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Introduction 

Eye trackers are useful for a number of research appli-

cations, such as research in reading and dyslexia, language 

processing and mental health disorders (Duchowski, 2002; 

SensoMotoric Instruments, n.d.). With current commercial 

high speed trackers costing more than 30 000 euros, there 

is certainly reason to conduct research into more afforda-

ble alternatives. 

There are several existing non-commercial implementa-

tions that have demonstrated the feasibility of performing 

eye tracking at sampling frequencies of over 200 Hz. The 

eye tracker of Hennessey, Noureddin and Lawrence (2008) 

are capable of sampling at 407 Hz. Mulligan (2012) pre-

sents a GPU assisted solution that utilises NVIDIA’s 

CUDA programming language and is capable of achieving 

theoretical sampling rates of up to 250 Hz. Mompean, Ara-

gon, Prieto and Artal (2015) used CUDA and OpenMP and 

proved that pupil tracking can be efficiently performed at 

high speeds with high-resolution images (up to 530 Hz 

with images of 1280×1024 pixels) using a state-of-the-art 

GP-GPU. 

In this paper, we present a GPU assisted eye tracking 

solution capable of attaining sampling frequencies in ex-

cess of 200 Hz on a mid-range laptop. The system is capa-

ble of attaining an average accuracy of one degree of visual 

angle or better along with a precision of approximately 0.3 

degrees.  

The following section will focus on the GPU and its 

potential for use in eye tracking. Thereafter, the use of the 

GPU in the solution is discussed, along with details regard-

ing the process followed to identify feature points and per-

form gaze estimation. Finally, details regarding the exper-

iment performed to evaluate the system are provided along 

with a discussion on the results. 

The GPU and Eye Tracking 

Traditionally, in an attempt to limit the overall cost, eye 

tracking systems utilised commercial off-the-shelf compo-

nents. To this end, the fact that modern day computers 

commonly come equipped with multi-core CPUs and inte-

grated GPUs presents researchers with the prospect of ad-

ditional computing power through the use of parallelism. 
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Parallel potential in eye tracking 

The idea of writing programs that perform tasks in par-

allel has become more popular in recent years due to the 

ever increasing amount of data that must be processed. 

Parallelisation can be divided into two categories, namely 

task parallelism and data parallelism (Pacheco, 2011), 

where the former refers to executing multiple tasks con-

currently and the latter to dividing the data into smaller 

portions and executing the same series of tasks on each 

portion in parallel. Parallelism works best when the tasks 

can be executed independently (Sottile, Mattson & Ras-

mussen, 2010) as this limits the amount of communication 

that must occur between tasks. 

When one considers the eye tracking process, there are 

several potential areas where parallelism can be applied. 

The most obvious place to start would be in the processing 

of the eye video – arguably the most time consuming task 

in eye tracking. Typically, the processing of the eye video 

involves numerous iterations over millions of pixels for 

each image, a task that is trivial to implement in parallel if 

one considers image processing functions that do not rely 

on the results of processing on neighbouring pixels. 

A popular example of image processing within eye 

tracking is simple thresholding, where the colour intensity 

of a pixel is compared against a certain threshold. A further 

example is an algorithm, such as Canny edge detection 

(Canny, 1986), that is used to find the edges of pupils. The 

Gaussian blur that often precedes an edge detection oper-

ation can also be executed in parallel (vertical and horizon-

tal blur) before combining the results. Each of these func-

tions has the additional advantage of being performed on a 

per-pixel basis, and can therefore be data parallelised.  

When one considers that an eye video consists of many 

thousands (even millions) of pixels, it stands to reason that 

a dedicated device, such as the GPU, could be highly ad-

vantageous in parallelising the image processing tasks in 

eye tracking. This ultimately points to the SIMD architec-

ture of the modern GPU, which allows operations to be 

performed on many pixels simultaneously. 

