
Journal of Eye Movement Research
9(4):6, 1-11

1

Introduction

Eye trackers are useful for a number of research appli-

cations, such as research in reading and dyslexia, language

processing and mental health disorders (Duchowski, 2002;

SensoMotoric Instruments, n.d.). With current commercial

high speed trackers costing more than 30 000 euros, there

is certainly reason to conduct research into more afforda-

ble alternatives.

There are several existing non-commercial implementa-

tions that have demonstrated the feasibility of performing

eye tracking at sampling frequencies of over 200 Hz. The

eye tracker of Hennessey, Noureddin and Lawrence (2008)

are capable of sampling at 407 Hz. Mulligan (2012) pre-

sents a GPU assisted solution that utilises NVIDIA’s

CUDA programming language and is capable of achieving

theoretical sampling rates of up to 250 Hz. Mompean, Ara-

gon, Prieto and Artal (2015) used CUDA and OpenMP and

proved that pupil tracking can be efficiently performed at

high speeds with high-resolution images (up to 530 Hz

with images of 1280×1024 pixels) using a state-of-the-art

GP-GPU.

In this paper, we present a GPU assisted eye tracking

solution capable of attaining sampling frequencies in ex-

cess of 200 Hz on a mid-range laptop. The system is capa-

ble of attaining an average accuracy of one degree of visual

angle or better along with a precision of approximately 0.3

degrees.

The following section will focus on the GPU and its

potential for use in eye tracking. Thereafter, the use of the

GPU in the solution is discussed, along with details regard-

ing the process followed to identify feature points and per-

form gaze estimation. Finally, details regarding the exper-

iment performed to evaluate the system are provided along

with a discussion on the results.

The GPU and Eye Tracking

Traditionally, in an attempt to limit the overall cost, eye

tracking systems utilised commercial off-the-shelf compo-

nents. To this end, the fact that modern day computers

commonly come equipped with multi-core CPUs and inte-

grated GPUs presents researchers with the prospect of ad-

ditional computing power through the use of parallelism.

How to Prepare your Manuscript for the

Journal of Eye Movement Research

Jean-Pierre du Plessis
University of the Free State,

South Africa

Pieter Blignaut
University of the Free State,

South Africa

Eye tracking is a well-established tool that is often utilised in research. There are currently

many different types of eye trackers available, but they are either expensive, or provide a

relatively low sampling frequency. The eye tracker presented in this paper was developed

to address the lack of low-cost high-speed eye trackers. It utilises the Graphical Processing

Unit (GPU) in an attempt to parallelise aspects of the process to localize feature points in

eye images to attain higher sampling frequencies. Moreover, the proposed implementation

allows for the system to be used on a variety of different GPUs. The developed solution is

capable of sampling at frequencies of 200 Hz and higher, while allowing for head move-

ments within an area of 10×6×10 cm and an average accuracy of one degree of visual angle.

The entire system can be built for less than 700 euros, and will run on a mid-range laptop.

Keywords: eye movement, eye tracking, saccades, microsaccades, antisaccades,

smooth pursuit, scanpath, convergence, attention

Performance of a simple remote video-

based eye tracker with GPU acceleration

Jean-Pierre du Plessis
University of the Free State

South Africa

Pieter Blignaut
University of the Free State

South Africa

Eye tracking is a well-established tool that is often utilised in research. There are currently

many different types of eye trackers available, but they are either expensive, or provide a

relatively low sampling frequency. The focus of this paper was to validate the performance

and data quality of a simple remote video-based eye tracker that is capable of attaining

higher framerates than is normally possible with low-cost eye trackers. It utilises the Graph-

ical Processing Unit (GPU) in an attempt to parallelise aspects of the process to localize

feature points in eye images. Moreover, the proposed implementation allows for the system

to be used on a variety of different GPUs. The developed solution is capable of sampling at

frequencies of 200 Hz and higher, while allowing for head movements within an area of

10×6×10 cm and an average accuracy of one degree of visual angle.

Keywords: GPU, accuracy, precision, sampling frequency

Received April 6, 2016; Published August 15, 2016.

Citation: Du Plessis, J-P & Blignaut, P.J. (2016). Performance of a

simple remote video-based eye tracker with GPU acceleration. Jour-

nal of Eye Movement Research, 9(4):6, 1-11.

Digital Object Identifier: 10.16910/jemr.9.4.6

ISSN: 1995-8692

This article is licensed under a Creative Commons Attribution 4.0

International license.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Journal of Eye Movement Research Du Plessis, J-P & Blignaut, P.J. (2016)
9(4):6, 1-11 Performance of a video-based eye tracker with GPU acceleration

2

Parallel potential in eye tracking

The idea of writing programs that perform tasks in par-

allel has become more popular in recent years due to the

ever increasing amount of data that must be processed.

