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A model of the main sequence is proposed based on the logistic function. The model’s
fit to the peak velocity-amplitude relation resembles an S curve, simultaneously al-
lowing control of the curve’s asymptotes at very small and very large amplitudes, as
well as its slope over the mid-amplitude range. The proposed inverse-linear logis-
tic model is also able to express the linear relation of duration and amplitude. We
demonstrate the utility and robustness of the model when fit to aggregate data at the
small- and mid-amplitude ranges, namely when fitting microsaccades, saccades, and
superposition of both. We are confident the model will suitably extend to the large-
amplitude range of eye movements.
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Introduction

Several models characterizing the relationship be-
tween saccadic peak velocity and amplitude have been
proposed, including the power law, an exponential
curve, and an inverse-linear model. Each of these can
be made to express the interdependence of the main
sequence parameters of amplitude, duration, and peak
velocity. However, no model appears to adequately
span a wide range of amplitudes. Some models per-
form better at the small-amplitude range others do bet-
ter at the mid-amplitude range while others are better
suited to the large-amplitude range.

To derive a robust model of the main sequence, we
propose fitting the saccadic peak velocity-amplitude
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relation with an S curve such that peak velocity dis-
plays a fairly flat slope over very small and very
large amplitudes. Meanwhile, the relation of saccadic
peak velocity to duration and amplitude suggests that
the model should also conform to the linearity of the
duration-amplitude relation. Finally, parameters of the
model should be easy to interpret. In this paper, we
derive the S curve model from the logistic function
and show how this model satisfies all of the aforemen-
tioned requirements. To satisfy the criterion of interde-
pendence between non-linear peak velocity and linear
duration relations to amplitude, the model requires an
inverse-linear component, producing an inverse-linear
logistic model, suitable for expressing both relations.

We demonstrate the utility and robustness of the
model when fit to aggregate data collected from three
experiments at three different laboratories, utilizing
two different eye trackers. The first two experiments
required maintenance of steady gaze while the third
did not. Using saccade and microsaccade detection
algorithms based on the work of Engbert and col-
leagues (Engbert, Rothkegel, Backhaus, & Trukenbrod,
2016; Engbert, 2006; Engbert & Kliegl, 2003), we show
how our model provides superior fits to peak velocity-
amplitude relations of microsaccades, saccades, and to
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the superposition of both. Our model is simultaneously
capable of providing a linear fit to duration-amplitude
indistinguishable from a fit provided by the established
linear main sequence (for an example of a linear fit
to aggregate microsaccade data, see Siegenthaler et al.
(2014)).

Our work is similar to that of Diaz-Piedra et al.
(2016), who also model the saccade peak velocity-
amplitude relation nonlinearly and test different fits to
individuals’ data (using a first-order polynomial and
power-law fits). We model and empirically test our
inverse-linear logistic S curve fit against three other fits
(power-law, exponential, and inverse-linear) and find
that ours provides the best statistical fit. Unlike Diaz-
Piedra et al., we fit our data to the aggregate collection
microsaccade and saccade data from many participants
instead of fitting the function per individual. Diaz-
Piedra et al. also do not appear to consider the recip-
rocal of their velocity-amplitude fits, i.e., they do not
show whether the nonlinear fits they use for velocity-
amplitude can also simultaneously be used to model
the linear duration-amplitude relation. Due to the in-
terdependence of main sequence parameters pointed
out by Lebedev, Van Gelder, and Tsui (1996), any non-
linear function chosen to model the velocity-amplitude
relation should also be suitable as a model of the linear
duration-amplitude relation. Below we first go through
the mathematical derivation of our inverse-linear logis-
tic model, showing how it can serve to model both re-
lations, then we describe the three experiments whose
data we test our four function fits on.