Advances in GPU design in the last decade or so have 

increasingly opened up the power of the GPU to research-

ers wishing to utilise the massively parallel architecture of 

                                                 
1 A small C type program that executes on the GPU 

the GPU to accelerate certain tasks. The resulting pro-

grams are referred to as GPGPU (General Purpose Calcu-

lations on the Graphics Processing Unit). An early exam-

ple of such an implementation is that of matrix multiplica-

tion involving large vectors (Thompson, Hahn & Oskin, 

2002). 

As a result, there are several application programming 

interfaces (APIs) that can be used to perform computations 

on the GPU. One example of such an API is NVIDIA’s 

Compute Unified Device Architecture (CUDA) (NVIDIA, 

2016). CUDA was developed to simplify the process of 

writing code for general computations on the GPU 

(Castaño-Díez, Moser, Schoenegger, Pruggnaller & 

Frangakis, 2008) and has already been used in eye tracking 

(Mulligan, 2012; Duchowski, Price, Meyer & Orero, 2012; 

Mompean et al., 2015). 

Microsoft’s DirectX provides access to programmable 

shaders1 through the High Level Shader Language 

(HLSL). HLSL allows the creation of C like programma-

ble shaders for the Direct3D pipeline. It was first intro-

duced in DirectX 9 (Peeper & Mitchell, 2004) and allows 

developers to take exact control of what happens to 

graphics data on a per-vertex and per-pixel basis. As of 

Microsoft DirectX 11, researchers have access to compute 

shaders through which high speed general purpose compu-

ting can be performed (Microsoft, 2016a). 

Existing work 

To date, the GPU has only been utilised in single in-

stances in eye tracking. As mentioned previously, Mulli-

gan (2012) proposed a solution making use of CUDA that 

is capable of achieving 250 Hz on a 640×480 image, with 

average accuracies close to 0.5 degrees of visual angle. In 

another example, Duchowski et al. (2012) made use of the 

GPU to build real time heat maps. 

Mompean et al. (2015) used CUDA and OpenMP to 

implement and compare three different tracking algo-

rithms, inter alia the well known Starburst algorithm (Li 

et al., 2005), accelerated by GPUs. They found that pupil 

tracking can be efficiently performed at framerates up to 

530 Hz using a state-of-the-art GP-GPU. 
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Pitfalls in GPU accelerated eye tracking 

It should be noted that the enormous processing power 

of the GPU comes with a specific drawback, namely that 

data must be transferred back and forth between the GPU 

and system memory. As illustrated by Mulligan (2012) and 

depending on the size of the data to be copied, as well as 

the physical performance and system specifications of the 

host machine, the transfer can take anything from a milli-

second or longer. This delay can be considered time con-

suming in the light of the real-time nature of eye tracking. 

A delay of only a couple of milliseconds can result in 

a drastically lower sampling rate. This delay becomes in-

creasingly problematic as the required sampling frequency 

increases, as even a single millisecond delay can lead to a 

significantly lower sampling frequency. Thus, to prove 

beneficial to the eye tracking process, the GPU has to per-

form work at a significantly faster rate than CPU equiva-

lents to justify the added cost of data transfer to and from 

the GPU. 

An additional issue with GPU programming is that the 

use of the GPU may limit the kind of image processing that 

can be performed. Not all algorithms are parallelisable and 

the GPU’s memory architecture is not as flexible as that of 

the CPU, making programming for GPUs challenging 

(Castaño-Díez et al, 2008). 

These two issues are perhaps the reason why currently 

there do not exist many real-time GPU accelerated eye 

tracking solutions. 

Motivation 

While the studies of Mulligan (2012) and Mompean et 

al. (2015) were, in our eyes, ground-breaking, we believe 

that the current study will contribute to the extent that it 

confirms that GPU-enabled eye tracking is also feasible 

with off-the-shelf components and mid-range computers.  

