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Introduction 

Visualizations such as graphs and diagrams are ubiq-
uitous in everyday human experience, and can be found 
in newspapers and television, as well as in science, engi-
neering, and education (e.g., Blackwell, 2001; Glazer, 
2011; Mayer, 2009; Pereira-Mendoza, Goh, & Bay, 2004; 
Purchase, 2014; Schnotz, 1994). They are especially 
important in the context of problem solving (Baker, Cor-
bett & Koedinger, 2001), for teaching and learning math-
ematics (Cucuo & Curcio, 2001) and for understanding 
scientific data (Shah & Hoeffner, 2002).  

To date, a large variety of different graph types have 
been developed (cf. Bertin, 1983; Kosslyn, 1989; Lohse, 
Biolsi, Walker, & Rueler, 1994). The advantages of 
graphs are computational because they support efficient 
computational processes (Larkin & Simon, 1987). De-
spite some similarities between the formats, computa-
tional differences between different graph types have 
been identified, even if two graphs are informationally 
equivalent (e.g., Kosslyn, 1989; Pinker, 1990). In general, 
two representations are called informationally equivalent 
when they display the same relations between the same 
objects, “because they are indistinguishable in terms of 
the information they represent” (Palmer, 1978, p. 270). 
Furthermore, two representations are called computation-
ally equivalent when they are both informationally equiv-
alent and “any inference that can be drawn easily and 
quickly from the information given explicitly in one can 
also be drawn easily and quickly from the information 
given explicitly in the other, and vice versa” (Larkin & 
Simon, 1987, p. 67).  
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A certain graph may facilitate information processing 
in some tasks, but not in others. For example, Simkin and 
Hastie (1987) used three informationally equivalent graph 
types and found that speed and accuracy in a graph task 
depended on the combination of graph type and task 
requirements. More recently, Peebles and Cheng (2003) 
discovered that the computational advantages of a graph 
may even compensate for a reader‘s unfamiliarity with a 
certain graph type as participants showed significant 
learning effects over time. These findings show that 
computational properties may affect one’s efficiency in 
completing graph tasks.  

Yet, there is little knowledge about graph readers’ 
ability to detect and use computationally advantageous 
representations for a given task when given the choice. 
Accordingly, the main goal of the current study was to 
investigate graph readers’ ability to adapt their processing 
strategy to the demands of the task (i.e., preferring the 
graph type that is most suitable for solving a particular 
task). To accomplish this, we systematically varied the 
task type while presenting two informationally equivalent 
graphs that are known to be computationally different 
with regard to the tasks (see e.g., Pinker, 1990; Shah & 
Hoeffner, 2002). However, previous graph comprehen-
sion research using eye-tracking methodology has mainly 
focused on the processing of one graph at a time (e.g., 
Shah & Carpenter, 1995; Goldberg & Helfman, 2011; 
Kim & Lombardino, 2015; Peebles & Cheng, 2003). For 
the current study, we used a dual representation paradigm 
and eye-movement parameters to determine graph read-
ers’ preferential usage of two graph types while pro-
cessing a graph task.  

Visual attention, measured by eye tracking, has re-
peatedly been used to establish a measure of preference, 
for example, in market research (e.g., Meissner & Deck-
er, 2010), usability research (e.g., Djamasbi, Siegel, 
Skorinko, & Tullis. 2011) and in educational assessment 
with multiple-choice questions (Lindner et al., 2014). 
Building on this approach, we applied eye-movements as 
a measure of preference to the domain of graph compre-
hension. 

In the following, we briefly review three important 
aspects of graph comprehension. First, we (1) introduce 
typical graph reading tasks, providing helpful insights 
into the nature of the graph tasks in the present study. 
Then we (2) outline the computational properties of dif-

ferent graph types. Finally, we (3) present findings on 
graph reading and learning effects. 

Graph Reading Tasks 
When it comes to graph reading tasks, a great number 

of taxonomies have been developed in the past decades, 
comprised of highly similar concepts (i.e., Bertin, 1983; 
Curcio, 1987; Schnotz, 1994; Tan & Benbasat, 1990; 
Wainer, 1992). Reviewing these classifications reveals a 
remarkable consensus across decades and authors that 
provides a high level of confidence that basic graph read-
ing tasks can be identified with a high reliability. Tasks 
involving the recognition of relations between multiple 
elements are in the focus of the current study as they have 
been repeatedly classified as typical graph tasks. This 
includes identifying trends (e.g. a development in sales 
numbers over years) as well as identifying point differ-
ences (e.g. a difference in sales numbers between distinct 
years). 

Computational Properties of Graphs 
In graphs, information is not represented by a resem-

blance to physical objects. Instead, spatial relations be-
tween visual objects are employed as an analogy to non-
spatial relations (e.g., Koerber, 2011; Winn, 1990). Often, 
inferences from non-spatial representations are relatively 
more demanding, because some information has to be 
computed at great cognitive costs (e.g., comparing num-
bers in a continuous text). Thus, graphs offer computa-
tional advantages in comparison to other forms of repre-
sentations (Larkin & Simon, 1987). 