Parallelisation can be divided into two categories, namely

task parallelism and data parallelism (Pacheco, 2011),

where the former refers to executing multiple tasks con-

currently and the latter to dividing the data into smaller

portions and executing the same series of tasks on each

portion in parallel. Parallelism works best when the tasks

can be executed independently (Sottile, Mattson & Ras-

mussen, 2010) as this limits the amount of communication

that must occur between tasks.

When one considers the eye tracking process, there are

several potential areas where parallelism can be applied.

The most obvious place to start would be in the processing

of the eye video – arguably the most time consuming task

in eye tracking. Typically, the processing of the eye video

involves numerous iterations over millions of pixels for

each image, a task that is trivial to implement in parallel if

one considers image processing functions that do not rely

on the results of processing on neighbouring pixels.

A popular example of image processing within eye

tracking is simple thresholding, where the colour intensity

of a pixel is compared against a certain threshold. A further

example is an algorithm, such as Canny edge detection

(Canny, 1986), that is used to find the edges of pupils. The

Gaussian blur that often precedes an edge detection oper-

ation can also be executed in parallel (vertical and horizon-

tal blur) before combining the results. Each of these func-

tions has the additional advantage of being performed on a

per-pixel basis, and can therefore be data parallelised.

When one considers that an eye video consists of many

thousands (even millions) of pixels, it stands to reason that

a dedicated device, such as the GPU, could be highly ad-

vantageous in parallelising the image processing tasks in

eye tracking. This ultimately points to the SIMD architec-

ture of the modern GPU, which allows operations to be

performed on many pixels simultaneously.

Advances in GPU design in the last decade or so have

increasingly opened up the power of the GPU to research-

ers wishing to utilise the massively parallel architecture of

1 A small C type program that executes on the GPU

the GPU to accelerate certain tasks. The resulting pro-

grams are referred to as GPGPU (General Purpose Calcu-

lations on the Graphics Processing Unit). An early exam-

ple of such an implementation is that of matrix multiplica-

tion involving large vectors (Thompson, Hahn & Oskin,

2002).

As a result, there are several application programming

interfaces (APIs) that can be used to perform computations

on the GPU. One example of such an API is NVIDIA’s

Compute Unified Device Architecture (CUDA) (NVIDIA,

2016). CUDA was developed to simplify the process of

writing code for general computations on the GPU

(Castaño-Díez, Moser, Schoenegger, Pruggnaller &

Frangakis, 2008) and has already been used in eye tracking

(Mulligan, 2012; Duchowski, Price, Meyer & Orero, 2012;

Mompean et al., 2015).

Microsoft’s DirectX provides access to programmable

shaders1 through the High Level Shader Language

(HLSL). HLSL allows the creation of C like programma-

ble shaders for the Direct3D pipeline. It was first intro-

duced in DirectX 9 (Peeper & Mitchell, 2004) and allows

developers to take exact control of what happens to

graphics data on a per-vertex and per-pixel basis. As of

Microsoft DirectX 11, researchers have access to compute

shaders through which high speed general purpose compu-

ting can be performed (Microsoft, 2016a).

Existing work

To date, the GPU has only been utilised in single in-

stances in eye tracking. As mentioned previously, Mulli-

gan (2012) proposed a solution making use of CUDA that

is capable of achieving 250 Hz on a 640×480 image, with

average accuracies close to 0.5 degrees of visual angle. In

another example, Duchowski et al. (2012) made use of the

GPU to build real time heat maps.

Mompean et al. (2015) used CUDA and OpenMP to

implement and compare three different tracking algo-

rithms, inter alia the well known Starburst algorithm (Li

et al., 2005), accelerated by GPUs. They found that pupil

tracking can be efficiently performed at framerates up to

530 Hz using a state-of-the-art GP-GPU.

Journal of Eye Movement Research Du Plessis, J-P & Blignaut, P.J. (2016)
9(4):6, 1-11 Performance of a video-based eye tracker with GPU acceleration

3

Pitfalls in GPU accelerated eye tracking

It should be noted that the enormous processing power

of the GPU comes with a specific drawback, namely that

data must be transferred back and forth between the GPU

and system memory. As illustrated by Mulligan (2012) and

depending on the size of the data to be copied, as well as

the physical performance and system specifications of the

host machine, the transfer can take anything from a milli-

second or longer. This delay can be considered time con-

suming in the light of the real-time nature of eye tracking.

A delay of only a couple of milliseconds can result in

a drastically lower sampling rate. This delay becomes in-

creasingly problematic as the required sampling frequency

increases, as even a single millisecond delay can lead to a

significantly lower sampling frequency. Thus, to prove

beneficial to the eye tracking process, the GPU has to per-

form work at a significantly faster rate than CPU equiva-

lents to justify the added cost of data transfer to and from

the GPU.

An additional issue with GPU programming is that the

use of the GPU may limit the kind of image processing that

can be performed. Not all algorithms are parallelisable and

the GPU’s memory architecture is not as flexible as that of

the CPU, making programming for GPUs challenging

(Castaño-Díez et al, 2008).

These two issues are perhaps the reason why currently

there do not exist many real-time GPU accelerated eye

tracking solutions.