Saccadic Characteristics

Human saccades are stereotyped (Fuchs, 1967) and
presumed to be ballistic (Carpenter, 1977), meaning
programmed motor movements whose trajectory is un-
changeable once in flight. Saccades follow the main
sequence describing the relationship between saccadic
peak velocity and amplitude (Bahill, Clark, & Stark,
1975; Baloh et al., 1975; Knox, 2001). The main
sequence also relates saccade duration to amplitude.
Treating saccade duration as movement time MT, the
main sequence can be expressed as a linear relation

MT = a + b · A ms (1a)

or a power law

MT = a · Ab ms (1b)

where amplitude A is given in degrees visual angle in
both instances (Becker, 1989). Example fits are given
for the power law (1b) by Yarbus (1967) with a = 0.021

and b = 0.4 and for the linear relation (1a) by Baloh et
al. (1975) with a = 37 and b = 2.7, in milliseconds and
milliseconds/degree, respectively, see Figure 1(a).1 The
lower limit (a) of saccade duration is due to finite rise-
time of muscle fibre twitches (for microsaccades of am-
plitude less than 0.5◦, duration of 14 ms have been re-
ported (Becker, 1989)). The relationship between dura-
tion and saccade amplitude is normally linear for sac-
cades of up to about 80◦ (although most naturally oc-
curring saccades range up to about 15◦-20◦ (Bahill et al.,
1975) and up to 30◦ without head movement (Lebedev
et al., 1996)).

Unlike the linear relation of duration-amplitude, the
peak velocity of saccadic eye movements is related in a
nonlinear manner to their amplitude over a thousand-
fold range (from 3′ minutes of arc to 50◦), with data
scatter noted as “extremely small” (Bahill et al., 1975).
Peak velocity is related in a quasi-linear manner to sac-
cadic amplitude up to about 15◦ or 20◦, when a soft sat-
uration limit is reached. Lebedev et al. (1996) provide
an inverse-linear model (the Michaelis-Menten equa-
tion) where peak velocity Vp is modeled by

Vp =
Va · A
A + A0

deg/s (2)

where A denotes saccade amplitude, Va is an asymp-
totic maximum of peak velocity (the saturation value,
in degrees per second), and A0 is the half-maximum
amplitude (in degrees), i.e., the amplitude at which
50% of the peak velocity is reached. Baloh et al.
(1975) compare alternative peak velocity models using
a power-law equation

Vp = Va · AA0 (3)

and an exponential curve

Vp = Va

[
1 − exp

(
−

A
A0

)]
(4)

were A0 in this latter form represents the amplitude
for which peak velocity reaches 63% of its saturation
(Lebedev et al., 1996), see Figure 1(b) where the expo-
nential model is plotted for Va = 551 degrees/second
and A0 = 14 degrees as fit by Baloh et al. (1975) to their
observations, corresponding to their MT = 37 + 2.7 A
duration-amplitude regression shown in Figure 1(a).

The interdependence between the dynamic proper-
ties of saccadic amplitude, duration, and peak veloc-
ity might not be immediately obvious. By itself, the

1Other variations of the linear main sequence include a =

23, b = 2.7 from Collewijn et al. (1988) and a ∈ [20, 30] ms.,
b ∈ [2, 2.7] ms/deg from Lee, Badler, and Badler (2002) and
Gu, Lee, Badler, and Badler (2008) in their graphical simula-
tion of saccades known as Eyes Alive.
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(a) Main sequence models.
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(b) Models of saccadic peak velocity.

Figure 1. Interdependence of saccadic main sequence parameters: (a) linear duration-amplitude expressions from
Baloh, Sills, Kumley, and Honrubia (1975), Collewijn, Erkelens, and Steinman (1988), and our inverse-linear logistic
function (see text); (b) relation of saccadic peak velocity to amplitude matching duration-amplitude relation in (a),
modeled as exponential expression provided by Baloh et al. (1975), an inverse-linear derivation, and our inverse-
linear logistic expression (see text).

main sequence does not provide a complete descrip-
tion of the saccadic system, which as a whole, is non-
linear (Van Opstal & Van Gisbergen, 1987). Saccades of
different amplitudes have differently shaped velocity
profiles. The velocity profile of small saccades is sym-
metrical while it is skewed for large saccades, and can
be modeled by the expression