Furthermore, Mompean et al. (2015) evaluated the 

tracking algorithms in terms of the accuracy of pupil de-

tection but did not go as far as mapping the detected eye 

features to gaze coordinates and evaluate the gaze data 

quality in terms of accuracy and precision of reported gaze 

coordinates. Although this is a next step in the eye tracking 

process and the data quality can be adversely affected by 

any of the preceding phases (i.e. image quality and feature 

detection), we believe it is important since it gives credi-

bility to the process and can easily be interpreted in terms 

of known standards.  

Implementation 

Video-based eye tracking 

In a video-based eye tracker, the relative position of the 

pupil to the corneal reflection(s) (the so-called pupil-glint 

vector) changes as the eyes move. Using an appropriate 

model, the x and y dimensions of the pupil-glint vector can 

be mapped to screen coordinates (X,Y). As the magnitude 

of the pupil-glint vector changes with backward and for-

ward head movements, it has to be normalised in terms the 

distance between the glints (if there are more than one IR 

source) or between the pupils. 

The implementation discussed below makes use of two 

infrared light sources, positioned equidistantly on either 

side of a high speed camera to generate corneal reflections. 

Image processing 

The solution presented in this paper makes use of Mi-

crosoft DirectX 9 and shaders written in HLSL. By using 

DirectX 9, we ensure that the implementation is compati-

ble on a wide range of graphics cards, rather than relying 

on specific GPUs such as those manufactured by NVIDIA 

and AMD. This brings down the overall cost of the system, 

as potential users can buy a high-speed camera off-the-

shelf and use whatever PC they have at their disposal, pro-

vided the display adapter meets the minimum require-

ments for DirectX 9 and supports Shader Model 2. The 

host application was developed using C# with .Net 4.5. 

The proposed eye tracking solution consists of a three 

step process to analyse eye videos and locate the feature 

points. Firstly, the raw frames from the camera are 

wrapped into the structure required by DirectX for render-

ing. Next, the camera image is transferred to the GPU’s 

memory (VRAM) for manipulation using two shaders 

written in HLSL. The goal of these shaders is to simplify 

the job of extracting candidate feature points. The results 

of both of these shaders are stored in off-screen render tar-

gets. The first render target was used as input for the sec-

ond shader. The final render target contained the final pro-

cessed image – the combined result of the first and second 

shader. This image is then copied back to system memory 

and processed by the CPU to compute the locations of the 

feature points. Figure 1 below gives an outline of the pro-

gram architecture.  
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Figure 1: Overview of system architecture 

The use of two separate shaders was necessary due to 

the low instruction count imposed by Shader Model 2.0 

(256 instructions) (Microsoft, 2016b), as well as the de-

pendencies between certain of the image processing func-

tions. 

As mentioned earlier, there are several commonly used 

image processing functions utilised in eye tracking that are 

embarrassingly2 parallel and are therefore simple to imple-

ment on the GPU. The use of simple functions was moti-

vated by the need to evaluate the worst case for the GPU 

in terms of delay versus processing gain. In other words, 

should the GPU prove beneficial even when using simple 

functions, it can be argued that its worth will increase as 

the complexity of the image processing functions increase. 

Shader implementations 

The first of the image processing shaders (pre-process) 

performs a number of threshold functions to isolate the 

corneal reflections (a.k.a. glints) and pupils from the rest 

                                                 
2 Parallelism that can be implemented without any dependencies. 

of the image in order to simplify the image for later pro-

cessing. All thresholds were set by hand and adjusted per-

participant as needed. As the ultimate goal of the shaders 

is to simplify the job of locating the feature points, the pu-

pil and glint candidate pixels are represented with two dif-

ferent colours – green and red respectively. To isolate the 

glints, a simple intensity gradient is constructed using the 

brightness of the surrounding pixels. The resulting gradi-

ent, along with a suitable threshold is then used to select 

corneal reflection candidates. 

A second threshold test is used to isolate pupil candi-

dates. If the previous positions of the corneal reflections 

are known, the distance to the closest corneal reflection is 

used to eliminate false positives that result from eye lashes 

or eyebrows. The resulting image is then sent to a second 

shader for edge detection. 