Graphs are not only computationally different from 
other representations, such as text and tables, but also 
from each other (Schnotz, 2002; Wainer, 1992). A num-
ber of studies provide empirical support for the idea that 
differences in the computational characteristics of differ-
ent graph types can explain task performance in typical 
graph tasks (e.g., Peebles & Cheng, 2003; Simkin & 
Hastie, 1987; Shah, Mayer, & Hegarty, 1999). In their 
review of graph comprehension literature, Shah and 
Hoeffner (2002) summarize that bar graphs emphasize 
point differences, while line graphs are more helpful for 
identifying trends. Taking a closer look at the processes 
that guide graph comprehension, Pinker (1990) outlines 
the computational differences between bar graphs and 
line graphs. He suggests that line graphs facilitate the 
observation of trends (trend task) because, in this format, 
a trend can correspond to a single visual attribute (e.g., 
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slope) of a perceptual entity (line) in the display. In bar 
graphs, on the other hand, trends do not correspond to the 
attributes of single perceptual entities. Instead, the attrib-
utes (e.g., height) of multiple entities (bars) need to be 
kept in mind, which makes observing trends more effort-
ful and error prone. An observation of point differences 
(difference task), on the other hand, can be made more 
easily using bar graphs, because bars are distinct entities 
and facilitate point estimates (Zacks & Tversky, 1999). 
For example, one might want to compare a company’s 
sales numbers for a set of particular years. Rather than 
looking at the numbers and computing the differences, 
viewers can use spatial analogies to make inferences 
about a non-spatial concept. In bar graphs, the horizontal 
position of the bars corresponds to a value on the depict-
ed scale (e.g., years), and their height corresponds to a 
value on another scale (e.g., sales numbers). Using this 
graph type, readers can easily identify particular years 
because they are represented by distinct visual entities 
(bars). In a line graph, however, extracting distinct points 
is much more difficult because perceptual grouping 
(Wertheimer, 1938) causes each line to be encoded as a 
single entity rather than as a set of distinct points (Pinker, 
1990).  In summary, bar and line graphs are not computa-
tionally equivalent; rather, they provide very different 
computational advantages regarding trend and difference 
tasks. Thus, in combination, they seem useful in eliciting 
a shift in graph readers’ preferential processing. 

Graph reading and learning effects 
Basic graph reading skills can be observed as early as 

in preschool and middle school (e.g., Curcio, 1987; 
Koerber, 2011) and these skills develop over time (Low-
rie & Diezmann, 2007). Nonetheless, unexperienced 
readers often make mistakes when interpreting graphs 
(Bell & Janvier, 1981; Shah & Carpenter, 1995; Shah & 
Hoeffner, 2002). Even among more experienced graph 
readers, task performance seems to vary (e.g. Ali & Pee-
bles, 2013). As shown by Baker, Corbett and Koedinger 
(2001), graph readers’ misconceptions may arise from a 
lack of familiarity with some graph types. In contrast, a 
study with more experienced graph readers by Peebles 
and Cheng (2003) demonstrated a tradeoff between fa-
miliarity and the computational advantages of a given 
graph. The authors compared informationally equivalent 
graph types (a function line graph and a parametric line 
graph) and found that the effectiveness of a particular 
graph in retrieving the required information depended on 

the task, exposing computational differences between the 
formats. Even though participants were more familiar 
with one of the two graph types, they showed a signifi-
cant learning effect after repeated exposure to the less 
familiar graph and were able to use it more effectively. 
These findings emphasize the importance of the computa-
tional properties inherent to different graph types as well 
as the potential of computational advantages to outweigh 
the cost of familiarization.  

Looking at research on educational assessment, there 
is additional evidence that students are able to improve 
their performance over the course of a test due to learning 
effects regarding the handling of the given tasks (e.g., 
Hartig & Buchholz, 2012; Ren, Wang, Altmeyer, & 
Schweizer, 2014). Based on this, we assume that graph 
readers can improve their ability to adapt their processing 
strategy to the demands of a task, showing an increasing 
preference for the computationally advantageous graph 
over time. 

Research Questions 
According to a number of graph task classifications 

(Bertin, 1983; Curcio, 1987; Schnotz, 1994; Tan & Ben-
basat, 1990; Wainer, 1992), identifying trends and com-
paring point differences are regular tasks of graph reading 
that are often necessary for understanding and interpret-
ing data sets. Furthermore, there is conclusive empirical 
evidence that task performance may be influenced by the 
graph type that is used to complete the task. For bar and 
line graphs, the computational advantages are very differ-
ent: trends can be understood easier when reading line 
graphs instead of bar graphs, while the opposite is the 
case for understanding point differences. To date, there is 
little knowledge about graph readers’ ability to detect and 
use the graph most suited to a given task. Therefore, the 
aim of our study was to compare the processing of graphs 
in difference tasks and trend tasks, while presenting both 
line graphs and bar graphs at the same time. 

Additionally, we investigated graph readers’ prefer-
ence development as it unfolds across the experimental 
trials. Even though there is some evidence that graph 
readers may get more efficient in using the computational 
advantages of graphs over time (Peebles and Cheng, 
2003), this second research question is comparatively 
novel and more explorative in nature. 

 In summary, we expected the following: 
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(1) Preferential graph-processing hypothesis: Graph 
readers prefer the computationally advantageous graph 
type as a function of the task:  (a) Graph readers prefer 
line graphs to bar graphs for tasks that require an obser-
vation of trends (trend tasks). (b) Graph readers prefer 
bar graphs to line graphs for tasks that require an obser-
vation of point differences (difference tasks). 