Motivation

While the studies of Mulligan (2012) and Mompean et

al. (2015) were, in our eyes, ground-breaking, we believe

that the current study will contribute to the extent that it

confirms that GPU-enabled eye tracking is also feasible

with off-the-shelf components and mid-range computers.

Furthermore, Mompean et al. (2015) evaluated the

tracking algorithms in terms of the accuracy of pupil de-

tection but did not go as far as mapping the detected eye

features to gaze coordinates and evaluate the gaze data

quality in terms of accuracy and precision of reported gaze

coordinates. Although this is a next step in the eye tracking

process and the data quality can be adversely affected by

any of the preceding phases (i.e. image quality and feature

detection), we believe it is important since it gives credi-

bility to the process and can easily be interpreted in terms

of known standards.

Implementation

Video-based eye tracking

In a video-based eye tracker, the relative position of the

pupil to the corneal reflection(s) (the so-called pupil-glint

vector) changes as the eyes move. Using an appropriate

model, the x and y dimensions of the pupil-glint vector can

be mapped to screen coordinates (X,Y). As the magnitude

of the pupil-glint vector changes with backward and for-

ward head movements, it has to be normalised in terms the

distance between the glints (if there are more than one IR

source) or between the pupils.

The implementation discussed below makes use of two

infrared light sources, positioned equidistantly on either

side of a high speed camera to generate corneal reflections.

Image processing

The solution presented in this paper makes use of Mi-

crosoft DirectX 9 and shaders written in HLSL. By using

DirectX 9, we ensure that the implementation is compati-

ble on a wide range of graphics cards, rather than relying

on specific GPUs such as those manufactured by NVIDIA

and AMD. This brings down the overall cost of the system,

as potential users can buy a high-speed camera off-the-

shelf and use whatever PC they have at their disposal, pro-

vided the display adapter meets the minimum require-

ments for DirectX 9 and supports Shader Model 2. The

host application was developed using C# with .Net 4.5.

The proposed eye tracking solution consists of a three

step process to analyse eye videos and locate the feature

points. Firstly, the raw frames from the camera are

wrapped into the structure required by DirectX for render-

ing. Next, the camera image is transferred to the GPU’s

memory (VRAM) for manipulation using two shaders

written in HLSL. The goal of these shaders is to simplify

the job of extracting candidate feature points. The results

of both of these shaders are stored in off-screen render tar-

gets. The first render target was used as input for the sec-

ond shader. The final render target contained the final pro-

cessed image – the combined result of the first and second

shader. This image is then copied back to system memory

and processed by the CPU to compute the locations of the

feature points. Figure 1 below gives an outline of the pro-

gram architecture.

Journal of Eye Movement Research Du Plessis, J-P & Blignaut, P.J. (2016)
9(4):6, 1-11 Performance of a video-based eye tracker with GPU acceleration

4

Figure 1: Overview of system architecture

The use of two separate shaders was necessary due to

the low instruction count imposed by Shader Model 2.0

(256 instructions) (Microsoft, 2016b), as well as the de-

pendencies between certain of the image processing func-

tions.

As mentioned earlier, there are several commonly used

image processing functions utilised in eye tracking that are

embarrassingly2 parallel and are therefore simple to imple-

ment on the GPU. The use of simple functions was moti-

vated by the need to evaluate the worst case for the GPU

in terms of delay versus processing gain. In other words,

should the GPU prove beneficial even when using simple

functions, it can be argued that its worth will increase as

the complexity of the image processing functions increase.

Shader implementations

The first of the image processing shaders (pre-process)

performs a number of threshold functions to isolate the

corneal reflections (a.k.a. glints) and pupils from the rest

2 Parallelism that can be implemented without any dependencies.

of the image in order to simplify the image for later pro-

cessing. All thresholds were set by hand and adjusted per-

participant as needed. As the ultimate goal of the shaders

is to simplify the job of locating the feature points, the pu-

pil and glint candidate pixels are represented with two dif-

ferent colours – green and red respectively. To isolate the

glints, a simple intensity gradient is constructed using the

brightness of the surrounding pixels. The resulting gradi-

ent, along with a suitable threshold is then used to select

corneal reflection candidates.

A second threshold test is used to isolate pupil candi-

dates. If the previous positions of the corneal reflections

are known, the distance to the closest corneal reflection is

used to eliminate false positives that result from eye lashes

or eyebrows. The resulting image is then sent to a second

shader for edge detection.

The second shader (post-process) performs Canny

(Canny, 1986) edge detection (instead of the usual ellipse

fitting) on the image from the previous shader to further

decrease the number of pixels that must be processed by

the CPU. The centroids of the pupils and glints were cal-

culated as the arithmetic mean of the x and y coordinates

of the pixels in the pupil/glint.

An intersection between the glint and pupil causes the

pupil to lose its circular shape which will in turn offset the

computed pupil centre. To counter this, an iterative process

was followed to include glint pixels inside the previously

known pupil radius until the pupil centre stabilised within

pre-set parameters.