V(t) = α

(
t
β

)γ−1

e−t/β (5)

where time t ≥ 0, α, β > 0 are scaling constants for ve-
locity and duration, respectively, and 2 < γ < 15 is the
shape parameter that determines the degree of asym-
metry. Small values of γ yield asymmetrical velocity
profiles and as γ tends to infinity, the function assumes
a symmetrical (Gaussian) shape see Van Opstal and
Van Gisbergen (1987) as well as Baloh et al. (1975) or
Collewijn et al. (1988) for illustrations.

Interdependence of the main saccadic parameters of
amplitude, duration, and peak velocity is explained by
a strong linear relationship (r≥0.98) between mean ve-
locity Vm and peak velocity Vp (Lebedev et al., 1996). By
definition, the mean velocity of saccades is computed
directly from their duration and amplitude,

Vm =
A

MT
(6)

where solving for MT = A/Vm and equating with (1a)
leads to the inverse-linear dependence of mean veloc-
ity on amplitude,

a + b · A =
A

Vm
and solving for Vm =

Va · A
A + A0

produces the Michaelis-Menten equation (2) for Vm

with A0 = (a/b) and Va = 1/b (Becker, 1989). Similarly,
equating (6) with (1b)

a · Ab =
A

Vm
and solving for Vm = Va · AA0

leads to the power-law equation (3) for Vm with A0 =

(1 − b) and Va = (1/a).
Peak velocity initially rises in proportion to saccade

amplitude and then saturates as the amplitude be-
comes larger. Plotted as a function of saccade ampli-
tude, Vp resembles a scaled-up version of Vm,

Vp = K · Vm (7)

where K is constant (Becker, 1989; Lebedev et al., 1996).
As a numerical example, solving the main sequence

provided by Baloh et al. (1975) MT = 37 + 2.7A = A/Vm

for Vm produces the Michaelis-Menten inverse-linear
dependence of peak velocity on amplitude (2) with
A0 =13.70 and Va =0.37 · 551 where 0.37 is 1/b from (1a)
and 551 is the asymptotic maximum peak velocity used
in (4). Using (7), we found a good approximation to (4)
by setting K = 3.11, see Figure 1(b). For a numerical
example of the power law, see Lebedev et al. (1996).

In their comparison of various models, including the
inverse-linear, exponential, and power-law models of
saccadic peak velocity, Lebedev et al. (1996) note that
the inverse-linear and exponential models are of no use
outside the range of estimation (i.e., <1.5◦ or >30◦) and
that their parameters do not allow any reasonable in-
terpretation. They give an approximation of (horizon-
tal) saccadic eye movements’ peak velocity in the form
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of a square-root model, effectively Yarbus’ power-law
model given in (6) with A0 fixed to 1/2. They claim that
the square-root model is adequate for a range of ampli-
tudes from 1.5◦ to 30◦, i.e., the mid-amplitude range.
Furthermore, they show that all models except the
square-root model are unstable with respect to a small
shift of the amplitude ranges from which they were
drawn. Meanwhile, within the 7◦-15◦ range of ampli-
tudes, they found the power-law model served better
than the square-root model with respect to goodness
of fit, with the inverse-linear and exponential models
unacceptably unstable.

From the model comparison of Lebedev et al. (1996),
it appears no model provides a good fit to the data
across a wide range of saccadic amplitudes. They note
that the interdependence of the main sequence param-
eters, specifically relations (6) and (7), allows catego-
rization of saccades into three ranges of saccade ampli-
tudes: the small-amplitude range (A < 1.5◦) in which
duration remains fairly constant and increase in ampli-
tude is caused by an increase in peak velocity; the mid-
amplitude range (1.5◦≤A ≤35◦) in which the increase in
the amplitude is caused by an increase in saccade dura-
tion and peak velocity; and the large-amplitude range
(35◦ < A) in which peak velocity saturates such that
an increase in amplitude is caused primarily by dura-
tion.2 The majority of naturally occurring saccadic eye
movements fall within the mid-amplitude range and
are made without head movements.