(2) Preference development hypothesis: Over the 
course of processing multiple difference and the trend 
tasks, graph readers’ preference for the computationally 
advantageous graph type increases: (a) Graph readers’ 
preference for line graphs increases over the course of 
processing trend tasks. (b) Graph readers’ preference for 
bar graphs increases over the course of processing differ-
ence tasks. 

Method 

Sample and Study Design 
The participants in our study were 32 students on the 

undergraduate level from different faculties (70% female, 
Mage = 24.37 years). All participants had normal or cor-
rected to normal vision. Data from two participants (6 %) 
were excluded from the analysis due to the poor quality 
of the eye-tracking data, resulting in a final sample of N = 
30 participants. The assessment comprised a set of graph 

tasks (difference and trend tasks) as well as a short paper-
pencil questionnaire to assess demographic information 
as well as participants’ graph literacy and overall prefer-
ence for graph types as a control variable. For the graph 
tasks, we employed a within-subject design, in which we 
varied the task type (difference task vs. trend task) using 
different sets of true-false statements. In the difference 
task, participants had to evaluate the true-false statement 
by identifying point differences in the graphs (e.g., “In 
2011, more new apartments were built than in 2013”). In 
the trend task, participants had to identify trends to com-
plete an item (e.g., “Investments in climate protection 
have increased over the years”). There were 24 trials in 
each condition of the task type, resulting in a total of 48 
trials per participant. Eye-movement data were recorded 
for each trial and each participant during processing of 
the graph tasks. 

Material and Measures 
Graph Tasks. We developed a dual representation 

paradigm for an indirect preference measure using eye-
movement data. Participants were confronted with two 
representations at the same time, followed by either a 
difference or trend task that could only be completed with 
information derived from the given graphs and did not 
require any previous knowledge. Each trial consisted of a 
pair of graphs, next to each other in the center of the 
display; one a bar graph, the other a line graph. Positions 

 
Figure 1. Sample stimulus of the graph tasks (translated from German). 
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(left or right) of the two graph types were balanced ran-
domized. A statement was displayed below the pair of 
graphs, followed by the choices “true” and “false”, which 
could be selected by participants as a response with a 
mouse click. True-false items are known to function 
differently depending on whether they are true or false 
(Grosse & Wright, 1985; for a detailed overview see 
Haladyna, 2004), so we balanced the number of true and 
false statements throughout the test. Both graphs of each 
pair were constructed using the same data set, resulting in 
two informationally equivalent graphs. Data sets were 
taken from the Federal Statistical Office in Germany, 
using the office’s website (www.destatis.de). By using 
real data sets, we reduced the risk of disbelief resulting 
from an implausibility of the data. Data were refined to 
achieve comparable complexity throughout all items. 
Each pair of graphs displayed three variables employing 
the x-axis, y-axis and legend of the graphs. Data points 
were trimmed to show between five and eight occurrenc-
es on the x- and y-axis and three categories conveyed by 
differing colors. Identical labels and legends were used in 
both graph types. A translated example is given in Figure 
1. 

Paper-Pencil Questionnaire. A short questionnaire 
was employed to survey participants’ graph literacy and 
overall preference for the two graph types (bar graph vs. 
line graph) using a 5-point Likert scale. The graph litera-

cy scale was comprised of two items (i.e., “I am good at 
reading graphs”, “I feel confident in reading graphs.”). 
Another two items were used to assess the overall prefer-
ence. Here, one item was the inverse of the other (“Gen-
erally, I prefer bar graphs to line graphs” and “Generally 
I prefer line graphs to bar graphs”). To facilitate interpre-
tation, the overall graph preference was calculated as the 
difference between the preference scores of the two 
items. Positive values indicate an overall preference for 
bar graphs, whereas negative values indicate an overall 
preference for line graphs.  

Apparatus 
Items were presented on a 19-inch screen with a 1280 

× 1024 pixel resolution, using the software Experiment 
Center 3.4 from SensoMotoric Instruments (SMI, Teltow, 
Germany). Each item was presented on a single screen. 
While working on the test, participants sat in front of the 
screen at a distance of approximately 70 centimeters. The 
font size of the text was 2 centimeters (approx. 1.6° visu-
al angle). Both graphs had an identical total size of 17.7 x 
9.9 centimeters (approx. 14.4° visual angle in width and 
8.1° visual angle in height) and were displayed next to 
each other with a gap of 0.8 centimeters (approximately 
0.7° visual angle) in the center of the screen. Participants’ 
eye-movements were recorded using a video-based re-
mote eye-tracking system (SMI iView X™RED-m; 

 
Figure 2. Composition of Areas of Interest (in capital letters) defined for the eye-tracking analysis. 
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120Hz sampling rate) and the corresponding SMI soft-
ware iView X™. The system was calibrated using an 
animated 8-point calibration image and subsequent vali-
dation. The calibration accuracy was below 0.49° of the 
visual angle for all participants on both the x and y coor-
dinates (range: 0.09 to 0.48; Mx = 0.32, SDx = 0.08; My = 
0.29, SDy = 0.11).  