The entire GPU related process is summarised in Fig-

ure 2.

CPU processing

After the image has been processed and candidate pix-

els separated into the green and red colour channels, the

CPU calculates the centres of the pupils and glints. The

pupil and glint candidate points are aggregated, and an im-

age processing library (http://www.aforgenet.com/) is

used to calculate the centres of each of these collections.

In this particular implementation of the HLSL tracker,

no ellipse fitting was performed. However, it is certainly

possible, if necessary, to add this step at a later stage –

given that all the pixels belonging to the identified features

are already grouped into separate collections.

Journal of Eye Movement Research Du Plessis, J-P & Blignaut, P.J. (2016)
9(4):6, 1-11 Performance of a video-based eye tracker with GPU acceleration

5

Grayscale gradient
and glint theshold

Pupil threshold

Combined image

Canny edge
detection

Pre-processing

Post-processing

Figure 2: Overview of the pre- and post-process shaders

Evaluation of the HLSL eye tracker

Participants

To evaluate the performance of the eye tracking solu-

tion, an experiment involving 30 participants was con-

ducted in a laboratory. Participants were drawn from staff

and students on campus. To ensure the best possible re-

sults, none of the participants wore spectacles.

Physical setup and equipment

Using adjustable lighting, the brightness of the room

was set at 300 lux. The stimulus consisted of a 20” monitor

with a resolution of 1360×768 and was positioned 70 cm

from the participant, resulting in a horizontal gaze angle of

11.7 from side to side. The eye tracking software was in-

stalled on a HP Pavilion G7 laptop running Windows 8

(x64). The laptop is equipped with an Intel Core i5-3230M

processor running at 2.60 GHz with 4 GB of DDR3 1333

Mhz RAM. The laptop is further equipped with switchable

graphics containing an Intel HD4000 and a Radeon HD

7670M graphic card. For the purpose of this study, the In-

tel card was used.

Eye images were captured using a single USB 3.0

CMOS camera from IDS (Model UI-3360CP-NIR-GL)

(https://en.ids-imaging.com/store/ui-3360cp.html). The

camera has a pixel size of 5.5 μm and a sensor size of 2/3".

At its native resolution of 2048×1088 (2M) the camera is

capable of 70 fps, but if only a portion of the sensor area is

used, the framerate can be increased substantially. Alt-

hough not tested, we believe that the results obtained in

this study could be achieved also with a cheaper camera as

long as it supports a framerate of at least 300 Hz for a 90K

pixel region of interest at the available levels of illumina-

tion. Such cameras, for example the IDS UI-1550LE-C,

can be acquired for more or less 400-500 USD.

The camera allows for the adjustment of the size of the

video, as well as the frame rate, gain and gamma. This al-

lowed us to sample at a variety of different speeds in addi-

tion to making the necessary adjustments to compensate

for changing light conditions resulting from different ex-

posure times. The camera was fitted with a 16 mm lens

with a filter to allow only infrared light to pass.

Two infrared light sources, positioned equidistantly on

either side of the camera, were used to generate corneal

reflections. The eye tracker was mounted on a table with

an adjustable surface that can be accurately positioned

along three axes (cf. Figure 3).

Figure 3: Laboratory setup with the participant on

a fixed chin rest and the eye tracker and

monitor on an XYZ adjustable table

Experimental procedure for human participants

The experiment required participants to look at a grid

of forty dots evenly spaced on the monitor. The dots were

displayed in random order for a total of two seconds. A

time frame of 250 ms during which the eye data was ad-

judged to be most stable, was selected for analysis.

The experiment consisted of two phases. In the first

phase, the effect of the sampling frequency on the preci-

sion and accuracy was investigated while keeping the head

Journal of Eye Movement Research Du Plessis, J-P & Blignaut, P.J. (2016)
9(4):6, 1-11 Performance of a video-based eye tracker with GPU acceleration

6

position in the centre of the head box. In the second phase,

the effect of head position on the precision and accuracy

was investigated at a sampling frequency of 100 Hz while

the position of the eye tracker was changed in relation to

the participant to simulate head movements (cf Figure 3).

During both phases of the experiment, participants

were seated 70 cm from the monitor and 65 cm from the

eye tracker. Participants' head positions were fixed using a

chin rest (cf. Figure 3). The entire experimental setup in-

volving human participants is summarised in Table 1.

Table 1. Summary of the various combinations of settings

that were used during the experiment

Sampling

frequency

(Hz)

Region of

interest

(Pixels)

X Pos

(cm)

Y Pos

(cm)

Z Pos

(cm)

Phase 1

 50 600×150 0 0 65

 100 600×150 0 0 65

 150 600×150 0 0 65

 200 600×150 0 0 65

 250 600×150 0 0 65

 300 600×150 0 0 65

Phase 2

 100 1200×400 +5 0 65

 100 1200×400 -5 0 65

 100 1200×400 0 +3 65

 100 1200×400 0 -3 65

 100 1200×400 0 0 70

 100 1200×400 0 0 60

Experimental procedure for artificial eyes

In addition to human participants, the theoretical per-

formance of the system was examined using artificial eyes.

