estimate of Shannon’s entropy, 
is defined as  

		

To facilitate statistical comparison of mean entropies 
per condition,  is computed per each participant of the 
condition. Therefore, a transition matrix is computed as 
above but per individual and per condition. That is, 
entropy is computed from each individual’s transition 
matrix, resulting in a table of c×n entropies for each of c 
experimental conditions and each of n participants. 

Statistical procedures can then be employed to test for 
differences in mean entropy per condition. 

Transition matrix entropy is an indicator of the 
randomness of fixation distributions between AOIs 
(Acartürk & Habel, 2012; Di Nocera et al., 2006). 
Entropy can be thought of as the number of differing 
matrix cells, akin to density dispersion. If every cell in 
the matrix contained the same probability value, entropy 
would be maximum, indicating equal likelihood of 
transitions from a given AOI to any other. Conversely, 
maximum likelihood of transition to any given AOI 
would suggest lower entropy. In the present situation, 
entropy is a convenient metric for numerically 
characterizing transition matrices such that they can be 
compared with traditional statistical tools. Note that the 
present straightforward approach assumes normal 
distribution of transition matrix cell values and does not 
consider Markovian stationarity as suggested by Krejtz et 
al. (2014, 2015). 

The diagonal cells of the transition matrix represent 
subsequent fixations to the same AOI (i.e., line of text or 
visualization). The numbers above the diagonal represent 
gaze switching from the current line to the next, whereas 
values below the diagonal represent gaze switching in the 
opposite direction. The second-to-last column to the right 

 

 

(a) static illustration                                      (b) self-paced animation                                      (c) interactive simulation 

Figure 4.  Fixation transitions. Digit labels (1–8) represent AOIs for each consecutive line of algorithm in the textual description. The label 
Visual refers to the AOI around the different visualization corresponding to the experimental condition, and the label White refers to the 
white space AOI (regions outside the textual algorithm description or the visualization AOI).  
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shows gaze fixation switches from the text to 
visualization. The second-to-last row (from the top) 
shows gaze switches from the visualization to each line 
of the algorithm description, see Figure 4. 

In order to compare transition matrices between 
experimental conditions, empirical entropy  was used. 
In line with predictions, multilevel linear models revealed 
that the type of visualization significantly predicted the 
empirical entropy of gaze transitions, χ2(2)=21.85, 
p<0.001, AIC=−13962.38, BIC=−13945.10. Participants 
exhibited more predictive (organized) patterns of gaze 
switching while learning with the interactive simulation 
(M=0.38, SE=0.02) compared to learning with the static 
illustration (M=0.49, SE=0.02), b=−0.12, t(36)=−4.20, 
p<0.001. Similarly, during learning with the self-paced 
animation, gaze transition patterns were also less random 
(M=0.36, SE=0.03) than in the static illustration 
condition, b=−0.14, t(36)=−3.77, p<0.001, see Figure 5. 

Again, neither working memory capacity, χ2(1)=0.81, 
p>0.1, nor the interaction term between working memory 
and the visualization type, χ2(2)=1.72, p>0.1, 
significantly improved the model fit. 

 

Figure 5. Mean empirical transition matrix entropy  
dependent on visualization type. The whiskers represents ±1SE. 

Qualitatively, inspection of transition matrices, see 
Figures 4(a), 4(b), and 4(c), shows differences in 
attention switching patterns during learning with 
multimedia materials. The diagonals of the transition 
matrices tell us about the probabilities of re-fixating the 

same AOI (e.g., line of the text or visualization). One 
may notice that while learning with the interactive 
simulation participants made consecutive fixations to all 
lines of the algorithm description with very similar 
probabilities for fixating each line (ranging between 0.30 
and 0.39). At the same time, the distribution of fixation 
probabilities on each line of textual description 
accompanied by the static visualization or self-paced 
animation is more varied (from 0.10 to 0.53 and from 
0.11 to 0.34, respectively). We may claim that relatively 
high probabilities and equally distributed fixations on the 
textual description lines may suggest a more attentive 
reading pattern and consequently indicate deeper learning 
(see Figure 2 for exemplary scanpaths). Further 
investigation is needed to support this interpretation. 

Discussion 
Our present study is based to a certain extent on 

Mayer’s multimedia effect, which states in essence that it 
is better to learn from pictures and text than from text 
alone (Mayer, 2002). We assumed this was so and 
evaluated different forms of pictorial aids, through 
analysis of gaze metrics. In particular, we provided a 
means of analyzing dynamical gaze patterns in the 
presence of static illustrations as well as self-paced 
animations and interactive visual aids. 

In general, in line with predictions, significant 
differences between the three types of visual aids in terms 
of eye movement characteristics and viewing patterns 
were obtained. 

Analysis distinguished impact of the interactive 
simulation. Compared to the static illustration, the 
interactive simulation prolonged learning time. 
Participants also made fewer but longer fixations while 
learning with the interactive simulation accompanying 
the textual description. Gaze transition entropy was 
significantly smaller in the interactive simulation 
condition, implying less chaotic or more systematic 
visual inspection of the learning material. Moreover, 
qualitative investigation of transition matrices showed 
that participants made consecutive fixations to all lines of 
the algorithm description while learning with the 
interactive simulation. They did so consistently (with 
relatively high similarity and probability). 
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Impact of the self-paced animation is less obvious. 
This type of visualization did not influence the learning 
time compared to the static illustration. Participants in the 
self-paced animation condition exhibited marginally 
more fixations but with similar durations, compared to 
the static illustration. The dynamics of the gaze 
transitions were similar to the interactive simulation, that 
is, significantly less chaotic than in the static illustration 
condition. 