The above description by Lebedev et al. (1996) of the
main sequence suggests a model resembling an S curve
with peak velocity displaying a fairly flat slope over
very small and very large amplitudes. Meanwhile, the
definition of saccadic mean velocity in relation to their
duration and amplitude given in (6) suggests that such
a model conform to the observed near-linearity of the
duration-amplitude relation e.g., as given by the linear
expression for MT in (1a). Finally, parameters of the
model should be easy to interpret. A model derived
from the logistic function satisfies all of these require-
ments.

A logistic function model for saccadic velocity can
be expressed as

Vm =
Va

1 + exp (−A2 · (A + A0))
(8)

where A2 is the sigmoid curve’s steepness (slope), A0
is the sigmoid’s midpoint, Va is the curve’s asymp-
totic maximum (see Figure 2). Unfortunately, while
the logistic function can be made to fit peak velocity
data, it does not satisfy the remaining requirement of
near-linearity when using it to express the duration-
amplitude relation. The problem rests in the resultant

expression for MT being fixed at 0 for the y-intercept.
To achieve the desired flexibility in the model’s expres-
sivity, the logistic function is augmented with what re-
sembles an inverse-linear component

Vm =
Va · A

(A + A1)
[
1 + exp (−A2 · (A + A0))

] (9)

which we term the inverse-linear logistic model of sac-
cadic peak velocity (save for the constant scalar K as
per (7)). The additional parameter A1 produces a shift
of the function, which is made clear in the function’s
expression for the duration-amplitude relation.

Using (6) and solving for MT = A/Vm yields

MT = a (A + d)
[
1 + exp (−c · (A + b))

]
(10)

with a=1/Va, b=k0−A0, c=k2 ·A2, and d =k1 ·A1. Choos-
ing parameters Va = 551, A0 = −0.71, A1 = 4.0, A2 = 3.70,
k0 = 14.99, k1 = 3, k2 = 0.48, and K = 2.5 · Va as per (7)
to produce MT = K · Vm, yields the functions plotted in
Figures 1(a) and 1(b) that visually match the functions
fit by Baloh et al. (1975) with Va = 551 and A0 = 14 (see
above) in the large-amplitude range.

The goodness of fit problem of the exponential and
inverse-linear functions may lie in the small-amplitude
(e.g., microsaccadic) range. Examining this range, it is
clear that these two functions and the inverse-linear lo-
gistic functions diverge, see Figure 3. In this instance
it may appear that the inverse-linear logistic function

2Carpenter (1988) states,

“The situation is rather like that of a man falling off
a cliff: at first, acceleration dominates, and his peak
velocity depends on how far he falls. But if his drop
is a long one, most of the way he will be falling at his
terminal velocity, so the duration of his fall will be in
proportion to the height of the cliff.”
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Figure 2. Interpretation of logistic function parameters.
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(a) 0.1≤A≤2.0
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(b) 0.1≤A≤15
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(c) 0.1≤A≤720

Figure 3. Inverse-linear logistic model of the saccadic main sequence: (a) small-amplitude range; (b) mid-amplitude
range; (c) large-amplitude range. Note that these plots are of the same three main sequence models, shown at
three different amplitude ranges. The peak velocity range of the small-amplitude plot (a) is reduced to make the
inflection point visible (at about 0.7◦ amplitude) which neither of the exponential nor inverse-linear functions can
adequately represent.

reaches asymptote too quickly. Because none of the
fits were based on actual microsaccade data, it is diffi-
cult to tell which curves are growing at an appropriate
rate. Inspecting Figure 3(a) and focusing on the expo-
nential and inverse-linear fits would suggest that mi-
crosaccades reach peak velocities of less than 100◦ per
second. This is not very likely. Reaching asymptote at
about 150◦ per second is probably more realistic. More-
over, neither of the exponential nor the inverse-linear
functions possess an initial inflection seen at very low
amplitudes (the bottom part of the S curve).