In theory, artificial eyes should yield precision values of

0°, as they remain completely still. However, eye tracking

systems contain noise and the purpose of the test with ar-

tificial eyes was to determine the precision that is obtaina-

ble if the continuous head movements and eye tremors that

are present in human participants were completely elimi-

nated, thereby determining the amount of noise produced

by the eye tracking system.

The artificial eyes were mounted on a cardboard and

clamped in a fixed position to the table – aiming more or

less at the centre of the display. As recommended by

Holmqvist et al (2011), the calibration data of a similarly

positioned human participant was used to map the feature

points to gaze coordinates.

Since the eyes could not be pointed to specific targets

on the display, accuracy could not be measured. For the

effect of frequency on precision, an ROI of 600×150 was

used and the same procedure as for human participants was

followed. This means that the gaze target was displayed at

40 distinct positions but gaze data was captured in the cen-

tre of the display only, resulting in 240 samples (40 repe-

titions × 6 frequencies).

Analysis

All data recorded during the experiment was collected

in a database and analysed post-hoc. The data included the

location coordinates of all detected feature points in the

eye video as well as time stamps for each set of coordi-

nates.

Fixation data from fourteen of the forty dots was used

as calibration data to construct the gaze estimation polyno-

mials for every participant (cf. Figure 4). All dots were

used to validate the accuracy and precision of the system.

The time stamps were used to verify the actual sampling

rate of the system.

       

       

       

       

       

Figure 4: 8×5 grid of dots. All dots were displayed as  to

participants. The  around the dots only serve to

indicate the dots that were used for the regression.

Since the system geometry was similar to that of a system

used for an earlier study (Blignaut, 2013), the following

two polynomials were used to map feature point coordi-

nates in the eye video to gaze coordinates on the display (x

and y refer to the normalised x and y components of the

pupil-glint vector of a specific eye at a specific point in

time. PoRx and PoRy refer to the X and Y coordinates of

the point of regard for the specific eye on the two dimen-

sional plane of the screen):

PoGx = a0 +a1x +a2x2 + a3x3 +a4y + a5xy +a6x2y

 +a7x3y

PoGy = b0 + b1x + b2x2 + b3y + b4y2 + b5xy + b6x2y

For samples within a fixation (data captured for a spe-

cific gaze target), we assumed that the spread of data

around the centroid would be normal and outlier samples

were identified as those lying beyond 3σ from the centroid.

In other words, maximally 0.54% of the data points were

removed and the centroid recalculated.

Journal of Eye Movement Research Du Plessis, J-P & Blignaut, P.J. (2016)
9(4):6, 1-11 Performance of a video-based eye tracker with GPU acceleration

7

Precision was then calculated as the pooled variance of

mapped sample data within a fixation in the x and y dimen-

sions, as it has been shown previously that the de facto

standard sample-to-sample Root Mean Square (RMS) is

affected by the sampling rate of the eye tracker (Blignaut

& Beelders, 2012):

SD(P) = √(𝜎𝑥
2 + 𝜎𝑦

2)/2

where 𝜎𝑥
2 =

1

𝑁
∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1

 and 𝜎𝑦
2 =

1

𝑁
∑ (𝑦𝑖 − 𝑦̅)2𝑁
𝑖=1

For each gaze target, the centroid of samples was de-

termined. Data sets for which no or not adequate gaze data

were recorded (due to blinks or participants being dis-

tracted) and data sets further than 3 from the gaze target

were regarded as outliers and removed. The accuracy was

calculated as the average (over all dots and participants) of

the differences between the known locations of the dots

and the centroids of the clusters of sample data.

Analyses of variance (ANOVA) were done to deter-

mine the significance (α = .05) of all results. Tukey’s HSD

(honestly significant difference) for unequal number of ob-

servations was used to determine the significance (α = .05)

of differences in accuracy and precision between individ-

ual combinations of sampling frequencies and head posi-

tions.

Results

Precision and accuracy per participant

Figures 5 and 6 show the overage accuracy and preci-

sion of gaze data samples in the 250 ms time frame over

all target points per participant at a sampling frequency of

100 Hz while the head was positioned in the centre of the

head box. The average accuracy and precision of samples

over all target points of all participants under these condi-

tions were 1.03 (SD = 0.66) and 0.33 (SD = 0.15) re-

spectively. (Note that this is not the same as averaging the

per-participant averages.) The average overall accuracy

and precision for the other framerates are presented in Ta-

ble 2 in the next section.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Participant

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

A
c
c
u

ra
c
y
 (

d
e

g
re

e
s
)

Figure 5: Average accuracy per participant at 100 Hz in the

centre of the head box. Vertical bars denote 95% confidence

intervals.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Participant

0.2

0.3

0.4

0.5

P
re

c
is

io
n

 (
d

e
g

re
e

s
)

Figure 6: Average precision per participant at 100 Hz in

the centre of the head box. Vertical bars denote 95% confi-

dence intervals.