Procedure 
Students were tested in single sessions. First, they 

were familiarized with the procedure and the eye-tracking 
system; after this, they completed the graph tasks on a 
computer while their eye-movements were recorded. 
Participants were informed that both graphs in each item 
conveyed the same information. However, they received 
no particular instructions on how to choose between the 
given representations. Participants could therefore em-
ploy a solution strategy based on their individual prefer-
ence instead of following a strategy that was either given 
or implied. The paper-pencil questionnaire was adminis-
tered after participants completed the graph task. The 
whole cycle of assessment took about 30 minutes to 
complete. 

Analysis 
Eye-Movement Data Pre-Processing. Eye-movement 

recordings were analyzed using a dispersion-based algo-
rithm implemented in the Begaze™ software, version 3.5, 
from SMI. A fixation was detected when eye movements 
lasted for at least 80 milliseconds on a position with a 
maximum dispersion of 100 pixels. To determine whether 
eye-movement data were recorded correctly, participants’ 
scan paths were visually inspected using Begaze™ soft-
ware, version 3.5, from SMI. 

As gaze data, we used the total fixation time on prede-
fined Areas of Interest (AoIs), which is defined as the 
cumulative duration of all AoI fixations from trial onset 
to task end, indicating the total time devoted to a specific 
area (Holmqvist et al., 2011). Relying on the eye-mind 
hypothesis (Just & Carpenter, 1980), we assume that 
points of fixation represent the focus of attention, so that 
eye movements reflect the spatiotemporal encoding of 
visual information. Fixation times provide a valid indirect 
measure of attention distribution and cognitive processing 
in educational tasks, such as solving test items in a multi-
ple-choice format (see e.g. Lindner et al., 2014).  

As in previous graph studies (e.g., Carpenter & Shah, 
1995; Kim & Lombardino, 2015; Peebles & Cheng, 
2003), we divided the graph regions into four rectangular 
AoIs: x-axis, y-axis, legend, and pattern, defined sepa-
rately for each of the two graphs, in addition to the state-
ment and option (true/false) regions, resulting in a total of 
ten AoIs (Figure 2). The AoIs covering the pattern re-
gions were about the same size - in every display and for 
the two graph types within a display (approx. 10 x 7 cm). 
Because the graph reading processes necessary to com-
plete the tasks occur within the pattern area of the graph 
(e.g., comparing heights of bars or slopes of lines), we 
compared fixation times on the pattern regions.  

Preferential processing of one graph over the other 
graph was defined as the difference between total fixation 
times on the pattern regions of the two graphs. However, 
not all fixations during a trial reflect preference. In order 
to decide which graph to use for task completion, partici-
pants must first read the statement to identify the task 
type. Accordingly, only fixations that occurred after the 
first fixation of the statement region were used to com-
pute the preference measure. 

Linear mixed-effects models. All data were analyzed 
using R, version 3.1.0 for Windows (R Development 
Core Team, 2015). With repeated measures nested within 
participants as well as in items, the data structure can be 
described as clustered or hierarchical (Snijders & Bosker, 
2012). Since the repeated measures were nested within 
two higher-level units, the test design is called cross-
classified (i.e., each measure belongs uniquely to one 
participant and one item; Snijders & Bosker, 2012). Reg-
ular approaches, such as ANOVA models, yield inflated 
Type I error rates when the data is clustered (Dorman, 
2008). To account for the clustered data structure, we 
applied linear mixed-effects models (LMMs; for intro-
ductions, see Barr, 2008; Snijders & Bosker, 2012; 
Quené & van den Bergh, 2008). These models can be 
conceptualized “as a series of interrelated regression 
models that explain sources of variance at multiple levels 
of analysis, such as at the experimental stimuli and per-
son levels” (Hoffman & Rovine, 2007, p. 102). More 
specific, LMMs can model fixed effects and random 
effects simultaneously. While fixed effects aim to identi-
fy the typical rates of change in the outcome variable 
(e.g., following an experimental manipulation), random 
effects aim to identify unsystematic rates of change (e.g., 
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due to differences between items and persons, respective-
ly). 

We used the R package lme4 (Bates, Maechler & 
Bolker, 2015) to perform a linear mixed-effects analysis 
of the relationship between the relative graph preference 
and several explanatory variables in four models: First, 
we computed an empty model with random intercepts for 
subjects and stimuli (M0) in order to gain insights into 
the variance structure of the data. To test our hypotheses, 
we included fixed effects for task type, trial number, and 
the task type by trial number interaction (M1). Then, we 
added the participants’ overall graph preference as a 
control variable for individual preferences (M2). Finally, 
we added random effects by including by-subject random 
slopes for the effects of task type and trial number to 
account for differences in individual trajectories between 
tasks and over time (Barr, Levy, Scheepers & Tily, 2013; 
M3). Models were fitted by the Restricted Maximum 
Likelihood (REML) criterion since it yields better Type I 
error rates for smaller groups (N ≤ 50) when testing fixed 
effects than estimates with the Maximum Likelihood 
(ML) criterion (Manor and Zucker, 2004; Snijders & 
Bosker, 2012). 

Results 

The ratings of graph literacy in the current sample 
were relatively high (M = 3.55, SD = 0.83, range = 2 to 
5), with the graph literacy scale showing a good reliabil-
ity (Cronbach’s α = .82). Participants achieved a corre-
spondingly high average accuracy in the graph tasks, 89 
% in the trend task and 90 % in the difference task. There 
was no significant difference in participants’ performance 
between the task types (t29 = 0.61, p = .55). Because gaze 
data may differ for correct and incorrect responses, we 
removed data of incorrect responses from our analyses. 