Do microsaccades exhibit an inflection at very low
amplitudes? Examining fits to microsaccade data (see
Figure 4) suggests that there is an inflection point at
very low amplitudes (about about 0.5◦ amplitude). At
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Figure 4. Functions fit to microsaccade data of Exper-
iment 2 (see text). Note that only the inverse-linear
logistic function is able to fit both inflections at lower
and higher amplitudes (e.g., ∼0.4◦ and ∼1.2◦). Data to
which these fits were made are shown in Figure 8(a),
see text.

about 1.5◦ a microsaccadic asymptote is apparent. The
exponential and inverse-linear models, when fit to mi-
crosaccadic peak velocities, “miss the turn” at both lo-
cations. The S inherent in the logistic function affords a
better fit. Below we compare statistical fits to microsac-
cade data from three experiments conducted that were
in part designed to capture microsaccades.

Empirical Methodology

To compare and contrast saccadic main sequence
model fits, we examine data captured from three eye
tracking experiments.The first two were designed to
replicate the experiment of Siegenthaler et al. (2014)
but using eye trackers sampling at two different rates
(500 Hz and 300 Hz). The study was originally de-
signed to test microsaccadic response to task difficulty
and mental fatigue, necessitating exclusion of saccades
(controlled within the experimental procedure; see be-
low). The third experiment considers microsaccades
and saccades from an experiment conducted to eval-
uate affective response to images of faces gradually
changing shape (morphing) to express one of several
emotions. Below we provide detailed description of the
study methodologies, including a brief review of exper-
imental design with independent and dependent mea-
sures, procedure, participants, and equipment. Our
focus here is not so much on the analyses of results
pertaining to the study hypotheses, rather we are con-
centrating on characteristics of saccades and microsac-
cades observed in each of the three experiments.

Experiments 1 and 2: Microsaccades

The first two experiments closely followed the ex-
perimental design of Siegenthaler et al. (2014). In each
of our two experiments we used a 3× 6 within-subjects
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design where the first fixed factor was task type (Dif-
ficult vs. Easy vs. Control) and the second fixed fac-
tor was Time-on-Task where six blocks of trials within
the experimental procedure constituted the six levels of
this fixed factor. In the Difficult and Easy tasks, partic-
ipants were asked to perform difficult and easy mental
calculations, while in the Control task, they were not
asked to perform any mental calculations at all (see Ex-
perimental Procedure below).

Following Siegenthaler et al. (2014), we focused on
microsaccade magnitude and rate, and following Di
Stasi et al. (2013), we analyzed fits of the relationship
between microsaccadic amplitude and peak velocity.

Experimental Procedure. Following signing of a
consent form and completion of an online demographic
questionnaire, participants sat at the eye-tracking com-
puter with their head stabilized by a chin rest. After
making sure participants were comfortable, a 5-point
eye tracker calibration was performed. Experimental
tasks started when the average calibration error was
lower than 0.5◦ visual angle.

The experimental procedure followed that of
Siegenthaler et al. (2014), described here for complete-
ness. Three types of number counting trials, Difficult,
Easy, and Control, were grouped into 6 blocks, giving
18 trials total. Each block started with the Control trial,
followed by the Easy and Difficult trials in counterbal-
anced order. Between each block, participants were
asked to take a short break lasting 2–5 minutes; they
were not allowed to start the next block until at least 2
minutes had elapsed.

Each trial started with an instruction screen and in-
cluded a break at the end of each of the six blocks. In
the Difficult trials, participants were asked to mentally
count backwards, as fast and accurately as possible, in
steps of 17 starting at one of the following 4-digit num-
bers drawn randomly from this set: {1375, 8489, 5901,
5321, 4819, 1817}.