The second shader (post-process) performs Canny 

(Canny, 1986) edge detection (instead of the usual ellipse 

fitting) on the image from the previous shader to further 

decrease the number of pixels that must be processed by 

the CPU. The centroids of the pupils and glints were cal-

culated as the arithmetic mean of the x and y coordinates 

of the pixels in the pupil/glint.  

An intersection between the glint and pupil causes the 

pupil to lose its circular shape which will in turn offset the 

computed pupil centre. To counter this, an iterative process 

was followed to include glint pixels inside the previously 

known pupil radius until the pupil centre stabilised within 

pre-set parameters. 

The entire GPU related process is summarised in Fig-

ure 2.  

CPU processing 

After the image has been processed and candidate pix-

els separated into the green and red colour channels, the 

CPU calculates the centres of the pupils and glints. The 

pupil and glint candidate points are aggregated, and an im-

age processing library (http://www.aforgenet.com/) is 

used to calculate the centres of each of these collections.  

In this particular implementation of the HLSL tracker, 

no ellipse fitting was performed. However, it is certainly 

possible, if necessary, to add this step at a later stage – 

given that all the pixels belonging to the identified features 

are already grouped into separate collections. 
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Figure 2: Overview of the pre- and post-process shaders 

Evaluation of the HLSL eye tracker 

Participants 

To evaluate the performance of the eye tracking solu-

tion, an experiment involving 30 participants was con-

ducted in a laboratory. Participants were drawn from staff 

and students on campus. To ensure the best possible re-

sults, none of the participants wore spectacles. 

Physical setup and equipment 

Using adjustable lighting, the brightness of the room 

was set at 300 lux. The stimulus consisted of a 20” monitor 

with a resolution of 1360×768 and was positioned 70 cm 

from the participant, resulting in a horizontal gaze angle of 

11.7 from side to side. The eye tracking software was in-

stalled on a HP Pavilion G7 laptop running Windows 8 

(x64). The laptop is equipped with an Intel Core i5-3230M 

processor running at 2.60 GHz with 4 GB of DDR3 1333 

Mhz RAM. The laptop is further equipped with switchable 

graphics containing an Intel HD4000 and a Radeon HD 

7670M graphic card. For the purpose of this study, the In-

tel card was used. 

Eye images were captured using a single USB 3.0 

CMOS camera from IDS (Model UI-3360CP-NIR-GL) 

(https://en.ids-imaging.com/store/ui-3360cp.html). The 

camera has a pixel size of 5.5 μm and a sensor size of 2/3". 

At its native resolution of 2048×1088 (2M) the camera is 

capable of 70 fps, but if only a portion of the sensor area is 

used, the framerate can be increased substantially. Alt-

hough not tested, we believe that the results obtained in 

this study could be achieved also with a cheaper camera as 

long as it supports a framerate of at least 300 Hz for a 90K 

pixel region of interest at the available levels of illumina-

tion. Such cameras, for example the IDS UI-1550LE-C, 

can be acquired for more or less 400-500 USD. 

The camera allows for the adjustment of the size of the 

video, as well as the frame rate, gain and gamma. This al-

lowed us to sample at a variety of different speeds in addi-

tion to making the necessary adjustments to compensate 

for changing light conditions resulting from different ex-

posure times. The camera was fitted with a 16 mm lens 

with a filter to allow only infrared light to pass. 

Two infrared light sources, positioned equidistantly on 

either side of the camera, were used to generate corneal 

reflections. The eye tracker was mounted on a table with 

an adjustable surface that can be accurately positioned 

along three axes (cf. Figure 3). 

 

Figure 3: Laboratory setup with the participant on 

a fixed chin rest and the eye tracker and 

monitor on an XYZ adjustable table 

Experimental procedure for human participants 

The experiment required participants to look at a grid 

of forty dots evenly spaced on the monitor. The dots were 

displayed in random order for a total of two seconds. A 

time frame of 250 ms during which the eye data was ad-

judged to be most stable, was selected for analysis. 