Average total fixation times and average percentages 
of processing time on the predefined AoIs across items 
and participants in the two task conditions are given in 
Table 1. Data showed a noticeable difference in total 
processing time between the two graph tasks. We com-
pared the average total processing time across partici-
pants for trials in the difference task versus trials in the 
trend task using a paired t-test in order to confirm that 
this difference was significant (t23 = 4.53, p < .001, d = 
0.92). This is also reflected by a significant difference in 
total fixation time on the statement area (t23 = 5.90, p < 

.001, d = 1.20). To account for this bias in processing 
time, we computed the total relative fixation time (per-
centage of processing time) for each trial of each partici-
pant as the total fixation time (on AoIs) relative to the 
total processing time of the respective trial. As the prefer-
ence measure, we computed the relative graph preference 
as the difference between total relative fixation time on 
the bar graph pattern region and total relative fixation 
time on the line graph pattern region in percentage points. 
Difference values were calculated for each trial from each 
participant. Positive values indicate preferential pro-
cessing of the bar graph, whereas negative values indicate 
a preference for the line graph.  

Regarding the linear mixed-effects models, a visual 
inspection of residual plots did not reveal obvious devia-
tions from homoscedasticity or normality. Table 2 shows 
the fixed effects and variance components of the random 
effects in the linear mixed-effects models described 
above. Analyzing the empty model (M0), the intraclass 
correlations (ICC) for subjects and stimuli revealed that 
substantial portions of variance can be attributed to dif-
ferences between subjects and stimuli, respectively (IC-
CSubject = 0.11; ICCStimulus = 0.19). To perform likelihood 
ratio tests (LRT), each model was refitted using ML 
instead of REML because the LRT for fixed effects using 
REML is known to be inappropriate (Pinheiro & Bates, 
2000; Snijders & Bosker, 2012). LRTs showed that each 
addition of explanatory variables (as described above) 
was a significant contribution to the model (see Table 2).1 
Regression lines of the fixed effects in M3 are given in 
Figure 3. The following sections focus on the fixed ef-
fects in Model M3 in order to address our research ques-
tions. 

Overall Graph Preference 
Even though participants varied in their overall graph 

preference, there was no global bias towards one of the 
two graph types (M = 0.34; SD = 1.70; Range = -3 to 3). 

                                                 
1 In addition, we included interaction terms in the fixed effects 
for overall graph preference, but the change in deviance was 
nonsignificant (χ²[3] = 1.53, p = .68). Thus, this model was 
omitted. 
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Table 1.  Average total fixation times (in ms) and average percentages of processing time (in %) on predefined Areas of Interest for 
difference and trend task conditions across items (24 trials per condition) and participants (n=30). 

 Average total fixation time (in ms) Average percentage of processing time (in %) 
Area of Interest Difference Task Trend Task Difference Task Trend Task 

Bar graph (total) 6828.8 (6551.0) 2767.8 (4181.6) 22.9 (17.5) 13.8 (16.5) 
Pattern 4044.3 (4236.0) 1823.1 (3006.5) 13.4 (11.5) 9.1 (12.0) 
Legend 1731.0 (1971.4) 682.0 (1119.9) 6.0 (6.2) 3.6 (5.2) 
X-axis 819.4 (1464.4) 165.4 (489.2) 2.8 (4.3) 0.8 (2.0) 
Y-axis 234.1 (692.2) 97.4 (364.1) 0.6 (1.7) 0.4 (1.7) 

Line graph (total) 4524.5 (4538.5) 5139.5 (4978.4) 17.7 (16.4) 30.3 (16.9) 
Pattern 2548.1 (2857.0) 3324.6 (3712.0) 9.8 (10.1) 18.9 (13.2) 
Legend 1231.5 (1517.3) 1477.1 (1289.1) 4.9 (5.9) 9.6 (6.8) 
X-axis 539.5 (1004.8) 198.9 (445.3) 2.3 (4.0) 1.2 (2.5) 
Y-axis 205.4 (554.0) 138.9 (433.8) 0.6 (1.6) 0.7 (2.0) 

Statement 9004.7 (5737.1) 4341.8 (3582.5) 33.1 (13.1) 26.9 (15.2) 
Options 1104.7 (636.1) 944.7 (571.3) 4.6 (3.0) 6.8 (4.8) 

Total processing time 27685.8 (14533.3) 16988.2 (11274.9)     
Note. Standard deviations are given in parenthesis. Data of total processing time had one missing value (< 0.1%). 

 
 

Table 2. Comparison of fixed effects and random effects in the linear mixed-effects models. 