Precision and accuracy against sampling frequency

Table 2 shows the accuracy and precision values that

were obtained for a range of sampling frequencies. The

data is visualised in Figures 7 and 8. Although the pooled

variance was used for precision in this paper, the RMS val-

ues are shown for 200 Hz and 250 Hz for purpose of com-

parison with Mulligan (2012).

Precision was affected significantly (F(5,5600) =

37.923, p = .000) by sampling frequency (Figure 7). How-

ever, Tukey’s unequal honestly significant difference be-

tween pairs of frequencies indicated that the effect was not

significant for 150 Hz to 200 Hz or 250 Hz to 300 Hz.

Likewise, accuracy was significantly affected (Figure 8)

by sampling frequency (F(5,5452) = 20.847, p=.000).

However, the post-hoc test revealed that it was only sig-

nificantly affected between 50 Hz and 100 Hz.

Journal of Eye Movement Research Du Plessis, J-P & Blignaut, P.J. (2016)
9(4):6, 1-11 Performance of a video-based eye tracker with GPU acceleration

8

Table 2. Accuracy and precision for a range of sampling

frequencies

Frame-
rate (Hz)

Accuracy Pooled vari-
ance

RMS

Mean SD Mean SD Mean SD
 50 0.81 0.46 0.29 0.11
 100 1.03 0.67 0.33 0.15
 150 0.97 0.60 0.35 0.17
 200 1.03 0.64 0.36 0.18 0.38 0.13
 250 1.04 0.62 0.38 0.19 0.40 0.12
 300 1.07 0.67 0.36 0.16

50 100 150 200 250 300

Frequency (Hz)

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

P
re

c
is

io
n
 (

d
e
g
re

e
s
)

Figure 7: Average precision against sampling frequency.

Vertical bars denote 95% confidence intervals.

50 100 150 200 250 300

Frequency (Hz)

0.7

0.8

0.9

1.0

1.1

1.2

A
c
c
u

ra
c
y
 (

d
e

g
re

e
s
)

Figure 8: Average accuracy against sampling frequency.

Vertical bars denote 95% confidence intervals.

The results show that both accuracy and precision ap-

pear to gradually deteriorate as the sampling frequency in-

creases. The change in precision may be attributed to the

adjustments made to the gain and gamma of the camera,

which resulted in a slight graininess in the eye video (Fig-

ure 9). Although the need for electronic gain could have

been reduced by increasing the level of illumination, we

decided to keep the illumination constant at a level which

was tested to be within accepted safety limits.

Figure 9. An example of the graininess resulting

from adjustments to gain and gamma.

Precision and accuracy vs head position

The mean precision (pooled variance) and accuracy of

the system for various head positions are shown in Tables

3 and 4.

Tukey’s post-hoc revealed that the effect of head posi-

tion on precision was not significant for any of the head

movements. However, for accuracy (Table 4) the effect

was significant on X – 5 and Z – 5. It is expected that hor-

izontal head movements will affect the accuracy of the eye

tracker as a simple regression-based gaze estimation

model was used.

Table 3. Precision as affected by head position

Axis
Precision (degrees)

Sign.
Mean Min Max SD

Centre 0.33 0.05 0.78 0.1531

X + 5 0.32 0.06 0.74 0.1403

X - 5 0.31 0.09 0.69 0.1306

Y + 3 0.33 0.08 0.77 0.1481

Y - 3 0.33 0.08 0.81 0.1595

Z + 5 0.34 <0.01 0.8 0.1551

Z - 5 0.31 0.06 0.83 0.1743

Table 4. Accuracy as affected by head position

Axis
Accuracy (degrees)

Sign.
Mean Min Max SD

Centre 1.03 0.18 3.03 0.6692

X + 5 1.08 0.15 3.09 0.6908

X - 5 1.15 0.13 3.39 0.7479 

Y + 3 1.12 0.17 3.3 0.7291

Y - 3 1.04 0.2 3.02 0.6633

Z + 5 0.94 0.09 2.51 0.5262

Z - 5 1.25 0.4 3.94 0.9007 

Journal of Eye Movement Research Du Plessis, J-P & Blignaut, P.J. (2016)
9(4):6, 1-11 Performance of a video-based eye tracker with GPU acceleration

9

Tables 5 and 6 summarise the results of the effect of

head movement on precision and accuracy. The key point

here is that precision changes whenever the size of the fea-

ture points change in response to forward and backward

head movements. However, vertical and horizontal head

movements did not significantly affect precision.

Table 5. Significance of the effect of head position on precision

Axis F p Significant

(α = .05)

X F(2,2775)=2.014 .134

Y F(2,2895)=.630 .532

Z F(2,2754)=8.519 .000 

Table 6. Significance of the effect of head position on accuracy

Axis F p Significant

(α = .05)

X F(2,2699)=5.628 .004 

Y F(2,2787)=4.857 .008

Z F(2,2678)=43.460 .000 

Artificial eyes

As with the human participants, the effect of the sam-

pling frequency on precision was significant (F(5,234) =

235.3, p = .000) (Figure 10).