The experiment consisted of two phases. In the first 

phase, the effect of the sampling frequency on the preci-

sion and accuracy was investigated while keeping the head 
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position in the centre of the head box. In the second phase, 

the effect of head position on the precision and accuracy 

was investigated at a sampling frequency of 100 Hz while 

the position of the eye tracker was changed in relation to 

the participant to simulate head movements (cf Figure 3). 

During both phases of the experiment, participants 

were seated 70 cm from the monitor and 65 cm from the 

eye tracker. Participants' head positions were fixed using a 

chin rest (cf. Figure 3). The entire experimental setup in-

volving human participants is summarised in Table 1. 

Table 1. Summary of the various combinations of settings 

that were used during the experiment 

Sampling 

frequency 

(Hz) 

Region of 

interest 

(Pixels) 

X Pos 

(cm) 

Y Pos 

(cm) 

Z Pos 

(cm) 

Phase 1  

 50  600×150 0 0 65 

 100  600×150 0 0 65 

 150  600×150 0 0 65 

 200  600×150 0 0 65 

 250  600×150 0 0 65 

 300  600×150 0 0 65 

Phase 2  

 100 1200×400 +5 0 65 

 100 1200×400 -5 0 65 

 100 1200×400 0 +3 65 

 100 1200×400 0 -3 65 

 100 1200×400 0 0 70 

 100 1200×400 0 0 60 

Experimental procedure for artificial eyes 

In addition to human participants, the theoretical per-

formance of the system was examined using artificial eyes. 

In theory, artificial eyes should yield precision values of 

0°, as they remain completely still. However, eye tracking 

systems contain noise and the purpose of the test with ar-

tificial eyes was to determine the precision that is obtaina-

ble if the continuous head movements and eye tremors that 

are present in human participants were completely elimi-

nated, thereby determining the amount of noise produced 

by the eye tracking system. 

The artificial eyes were mounted on a cardboard and 

clamped in a fixed position to the table – aiming more or 

less at the centre of the display. As recommended by 

Holmqvist et al (2011), the calibration data of a similarly 

positioned human participant was used to map the feature 

points to gaze coordinates. 

Since the eyes could not be pointed to specific targets 

on the display, accuracy could not be measured. For the 

effect of frequency on precision, an ROI of 600×150 was 

used and the same procedure as for human participants was 

followed.  This means that the gaze target was displayed at 

40 distinct positions but gaze data was captured in the cen-

tre of the display only, resulting in 240 samples (40 repe-

titions × 6 frequencies). 

Analysis 

All data recorded during the experiment was collected 

in a database and analysed post-hoc. The data included the 

location coordinates of all detected feature points in the 

eye video as well as time stamps for each set of coordi-

nates. 

Fixation data from fourteen of the forty dots was used 

as calibration data to construct the gaze estimation polyno-

mials for every participant (cf. Figure 4). All dots were 

used to validate the accuracy and precision of the system. 

The time stamps were used to verify the actual sampling 

rate of the system. 

        

        

        

        

        

Figure 4: 8×5 grid of dots. All dots were displayed as  to 

participants. The  around the dots only serve to 

indicate the dots that were used for the regression. 

Since the system geometry was similar to that of a system 

used for an earlier study (Blignaut, 2013), the following 

two polynomials were used to map feature point coordi-

nates in the eye video to gaze coordinates on the display (x 

and y refer to the normalised x and y components of the 

pupil-glint vector of a specific eye at a specific point in 

time. PoRx and PoRy refer to the X and Y coordinates of 

the point of regard for the specific eye on the two dimen-

sional plane of the screen): 

PoGx = a0 +a1x +a2x2 + a3x3 +a4y + a5xy +a6x2y  

             +a7x3y 

PoGy = b0 + b1x + b2x2 + b3y + b4y2 + b5xy + b6x2y 

For samples within a fixation (data captured for a spe-

cific gaze target), we assumed that the spread of data 

around the centroid would be normal and outlier samples 

were identified as those lying beyond 3σ from the centroid. 