 Model 0 (M0) Model 1 (M1) Model 2 (M2) Model 3 (M3) 
 Fixed effect Estimate  SE t-value1 Estimate  SE t-value1 Estimate  SE t-value1 Estimate  SE t-value1 
 Intercept -3.02  1.89 -1.60 9.84 ** 2.81 3.50 9.18 ** 2.79 3.30 9.23 ** 2.83 3.26 
 Trial no.     -0.53 ** 0.19 -2.83 -0.52 ** 0.19 -2.83 -0.53 * 0.22 -2.39 
 Task type (trend)     -15.36 *** 3.57 -4.31 -15.36 *** 3.57 -4.30 -14.92 ** 4.06 -3.68 
 Task type x Trial no.     0.16  0.27 0.60 0.16  0.27 0.26 0.14  0.27 0.52 
 Overall preference         1.79 * 0.77 2.36 1.42 * 0.64 2.23 
 Random effect Variance Component Variance Component Variance Component Variance Component 
 Stimulus 83.03  28.78  28.80  31.00  
 Subject 47.61  47.54  40.31  46.19  
 Trial number       0.40  
 Task type (trend)       108.35  
 Residual 309.19  309.23  309.21  262.20  
 Deviance 11191  11148  11142  11024  
 LR-Test  M0-M1: χ²(3) = 43.34*** M1-M2: χ²(1) = 5.30* M2-M3: χ²(5) = 118.58*** 
Note. 1 Degrees of freedom for statistical tests of fixed effects where determined by a conservative interpretation of a rule described 
in Snijders & Bosker (2012). That is, df = N – q – 1, where N is the minimum number of upper level units (here: N = 30 participants) 
and q is the number of explanatory variables included in the model. * = p < .05 ** = p < .01 *** = p < .001 
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To control for individual preferences for one of the 
graph types, we included participants’ reported graph 
preference in the linear mixed-effects models. Comparing 
models M1 and M2, the inclusion of this variable ex-
plained a small portion of the subject-related variance in 
the random part of the model. The change in deviance 
between the two models was significant (χ²[1] = 5.30; p < 
.05). In the final LMM (M3), the overall graph preference 
showed a significant positive relation to the relative graph 
preference (p < .05). A change of one point in the overall 
graph preference score resulted, on average, in a change 
of 1.4 percentage points in the same direction in the esti-
mated relative graph preference. This means that partici-
pants who reported a preference for one of the graph 
types also showed a slightly higher preference for that 
graph type during item processing. 

Preferential Graph Processing 
First, we hypothesized that participants would prefer 

line graphs to bar graphs in trend tasks (Hypothesis 1a), 
whereas a preference of bar graphs was expected in dif-
ference tasks (Hypothesis 1b).  Analyzing the fixed ef-
fects in the final LMM (M3), task type had a substantial 
impact on the relative graph preference: A change in task 
type from difference task to trend task lowered the esti-
mated relative graph preference by about 15 percentage 
points. This difference was significant (p < .001; Table 
2). For participants with no reported preference for either 
graph type, this change indicates, on average, a prefer-
ence shift from bar graphs in difference tasks to line 

graphs in trend tasks. For example, in the first trial of the 
difference task, participants had, on average, a relative 
preference of 9 percentage points in favor of bar graphs. 
In the first trial of the trend task, however, participants 
showed a relative preference of 6 percentage points in 
favor of line graphs. In addition to the linear mixed-
effects models, we conducted two paired t-tests in order 
to compare relative fixation times on bar graphs versus 
line graphs separately for each task condition. Here, total 
relative fixation times on bar graphs and on line graphs 
were aggregated across items for each participant. In the 
trend task, participants devoted significantly less time to 
the processing of the bar graph compared to the line 
graph (t29 = -4.97, p < .001, d = 0.91) and vice versa in 
the difference task (t29 = 2.75, p < .05, d = 0.50), with the 
effect size in the trend task being almost twice the size of 
that in the difference task. Both the results from the linear 
mixed-effects model and the additional t-tests are in line 
with our preferential graph-processing hypotheses (1a, 
1b). 

Preference Development 
Second, we expected participants to develop a strong-

er preference for line graphs in the trend task over time 
(Hypothesis 2a), whereas we expected participants to 
develop a stronger preference for bar graphs in the differ-
ence task (Hypothesis 2b). The LMM (M3) revealed a 
significant fixed effect of trial number (p < .05; Table 2), 
whereas the fixed effect of the trial number by task type 
interaction was not significant (p = .52; Table 2). From 
one trial to the next, on average, the estimated relative 
preference was reduced by about 0.5 percentage points in 
the difference task and by about 0.4 percentage points in 
the trend task, indicating that participants developed a 
stronger preference for line graphs both in the trend and 
in the difference task. However, for the difference task, 
we had predicted a change in the opposite direction. 
These findings are in line with hypothesis 2a, but could 
not confirm hypothesis 2b. Possible explanations for this 
finding are discussed below. 

Discussion 

In this study, we investigated the relationship between 
graph readers’ preferential processing of bar versus line 
graphs when solving both difference tasks and trend 
tasks. Theoretical approaches and empirical studies sug-

 
Figure 3. Regression lines of the fixed effects in Model 3, 
given a neutral (= 0) overall graph preference. 
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gest that bar graphs have computational advantages for 
difference tasks, whereas line graphs are advantageous 
for trend tasks, facilitating the task-directed processing of 
the depicted data (e.g., Pinker, 1990; Shah & Hoeffner, 
2002). We investigated (1) participants’ relative graph 
preference for bar versus line graphs, and (2) the prefer-
ence development across time, in order to determine 
whether graph readers are able to detect and use the ad-
vantageous graph type when solving difference and trend 
tasks. In an experimental setting, we employed a dual 
representation paradigm (i.e., displaying two graph types 
at the same time) and eye-tracking measures to determine 
the preferential processing of bar versus line graphs. 