The Easy and Control trials were constructed simi-
larly to Difficult trials, but differed in task performance
and initial instructions. In the Easy tasks, participants
were instructed to mentally count forward, as fast and
accurately as possible, in steps of 2 starting at one of
the following 3-digit numbers drawn randomly from
this set: {363, 385, 143, 657, 935, 141}. In the Control tri-
als, participants were asked just to gaze at the fixation
point with no mental task assigned.

When doing the experimental task, participants
were asked to gaze at the fixation point appearing at
screen center. Whenever their gaze shifted 3◦ visual
angle away from the fixation point a warning beep
sounded.

During each trial, participants were prompted four

Figure 5. Experimental setting featuring the SR Re-
search EyeLink 1000 eye tracker and chin rest.

times to enter in their current number in a text box
shown on the screen. A limit of 9 seconds was given
for providing the entry. Three prompts appeared at
random times during each trial, and the fourth at the
very end of the trial. The gap between prompts was a
minimum of 15 seconds and a maximum of 80 seconds.

Since we do not focus specifically on the impact of
mental calculations on the microsaccade-peak velocity
relationship, only data from the Control tasks were se-
lected for analysis.

Participants. Participants (N=17) volunteered for
Experiment 1, recruited verbally and via social media.
Due to problems with eye tracker calibration or misun-
derstanding of the task by participants (i.e., in at least
one case the participant stopped counting after one it-
eration, see Experimental Procedure above), data from
four subjects were discarded resulting in a final sample
of N = 13. Data from 7 males and 6 females aged be-
tween 20 and 40 years old (M = 29.77; SD = 7.15) was
used in the analysis. All participants reported normal,
uncorrected vision.

Participants (N = 10) volunteered for Experiment 2,
recruited verbally. All participants reported normal,
corrected or uncorrected vision.

Experimental Setting and Apparatus. In Experi-
ment 1, an SR Research EyeLink 1000 eye tracker was
used for eye tracking data acquisition. Eye movements
were recorded binocularly at a sampling rate of 500 Hz.
Each participant’s head was stabilized with a chin rest
during the entire experimental procedure, see Figure 5.
The accuracy of the EyeLink 1000 tracker is reported by
the manufacturer as 0.25◦–0.5◦ visual angle on average,
with microsaccade resolution of 0.05◦.

The experimental procedure was controlled by a per-
sonal computer connected to the eye-tracking com-
puter. Visual stimuli were displayed on a 24 inch
computer screen with 1920×1080 resolution at a view-
ing distance of 57 cm. Responses made by partici-
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Figure 6. Experimental setting featuring the Tobii
TX300 eye tracker and chin rest.

pants were performed on a standard numerical key-
board connected to the stimuli presentation computer
and placed by the participant’s dominant hand.

In Experiment 2, conditions were similar, except that
a 300 Hz eye tracker from Tobii was used. As in Ex-
periment 1, each participant’s head was stabilized with
a chin rest during the entire experimental procedure,
see Figure 6. The accuracy of the Tobii TX300 tracker is
reported by the manufacturer as 0.3◦–0.6◦ visual angle
on average.

Experiment 3: Microsaccades & Saccades

Experiment 3 differed from the first two consider-
ably. Its objective was to study facial affect recog-
nition and followed procedures similar to those of
Schönenberg, Mayer, Christian, Louis, and Jusyte
(2015). For the purposes of this analysis, what is most
important is that participants viewed a computer mon-
itor and maintained their gaze in a fairly central loca-
tion. Unlike the first two experiments, Experiment 3
did not restrict eye movement and allowed freedom to
visually inspect the stimulus. Recall that Experiments 1
and 2 restricted gaze to a central point on the screen lo-
cation with an audible reprimand sounding whenever
gaze strayed too far away (3◦) from center.

Although there are considerable differences in tasks
and experimental objectives, here we are mainly con-
cerned with finding suitable functions to fit microsac-
cadic and saccadic peak velocity profiles.