In other words, maximally 0.54% of the data points were 

removed and the centroid recalculated. 
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Precision was then calculated as the pooled variance of 

mapped sample data within a fixation in the x and y dimen-

sions, as it has been shown previously that the de facto 

standard sample-to-sample Root Mean Square (RMS) is 

affected by the sampling rate of the eye tracker (Blignaut 

& Beelders, 2012): 

SD(P) = √(𝜎𝑥
2 + 𝜎𝑦

2)/2 

where 𝜎𝑥
2 =

1

𝑁
∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1   

 and 𝜎𝑦
2 =

1

𝑁
∑ (𝑦𝑖 − 𝑦̅)2𝑁
𝑖=1  

For each gaze target, the centroid of samples was de-

termined. Data sets for which no or not adequate gaze data 

were recorded (due to blinks or participants being dis-

tracted) and data sets further than 3 from the gaze target 

were regarded as outliers and removed. The accuracy was 

calculated as the average (over all dots and participants) of 

the differences between the known locations of the dots 

and the centroids of the clusters of sample data. 

Analyses of variance (ANOVA) were done to deter-

mine the significance (α = .05) of all results. Tukey’s HSD 

(honestly significant difference) for unequal number of ob-

servations was used to determine the significance (α = .05) 

of differences in accuracy and precision between individ-

ual combinations of sampling frequencies and head posi-

tions. 

Results 

Precision and accuracy per participant 

Figures 5 and 6 show the overage accuracy and preci-

sion of gaze data samples in the 250 ms time frame over 

all target points per participant at a sampling frequency of 

100 Hz while the head was positioned in the centre of the 

head box. The average accuracy and precision of samples 

over all target points of all participants under these condi-

tions were 1.03 (SD = 0.66) and 0.33 (SD = 0.15) re-

spectively.  (Note that this is not the same as averaging the 

per-participant averages.) The average overall accuracy 

and precision for the other framerates are presented in Ta-

ble 2 in the next section. 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
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0.4
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Figure 5: Average accuracy per participant at 100 Hz in the 

centre of the head box. Vertical bars denote 95% confidence 

intervals. 
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Figure 6: Average precision per participant at 100 Hz in 

the centre of the head box. Vertical bars denote 95% confi-

dence intervals. 

Precision and accuracy against sampling frequency 

Table 2 shows the accuracy and precision values that 

were obtained for a range of sampling frequencies. The 

data is visualised in Figures 7 and 8. Although the pooled 

variance was used for precision in this paper, the RMS val-

ues are shown for 200 Hz and 250 Hz for purpose of com-

parison with Mulligan (2012). 

Precision was affected significantly (F(5,5600) = 

37.923, p = .000) by sampling frequency (Figure 7). How-

ever, Tukey’s unequal honestly significant difference be-

tween pairs of frequencies indicated that the effect was not 

significant for 150 Hz to 200 Hz or 250 Hz to 300 Hz. 

Likewise, accuracy was significantly affected (Figure 8) 

by sampling frequency (F(5,5452) = 20.847, p=.000). 

However, the post-hoc test revealed that it was only sig-

nificantly affected between 50 Hz and 100 Hz. 
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Table 2. Accuracy and precision for a range of sampling 

frequencies 

Frame-
rate (Hz) 

Accuracy Pooled vari-
ance 

RMS 

Mean SD Mean SD Mean SD 
 50 0.81 0.46 0.29 0.11   
 100 1.03 0.67 0.33 0.15   
 150 0.97 0.60 0.35 0.17   
 200 1.03 0.64 0.36 0.18 0.38 0.13 
 250 1.04 0.62 0.38 0.19 0.40 0.12 
 300 1.07 0.67 0.36 0.16   
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Figure 7: Average precision against sampling frequency. 

Vertical bars denote 95% confidence intervals. 
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Figure 8: Average accuracy against sampling frequency. 