Our results show that the graph readers in our sample 
of university students had, on average, a stronger prefer-
ence for using bar graphs than for using line graphs in 
difference tasks and vice versa in trend tasks, indicating 
that they had a tendency to choose the computationally 
advantageous graph type as a function of the task. How-
ever, we also found an increase in the preference for line 
graphs in both task conditions, resulting in a strong pref-
erential processing of line graphs in trend tasks and a 
balanced use of both graph types in difference tasks. 

Overall Graph Preference 
To control for individual differences in preference be-

yond the experimental manipulation, we asked for partic-
ipants’ overall preference for bar graphs versus line 
graphs. The inclusion of this covariate into the LMM 
revealed a positive relation to the relative graph prefer-
ence, which provides tentative evidence that the eye-
movement-based measure of preference was a valid indi-
cator of participants’ actual graph preference. Additional-
ly, it supports the conclusion by Shah (2002) that graph 
comprehension is a product of both bottom-up and top-
down processes, which seem to consist not only of expec-
tations and familiarity with content, but also of an indi-
vidual preference for a certain type of representation (i.e., 
the graph type). However, the fixed effect of the overall 
graph preference was relatively small compared to the 
fixed effect of the task type (Table 2). In accordance with 
this, the context (e.g., the task type) in which a graph is 
presented seems to be far more predictive of graph read-
ers’ processing behavior than a judgment of their overall 
graph preference. 

Preferential Graph Processing 
The results from our final LMM (M3) show that par-

ticipants shifted their preference from bar graphs in dif-
ference tasks to line graphs in trend tasks. Additional t-
tests using aggregated data revealed that the difference in 
total fixation times on the two graphs was significant in 
both task conditions. However, the effect size was ap-
proximately twice as large in the trend task, suggesting 
that participants had an even stronger tendency towards 
the advantageous graph type when processing trend tasks. 
One explanation for this finding might be that the compu-
tational advantages of line graphs in trend tasks are 
stronger than those of bar graphs in difference tasks, due 
to working-memory limitations: When solving trend task 
items using bar graphs, participants always had to con-
sider all five to eight data points at once to constitute a 
trend (Pinker, 1990), thereby operating at the limits of 
working memory (Baddeley, 1994; Baddeley & Hitch, 
1972; Miller, 1956). On the other hand, when solving 
trend task items using line graphs, they only needed to 
inspect a single line, which puts relatively small demands 
on working memory, in comparison to the demands 
placed by bar graphs. This difference in cognitive de-
mands might explain the larger effect size in the trend 
task.  

Looking at the difference task, even though compar-
ing data points on a single line may be more difficult 
according to the Gestalt laws of perceptual grouping 
(Pinker, 1990) finding the correct positions among only 
five to eight data points may not have been too difficult. 
However, the true-false statements used in difference 
tasks may be responsible for the smaller effect size in this 
condition. Before examining the graphs, participants need 
to read the statement and keep in mind the relation that is 
described. While statements in the trend task only refer to 
single categories, those in the difference task explicitly 
mention multiple specific data points that must be com-
pared. Thus, engaging with the statement in the differ-
ence task may be more difficult and demanding than in 
the trend task. This assumption is supported by the find-
ing that participants spent significantly more time on the 
statement area when processing difference tasks. In the 
framework of Cognitive Load Theory (Sweller, 1988), it 
is assumed that cognitive processing is constrained by a 
limited working memory capacity and that the inherent 
characteristics of a task may put a higher demand on 
cognitive processes (intrinsic cognitive load; De Jong, 
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2010). Based on this, it seems possible that statements of 
the difference task put a greater cognitive load on partici-
pants. Since participants’ cognitive resources were bur-
dened with keeping multiple data points in mind before 
even tending to the graph itself, their ability to choose the 
advantageous graph type in difference tasks may have 
been impaired. However, there might be another explana-
tion: Participants unsystematically reported that they 
sometimes used both graph types to double-check their 
answer. This is a strategy that has been reported in earlier 
research. Peebles and Cheng (2003) argued that such a 
strategy helped graph readers to memorize the chunk of 
information previously viewed. In the dual representation 
paradigm, participants may have expanded this strategy 
to repeatedly revisit the same regions in both graphs. A 
post-hoc analysis of gaze transitions between the state-
ment area and the graph pattern areas revealed a signifi-
cantly higher average number of gaze transitions in trials 
of the difference task compared to trials of the trend task 
(MDifference = 4.05, MTrend = 2.11, t23 = 7.94 p < .001, d = 
1.62), supporting this assumption. In summary, the 
statements in the difference task seemed to be more de-
manding, causing participants to verify their answer by 
checking both graph types repeatedly. 

Preference Development 
We hypothesized that participants would develop a 

stronger preference for bar graphs when solving differ-
ence task items and a stronger preference for line graphs 
when solving trend task items. To investigate this, we 
compared participants’ relative graph preference across 
the experimental trials. The results of the LMM (M3) 
suggest that participants developed a stronger preference 
for line graphs in both task conditions, confirming only 
one of our hypotheses (2b: preference for bar graphs 
increases over the course of processing difference tasks.), 
but not the other (2a: preference for line graphs increases 
over the course of processing trend tasks).  