Experimental Procedure. The experimental proce-
dure consisted of participants watching a parametri-
cally varied image sequence (morphed animation) of
a human face. The animated morph task depicted a
video sequence of a neutral face slowly developing into
one of six basic emotions (fear, sadness, anger, happi-
ness, disgust, surprise). Faces were presented in the
center of the computer screen and subtended 16.8◦ vi-
sual angle in width and 21.1◦ visual angle in height.

Participants were instructed to press a button as
soon as they were able to identify the emerging emo-
tion. The sequence was then immediately stopped,
the face disappeared, and participants were presented
with a mask instructing them to indicate which emo-
tion they had identified by selecting one of the six ver-
bal categories via a button press. The morph intensity
level at the time of the button press, as well as the par-
ticipant’s judgment of the emotional expression, was
recorded.

For the purposes of the analysis of eye movements in
the present article, we ignore dependent variables per-
taining to affect recognition, e.g., the intensity of emo-
tional expression at the time of the button press, cor-
rectness of response, etc.

Participants. Data were collected from three
groups of participants: two clinical groups and a Con-
trol group of people who reported no mental disorders
(N = 20). Note that for the sake of internal coherence
of the present analysis, we focus only on data from the
Control group since we are not interested in the differ-
ences between research samples.

Experimental Setting and Apparatus. In Experi-
ment 3, the same type of eye tracker was used as in
Experiment 1, model EyeLink 1000 from SR Research.
Eye movements were recorded binocularly at a sam-
pling rate of 500 Hz.

Visual stimuli were displayed on a 19 inch computer
screen with 1024×768 resolution at a viewing distance
of 60 cm.

Event Detection

Both saccade and microsaccade detection algorithms
were based on the work of Engbert and colleagues
(Engbert et al., 2016; Engbert, 2006; Engbert & Kliegl,
2003). Note that the algorithms differ, although both
were ostensibly originally designed to work on raw
gaze data (raw meaning insofar as not being subject to
any type of event detection by the eye tracker, hence
consisting solely of (x(t), y(t)) data). We use Engbert
et al.’s (2016) algorithm in Experiment 3 to detect sac-
cades, but our version of microsaccade detection dif-
fers from that of Engbert (2006) in that we apply his
algorithm only to segments of raw gaze points identi-
fied as fixations, via velocity-based (I-VT) event detec-
tion (Salvucci & Goldberg, 2000) by the Savitzky and
Golay (1964) filter following Nyström and Holmqvist
(2010). The motivation for doing so is for eventual real-
time applications. Because fixation event detection can
be applied to streaming data, subsequent filtering for
microsaccade detection should incur only small costs
in additional processing and latency, thus, we conjec-
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ture, making real-time microsaccade detection feasible.
Alternatively, e.g., following Otero-Millan, Macknik,
Langston, and Martinez-Conde (2013). and using only
one algorithm to describe the whole range of events as
saccades or microsaccades varying along a continuum
as a function of the size of the scene being scanned, typ-
ically requires the entire raw gaze data set, precluding
real-time implementation.

Microsaccade Detection

Microsaccades can be detected when gaze is fixed on
a stationary object, i.e., during a fixation. Given a se-
quence of raw gaze points identified within a fixation,
we adapt a version of Engbert and Kliegl’s (2003) algo-
rithm for the detection of microsaccades.

The algorithm proceeds in three steps. First, the gaze
position time series is transformed to velocities via

ẋn =
xn+2 + xn+1 − xn−1 − xn−2

6∆t
, (11)

but is done separably for x(t) and y(t). Equation (11)
represents a moving average of velocities over 5 sam-
ple range (skipping the center point at n, giving a
n + 2 − n + 2 + 1 = 5 sample range). As Engbert and
Kliegl note, due to the random orientations of the ve-
locity vectors during fixation, the resulting mean value
is effectively zero. Microsaccades, being ballistic move-
ments creating small linear sequences embedded in the
rather erratic fixation trajectory induced by small drifts,
can therefore be identified by their velocities, which are
clearly separated from the kernel of the distribution
as “outliers” in velocity space. We took 6∆t to mean
the sampling period ∆t multiplied by constant scalar
6. This would be reasonable given the assumption of a
uniform sampling rate (i.e., ∆t=1/ f where f is the sam-
pling frequency in Hertz). In practice, because actual
sampling periods are not uniform (e.g., due to network
or multitasking architecture issues), we do not use the
6∆t in the denominator, rather we take the difference
in timestamps of the actual data, i.e., we replace 6∆t by
(tn+2−tn−2).