Vertical bars denote 95% confidence intervals. 

The results show that both accuracy and precision ap-

pear to gradually deteriorate as the sampling frequency in-

creases. The change in precision may be attributed to the 

adjustments made to the gain and gamma of the camera, 

which resulted in a slight graininess in the eye video (Fig-

ure 9). Although the need for electronic gain could have 

been reduced by increasing the level of illumination, we 

decided to keep the illumination constant at a level which 

was tested to be within accepted safety limits. 

 

Figure 9. An example of the graininess resulting 

from adjustments to gain and gamma. 

Precision and accuracy vs head position 

The mean precision (pooled variance) and accuracy of 

the system for various head positions are shown in Tables 

3 and 4.  

Tukey’s post-hoc revealed that the effect of head posi-

tion on precision was not significant for any of the head 

movements. However, for accuracy (Table 4) the effect 

was significant on X – 5 and Z – 5. It is expected that hor-

izontal head movements will affect the accuracy of the eye 

tracker as a simple regression-based gaze estimation 

model was used. 

Table 3. Precision as affected by head position 

Axis 
Precision (degrees) 

Sign. 
Mean Min Max SD 

Centre 0.33 0.05 0.78 0.1531  

X + 5 0.32 0.06 0.74 0.1403  

X - 5 0.31 0.09 0.69 0.1306  

Y + 3 0.33 0.08 0.77 0.1481  

Y - 3 0.33 0.08 0.81 0.1595  

Z + 5 0.34 <0.01 0.8 0.1551  

Z - 5 0.31 0.06 0.83 0.1743  

Table 4. Accuracy as affected by head position 

Axis 
Accuracy (degrees) 

Sign. 
Mean Min Max SD 

Centre 1.03 0.18 3.03 0.6692  

X + 5 1.08 0.15 3.09 0.6908  

X - 5 1.15 0.13 3.39 0.7479  

Y + 3 1.12 0.17 3.3 0.7291  

Y - 3 1.04 0.2 3.02 0.6633  

Z + 5 0.94 0.09 2.51 0.5262  

Z - 5 1.25 0.4 3.94 0.9007  



Journal of Eye Movement Research  Du Plessis, J-P & Blignaut, P.J. (2016) 
9(4):6, 1-11  Performance of a video-based eye tracker with GPU acceleration 

 

  

9 

Tables 5 and 6 summarise the results of the effect of 

head movement on precision and accuracy. The key point 

here is that precision changes whenever the size of the fea-

ture points change in response to forward and backward 

head movements. However, vertical and horizontal head 

movements did not significantly affect precision. 

Table 5. Significance of the effect of head position on precision 

Axis F p Significant 

(α = .05) 

X F(2,2775)=2.014 .134  

Y F(2,2895)=.630 .532  

Z F(2,2754)=8.519 .000  

Table 6. Significance of the effect of head position on accuracy 

Axis F p Significant 

(α = .05) 

X F(2,2699)=5.628 .004  

Y F(2,2787)=4.857 .008  

Z F(2,2678)=43.460 .000  

Artificial eyes 

As with the human participants, the effect of the sam-

pling frequency on precision was significant (F(5,234) = 

235.3, p = .000) (Figure 10).  
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Figure 10. Precision against sampling frequency for 

artificial eyes 

The precision obtained with artificial eyes again shows 

a decline in precision with increasing frequency, suggest-

ing that the weaker precision is a result of noise in the sys-

tem. The graininess of the eye video can again be the cul-

prit. Tukey’s post-hoc test did show that this decrease in 

precision was significant, suggesting that the system’s op-

timal operating frequency is at lower speed – possibly 

around the 200 to 250 Hz range. 

GPU performance 

As mentioned earlier, the use of the GPU does intro-

duce additional overheads into the system in the form of 

transfer to and from the GPU. Figure 11 shows the inverse 

of the maximum obtainable sampling frequency (or the 

shortest possible time interval between successive gaze 

data samples) against the size of the area on the camera 

sensor that are analysed. The coefficient of determination, 

R2, of a linear fit of the data was 0.996. 