Contrary to predictions, working memory capacity did 
not moderate the effects of the visual aids on eye 
movement characteristics. Results revealed its marginally 
significant role in predicting learning completion time, 
however. It was observed that the higher the working 
memory, the longer time spent with learning TOH 
problem. Finally, working memory capacity had no effect 
on the dynamics of gaze transitions between different 
Areas of Interest. 

Our results suggest that the type of visualization 
accompanying textual description modifies the 
characteristics of gaze fixations as well as the pattern of 
gaze switching. We believe that the interactive simulation 
induces a more attentive visual investigation of learning 
material and deeper cognitive processing of the given 
information. 

Results also provide some supporting evidence for the 
cognitive model of multimedia learning proposed by 
Schnotz and Bannert (2003). According to this model, the 
integration and interaction between different modalities 
(textual and pictorial) starts at the early stages of 
information processing. Assuming learners have 
sufficient cognitive resources, continuous and systematic 
switching between different elements of the leaning 
material fosters integration of information and the 
creation of a common mental model that is 
modalityunspecific. The side effect of the early 
integration of different modalities is a high requirement 
for working memory resources (longer fixation durations 
may reflect this). This suggests that when learning with 
an interactive simulation, learners need to devote more 
cognitive effort (e.g., in this instance to understand the 
algorithm). 

We also noticed that the interactive aid motivated 
reading of the problem description through to completion, 
as indicated by the equally distributed and relatively high 
probabilities of fixations counted over the consecutive 

lines of the textual description. A larger number of 
fixations is also often associated with higher cognitive 
load (Henderson & Ferreira, 1990), suggesting that 
distribution of visual attention provides insight into 
learners’ cognitive processing of the task. 

One may speculate that more attentive visual 
inspection of the textual algorithm description as well as 
its visualization, when learning with the interactive 
simulation, is also an indication of the concept of 
desirable difficulty (Bjork, 1994). Bjork showed that 
learning is more effective when an elementary level of 
difficulty is provided, e.g., reading very small font. In the 
interactive condition, the solution to the problem required 
effort, motivating individuals to engage in more effortful 
cognitive processing. This claim is supported by gaze 
metrics, fixation duration, and longer learning time in the 
interactive simulation condition. 

Consequently, one may claim that the interactive 
simulation elicited activation of learners’ visual spatial 
cognition to test the solution provided by the textual 
explanation. Visual spatial cognition is an independent 
component of cognition, distinct from verbal and analytic 
abilities (Thurstone, 1938). It is the ability to hold the 
image of an object in mind and to twist, turn, or rotate it 
to match another object. This involves multiple 
processes, including perception, selection, organization, 
and the utilization of location- and object-based 
information (Possin, 2010). The goal is to structuralize 
interaction with learning materials (in our case). Thus, we 
posit that considering learners’ working memory capacity 
yields a richer account of learning behavior than 
considering gaze dynamics in isolation. 

Study Limitations and Future Directions 
The present study suggested that interactive 

simulation leads to more deliberate visual inspection of 
the learning material (pictorial and textual), affecting the 
dynamical pattern of gaze switching between different 
parts of the multimedia learning material. We must note 
that our analyses focused on process measures, e.g., 
metrics related to eye movements and switching of overt 
visual attention, and stopped short of evaluation of 
performance measures, i.e., those related to learning 
outcomes (e.g., comprehension, retention, or learning 
transfer). However, the focus of our contribution is the 
provision of tools, namely transition matrix analysis, as a 
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means for others to use in helping corroborate their 
interpretations of such metrics. 

We offer four directions for future research. First, 
future studies should verify the short and long term 
influence of learning with different visual aids on 
knowledge acquisition by including longitudinal testing 
(for example). Second, future work should also address 
the makeup or demographics of the population sample. In 
the present situation the sample consisted of highly 
motivated students fond of mathematics. Future analyses 
should consider different participants, particularly 
students who might not be as highly motivated. Third, 
working memory could be analyzed in terms of 
functional aspects. We relied on a widely used measure 
of working memory capacity (Conway et al., 2005). 
Oberauer et al. (2003), however, defines working 
memory as a set of three cognitive functions: (a) 
simultaneous storage and processing, (b) supervision 
(monitoring and control of ongoing cognitive operations), 
and (c) coordination of information elements into 
structures. It may be worthwhile to control for different 
aspects of working memory function in future studies of 
learning with multimedia. Finally, analysis of transition 
matrices, complementary to performance measures, may 
be useful in future studies of instructional material 
focusing on differences in processing between different 
types of text. 

Conclusions 
Can interactive simulations compete with text and 

book-style illustrations accompanying textual description 
in multimedia learning? We expected that learners would 
benefit more from interactive visual aids, by being 
motivated to better strategize their visual inspection of 
the learning material and to read more attentively the 
problem description through to completion. Indeed, when 
learners were allowed to manipulate the visual simulation 
and take control of the learning process, they would 
return to the textual information and continue reading the 
explanations in full. They then kept visually switching 
between different parts of the material in an organized 
way. Learners who lacked interaction (static 
illustrations), or received it in a limited way (self-paced 
animation), processed the information visually in a 
significantly different manner: their visual scanning 
strategy appeared more shallow (not completely reading 

the textual elements) and random (as indicated by gaze 
transition matrix entropy). Our experiment shows that 
interactivity does not replace reading, however. On the 
contrary, interaction appears to spur reading, leading to a 
more complete visual inspection of the material. 
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