50 100 150 200 250 300

Frequency (Hz)

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

P
re

c
is

io
n
 (

d
e
g
re

e
s
)

Figure 10. Precision against sampling frequency for

artificial eyes

The precision obtained with artificial eyes again shows

a decline in precision with increasing frequency, suggest-

ing that the weaker precision is a result of noise in the sys-

tem. The graininess of the eye video can again be the cul-

prit. Tukey’s post-hoc test did show that this decrease in

precision was significant, suggesting that the system’s op-

timal operating frequency is at lower speed – possibly

around the 200 to 250 Hz range.

GPU performance

As mentioned earlier, the use of the GPU does intro-

duce additional overheads into the system in the form of

transfer to and from the GPU. Figure 11 shows the inverse

of the maximum obtainable sampling frequency (or the

shortest possible time interval between successive gaze

data samples) against the size of the area on the camera

sensor that are analysed. The coefficient of determination,

R2, of a linear fit of the data was 0.996.

These results imply a trade-off between the amount of

head movement that can be tolerated and the maximum

framerate that can be achieved. Mostly, participants move

their heads in a horizontal direction and therefore the eye

video sizes can be optimised to allow for more horizontal

movement. With a window of 600 pixels wide and only

200 pixels high (120,000 pixels), a framerate of 357 Hz

(0.0028 s between samples) can be achieved, whereas a

standard 4:3 window of 640×480 (307,200 pixels) would

allow only 167 Hz (0.006 s).

Therefore, it can be concluded that with the correct se-

lection of eye video resolution, the GPU can be used in the

eye tracking process and a higher sampling frequency can

still be obtained despite the overhead.

Figure 11. Inverse of maximum obtainable sampling

frequency against image size

Summary

The eye tracker presented in this paper was developed

to validate the data quality of a simple remote video-based

eye tracker that is capable of framerates to 300 Hz. It uti-

lises the Graphical Processing Unit (GPU) in an attempt to

parallelise aspects of the process to localize feature points

in eye images to attain higher sampling frequencies. The

system was evaluated at various sampling frequencies and

Journal of Eye Movement Research Du Plessis, J-P & Blignaut, P.J. (2016)
9(4):6, 1-11 Performance of a video-based eye tracker with GPU acceleration

10

with simulated head positions to gauge the effect of these

variables on the obtainable precision and accuracy. Artifi-

cial eyes were also included to evaluate the theoretical per-

formance of the system at higher frequencies, and the ef-

fect of the GPU implementation on the maximum obtain-

able sampling rate.

The results indicated that it is possible to perform eye

tracking at a sampling rate of around 200 Hz with a toler-

ance towards head movement within an area of 10×6×10

cm. This is provided that the computer system running the

HLSL tracking software has comparable or better system

specifications than the laptop used during the experiment,

and that it has a USB 3.0 port and a DirectX 9 compatible

display adapter. Precision and accuracy figures of around

0.3° and 1° respectively can be expected at this rate. More-

over, as the locations of the feature points are reported by

the eye tracker, various gaze estimation methods can be

utilised. There is also the potential to add a smoothing al-

gorithm to the gaze estimation data in order to improve

precision.

In spite of the fact that sampling frequencies in excess

of 200 Hz were achieved, the use of the GPU in the eye

tracking process still presents a conundrum. Other re-

searchers (Hennessey, Noureddin & Lawrence, 2008) have

already demonstrated that it is possible to achieve high

sampling frequencies without the use of the GPU. This

suggests that one would be better off implementing the

parallelism on the CPU rather than on the GPU, unless a

way is found to decrease the overhead of transfers to and

from the GPU, something that is possible as shown by

Mompean et al (2015), or to make use of image processing

techniques that would otherwise be too time consuming for

the CPU.

Limitations and future work

While the solution discussed in this paper made use of

Microsoft technologies, the shader based implementation

does theoretically allow for support in Linux based sys-

tems through the use of OpenGL and the corresponding

shader language GLSL (OpenGL Shader Language. How-

ever, the performance of the solution may differ when us-

ing OpenGL. Given that Mompean et al (2015) were capa-

ble of achieving double the sampling rate using a CUDA

based implementation, the choice of HLSL is a definite

weakness of the system.

An additional limitation is the use of a 40 point grid,

instead of a 45 point grid. The use of the 40 point grid was

ill-advised, as it, without an obvious middle point, made

choosing a suitable set of calibration points quite difficult

(cf. Figure 4). For this reason, a fourteen point calibration

procedure was used.

Precision may be improved at higher frequencies by

applying a Gaussian blur before performing the edge de-

tection, as this may eliminate some of the graininess pre-

sent in the eye video at these frequencies. It will provide a

stronger case for the use of the GPU as this can be per-

formed fairly rapidly and is easily implemented.