These results imply a trade-off between the amount of 

head movement that can be tolerated and the maximum 

framerate that can be achieved.  Mostly, participants move 

their heads in a horizontal direction and therefore the eye 

video sizes can be optimised to allow for more horizontal 

movement. With a window of 600 pixels wide and only 

200 pixels high (120,000 pixels), a framerate of 357 Hz 

(0.0028 s between samples) can be achieved, whereas a 

standard 4:3 window of 640×480 (307,200 pixels) would 

allow only 167 Hz (0.006 s). 

Therefore, it can be concluded that with the correct se-

lection of eye video resolution, the GPU can be used in the 

eye tracking process and a higher sampling frequency can 

still be obtained despite the overhead. 

 

Figure 11.  Inverse of maximum obtainable sampling 

frequency against image size 

Summary 

The eye tracker presented in this paper was developed 

to validate the data quality of a simple remote video-based 

eye tracker that is capable of framerates to 300 Hz. It uti-

lises the Graphical Processing Unit (GPU) in an attempt to 

parallelise aspects of the process to localize feature points 

in eye images to attain higher sampling frequencies. The 

system was evaluated at various sampling frequencies and 
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with simulated head positions to gauge the effect of these 

variables on the obtainable precision and accuracy. Artifi-

cial eyes were also included to evaluate the theoretical per-

formance of the system at higher frequencies, and the ef-

fect of the GPU implementation on the maximum obtain-

able sampling rate. 

The results indicated that it is possible to perform eye 

tracking at a sampling rate of around 200 Hz with a toler-

ance towards head movement within an area of 10×6×10 

cm. This is provided that the computer system running the 

HLSL tracking software has comparable or better system 

specifications than the laptop used during the experiment, 

and that it has a USB 3.0 port and a DirectX 9 compatible 

display adapter. Precision and accuracy figures of around 

0.3° and 1° respectively can be expected at this rate. More-

over, as the locations of the feature points are reported by 

the eye tracker, various gaze estimation methods can be 

utilised. There is also the potential to add a smoothing al-

gorithm to the gaze estimation data in order to improve 

precision.  

In spite of the fact that sampling frequencies in excess 

of 200 Hz were achieved, the use of the GPU in the eye 

tracking process still presents a conundrum. Other re-

searchers (Hennessey, Noureddin & Lawrence, 2008) have 

already demonstrated that it is possible to achieve high 

sampling frequencies without the use of the GPU. This 

suggests that one would be better off implementing the 

parallelism on the CPU rather than on the GPU, unless a 

way is found to decrease the overhead of transfers to and 

from the GPU, something that is possible as shown by 

Mompean et al (2015), or to make use of image processing 

techniques that would otherwise be too time consuming for 

the CPU.  

Limitations and future work 

While the solution discussed in this paper made use of 

Microsoft technologies, the shader based implementation 

does theoretically allow for support in Linux based sys-

tems through the use of OpenGL and the corresponding 

shader language GLSL (OpenGL Shader Language. How-

ever, the performance of the solution may differ when us-

ing OpenGL. Given that Mompean et al (2015) were capa-

ble of achieving double the sampling rate using a CUDA 

based implementation, the choice of HLSL is a definite 

weakness of the system. 

An additional limitation is the use of a 40 point grid, 

instead of a 45 point grid. The use of the 40 point grid was 

ill-advised, as it, without an obvious middle point, made 

choosing a suitable set of calibration points quite difficult 

(cf. Figure 4). For this reason, a fourteen point calibration 

procedure was used. 

Precision may be improved at higher frequencies by 

applying a Gaussian blur before performing the edge de-

tection, as this may eliminate some of the graininess pre-

sent in the eye video at these frequencies. It will provide a 

stronger case for the use of the GPU as this can be per-

formed fairly rapidly and is easily implemented.  
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