While the described development was expected in the 
trend task, it was a counterintuitive observation in the 
difference task. As there was no significant trial by task 
type interaction, the fixed effect of the trial number was 
very similar in both task conditions. Yet, the meaning of 
this development seems to be different for the two task 
types: In the trend task, on average participants started 
with a negative relative graph preference (i.e., preference 
for line graphs) that became stronger over time (this in 
line with our hypothesis 2b). In the difference task, on the 

other hand, participants started, on average, with a posi-
tive relative graph preference (i.e., preference for bar 
graphs) that decreased over time and became about zero 
(i.e., no preference for a particular graph, meaning fixa-
tion times on bar and line graphs were about equal). 
While this is contrary to our hypothesis 2a, it does not 
reflect a complete shift in preference, but rather a bal-
anced use of both graph types when processing difference 
tasks. There might be more than one explanation for this 
finding: First, participants increasingly tended to use both 
graph types in the difference task, because verifying the 
answer proved helpful to evaluate the statements. How-
ever, because of the participants’ generally high accura-
cy, it remains unclear if this strategy was actually advan-
tageous. Or second, participants generally developed a 
higher preference for line graphs over the course of the 
trials. This might be due to a transfer effect (for transfer 
effects in graph tasks see Baker, Corbett & Koedinger, 
2001) from the trend tasks in which line graphs were 
more clearly advantageous as suggested by the higher 
effect size in this condition.  

Conclusion 

Computational properties of graphs have been inves-
tigated extensively in the past (e.g. Peebles & Cheng, 
2003; Pinker, 1990; Simkin & Hastie, 1987; Shah, May-
er, & Hegarty, 1999; Zacks & Tversky, 1999). It is well 
established that line graphs are advantageous for trend 
tasks, while bar graphs are more helpful for difference 
tasks. However, there is little knowledge about graph 
readers’ ability to detect and use these properties. The 
current study contributes to the field of graph comprehen-
sion by investigating graph readers’ ability to choose the 
graph type most suited to a given task. Eye-tracking 
methodology was applied to assess graph readers’ prefer-
ential processing of bar versus line graphs in a dual repre-
sentation paradigm. Data showed that computational 
advantages of bar and line graphs were reflected by par-
ticipants’ preference towards the advantageous graph as a 
function of the task. Graph readers preferred to use the 
graph type most suited to a given task, suggesting that 
computational advantages in graphs are readily available 
to graph users, even in environments that provide alterna-
tive representations. 

Still, there are limitations to our study that need to be 
considered. 
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First, the true-false items used in the graph tasks were 
not designed to be sensitive to differences in graph read-
ers’ task performance and thus caused a ceiling effect in 
the performance data. Therefore, it remains unclear 
whether the observed preference patterns actually result-
ed in higher performance. Future studies could employ 
more complex tasks to investigate the connection be-
tween preferential processing and task performance.  

Second, it is important to note that we used self-report 
data to assess participants’ overall graph preference. 
Since it was not possible to verify the validity of partici-
pants’ self-reports, this data should be interpreted with 
caution. 

Third, we discovered that the true-false statements 
used in the difference task were relatively more demand-
ing than those used in the trend task, which seems to have 
led participants to use both graphs in order to verify their 
answer. Additional research is needed to clarify the use of 
verifying strategies when multiple representations are 
available, for example, by complementing eye-tracking 
analyses with verbal reports (Ericsson & Simon, 1980; 
van Gog, Kester, Nievelstein, Giesbers, & Paas, 2009). 

Fourth, we only investigated two different task types 
to analyze the preferential processing of bar graphs ver-
sus line graphs. Future studies could expand this research 
to additional tasks (especially more complex tasks) and 
more graph types (e.g., circle charts). 

Finally, the number of participants in the current 
study was relatively small. However, by using a high 
number of experimental trials and employing linear 
mixed-effects models to account for the clustered data 
structure, we were able to compensate for this shortcom-
ing. Still, future studies could collect data from larger 
samples to increase the reliability and generalizability of 
the results. 

The findings and limitations of this study lead to some 
suggestions for future research. An analysis across trials 
revealed a general increase in the preference for line 
graphs, resulting in a strong preference for line graphs in 
trend tasks and a balanced use of both graph types in 
difference tasks. This unexpected preference develop-
ment towards line graphs in both graph tasks poses new 
questions: Is the use of two graphs superior to using only 
one graph? May the graph preference be influenced by 
transfer effects between different tasks? Future research 
should investigate processing of multiple graphs com-

pared to single representations to clarify if the use of 
multiple graphs can be advantageous for some tasks. 
Alternative explanations, such as transfer effects between 
multiple tasks, could also be investigated.  

Furthermore, it should be noted that the random ef-
fects in the LMMs showed a substantial variation in the 
observed graph preference between participants, empha-
sizing the need to further explore individual differences 
in the domain of graph comprehension. Additionally, 
high processing times in the difference task revealed that 
these items may put a higher demand on working 
memory. Even though working memory has been dis-
cussed as a limiting factor for graph comprehension (e.g., 
Lohse, 1997; Pinker, 1990; Shah & Hoeffner, 2002; 
Trickett & Trafton, 2006), it has rarely been focused on. 
Only recently, Halford, Baker, McCredden and Bain 
(2005) found that the human processing capacity is lim-
ited to four variables in one graphical display. Thus, 
future research should consider individual variables, such 
as working memory capacity, alongside processing and 
performance data. A combination of these approaches 
could provide a deeper insight into graph readers’ ability 
to make use of computational properties, and into graph 
comprehension in general. 
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