References

Blignaut, P., & Beelders, T.R (2012). The precision of

eye-trackers : A case for a new measure. In Proceed-

ings of the Symposium on Eye Tracking Research and

Applications, 289–292, Santa Barbara, California,

2012. ACM: New York.

Blignaut, P. (2013). A new mapping function to improve

the accuracy of a video-based eye tracker. Proceed-

ings of the South African Institute of Computer Scien-

tists and Information Technologists (SAICSIT), 56-59,

7-9 October East London, South Africa. doi:

10.1145/2513456.2513461

Canny, J. (1986). A Computational Approach to Edge

Detection. IEEE Transactions on Pattern Analysis

and Machine Intelligence, (6), 679 – 698.

Castaño-Díez, D., Moser, D., Schoenegger, A., Pruggnal-

ler, S., & Frangakis A.S. (2008). Performance evalua-

tion of image processing algorithms on the GPU,

Journal of Structural Biology, 164(1), 153 – 160.

Duchowski, A.T. (2002). A breadth-first survey of eye-

tracking applications. Behavior Research Methods,

Instruments & Computers, 34(4), 455–470.

Duchowski, A.T., Price, M., Meyer M., & Orero, P.

(2012). Aggregate gaze visualization with real-time

heatmaps. In Proceedings of the Symposium on Eye

Tracking and Applications, 13–20, Santa Barbara,

California, 2012. New York:ACM.

Hennessey, C., Noureddin, B., & Lawrence, P. (2008).

Fixation precision in high-speed noncontact eye-gaze

tracking. IEEE Transaction on Systems, Man and Cy-

bernetics, 38(2), 289–298.

Journal of Eye Movement Research Du Plessis, J-P & Blignaut, P.J. (2016)
9(4):6, 1-11 Performance of a video-based eye tracker with GPU acceleration

11

Holmqvist, K., Nyström, M., Andersson, R., Dewhurst,

R., Jarodzka, H., & Van de Weijer, J. (2011). Eye

Tracking : A Comprehensive Guide to Methods and

Measures (1st ed), New York: Oxford University

Press.

Li, D., Winfield, D., & Parkhurst, D. 2005. Starburst: A

Hybrid Algorithm for Video-based Eye Tracking

Combining Feature-based and Model-based ap-

proaches. Proceedings of the 2005 IEEE Computer

Society Conference on Computer Vision and Pattern

Recognition (CVPR).

Microsoft. (2016a). Compute Shader Overview. Retrieved

05/04/2016 from http://msdn.microsoft.com/en-us/li-

brary/windows/desktop/ff476331(v=vs.85).aspx.

Microsoft. (2016b). Shader Model 2. Retrieved

05/04/2016 from http://msdn.microsoft.com/en-us/li-

brary/windows/desktop/bb509655(v=vs.85).aspx.

Mompean, J., Aragon, J., Prieto, P., & Artal, P. GPU-ac-

celerated high-speed eye pupil tracking system. 27th

International Symposium on Computer Architecture

and High Performance Computing (SBAC-PAD), 17-

24, 17-21 October 2015, Florianopolis, Brazil. doi:

10.1109/SBAC-PAD.2015.17.

Mulligan, J.B. (2012). A GPU-accelerated software eye

tracking system. In Proceedings of the Symposium on

Eye Tracking Research and Applications, 265–268,

Santa Barbara, California, March 28 – 30, 2012. New

York, NY: ACM.

NVIDIA (2016). CUDA ZONE. Retrieved 05/04/2016,

from https://developer.nvidia.com/cuda-faq.

Pacheco,P. (2011). An introduction to parallel program-

ming. Burlington: Morgan Kaufmann Publishers.

Peeper, C., & Mitchell, J.L. (2004). ShaderX: Introduc-

tions & tutorials with DirectX 9. In W. F. Engel (Ed.),

ShaderX2 : Introductions & Tutorials with DirectX 9

(pp. 393). Plano: Wordware Publishing.

SensoMotoric Instruments (n.d.). SMI Gaze & Eye Track-

ing Systems. Retrieved 05/04/2016 from

http://www.smivision.com/en/gaze-and-eye-tracking-

systems/home.html.

Sottile, M.J., Mattson, T.G., & Rasmussen, C.E (2010).

Introduction to concurrency in programming lan-

guages. CRC Press.

Thompson, C.J., Hahn, S., & Oskin, M. (2002). Using

modern graphics architectures for general-purpose

computing: a framework and analysis. In Proceedings

of the 35th annual ACM/IEEE international sympo-

sium on Microarchitecture, 306-317, IEEE Computer

Society Press, 2002.

http://msdn.microsoft.com/en-us/library/windows/desktop/ff476331(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff476331(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb509655(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb509655(v=vs.85).aspx
http://dx.doi.org/10.1109/SBAC-PAD.2015.17
https://developer.nvidia.com/cuda-faq