Second, computation of velocity thresholds is based
on the median of the velocity time series to protect the
analysis from noise. A multiple of the standard devia-
tion of the velocity distribution is used as the detection
threshold (Engbert, 2006),

σx =
√
〈ẋ2〉 − 〈ẋ〉2, σy =

√
〈ẏ2〉 − 〈ẏ〉2 (12)

where 〈·〉 denotes the median estimator. Detection
thresholds are computed independently for horizontal
ηx and vertical ηy components and separately for each
trial, relative to the noise level, i.e., ηx = λσx, ηy = λσy.

Like Engbert and Kliegl (2003), we used λ = 6 for mi-
crosaccade detection in Experiments 1 and 3 and then
λ= 3.6 in Experiment 2 (to reflect the drop in sampling
rate from 500 Hz to 300 Hz)3 and we assume a minimal
microsaccade duration of 6 ms (three data samples at
500 Hz) in Experiments 1 and 3 and 6.6 ms (three data
samples at 300 Hz) in Experiment 2.

Following Engbert (2006) as a necessary condition
for a microsaccade, we require ẋ and ẏ fulfill the cri-

terion (ẋn/ηx)2 +
(
ẏn/ηy

)2
> 1.

Microsaccade amplitude is defined as mean dis-
placement amplitude of the sequence of gaze points
wherein each gaze point satisfies the above necessary
condition for microsaccade labeling. Microsaccade am-
plitude is reported in degrees visual angle. Given de-
tection of a microsaccade gaze point sequence, the next
set of samples comprising a 20 ms inter- saccade inter-
val are skipped so as not to count overshoots.

Third, Engbert and Kliegl (2003) focus on binocu-
lar microsaccades, defined as microsaccades occurring
in left and right eyes with a temporal overlap. They
exploit binocular information by applying a tempo-
ral overlap criterion: if a microsaccade in the right
eye starting at time r1 is found that ends at time r2,
and a microsaccade in the left eye begins at time l1
and ends at time l2, then the criterion for temporal
overlap is implemented by the conditions r2 > l1 and
r1 < l2. We omit this step as we typically average
both left and right gaze points into a single point as
would be looked at by a cyclopean eye, i.e., (x(t), y(t)) =

([xl(t) + xr(t)]/2, [yl(t) + yr(t)]/2) .

Engbert and Kliegl (2003) assume a stationary eye
movement signal, i.e., when fixating an object, e.g.,
performing a task where gaze is meant to be held
steady (e.g., see Siegenthaler et al. (2014)). To adapt
their algorithm to the general case of a non-stationary
eye movement signal, we first detect fixations fol-
lowing Nyström and Holmqvist (2010), and use the
Savitzky and Golay (1964) filter for velocity-based (I-
VT (Salvucci & Goldberg, 2000)) event detection. The
Savitzky-Golay filter fits a polynomial curve of order
n via least squares minimization prior to calculation
of the curve’s sth derivative (e.g., 1st derivative (s = 1)
for velocity estimation), (Gorry, 1990). We used a 3rd

degree Savitzky-Golay filter of width 3 with velocity
threshold of 100◦/s, tuned to the sampling rate of the
eye tracker used.

3Mergenthaler (2009) discusses how the choice of λ sub-
stantially affects the number of detected microsaccades. As λ
increases, the number of detected microsaccades decreases.
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Saccade Detection

Saccade detection is based on the work of Engbert et
al. (2016) and proceeds similarly to microsaccade detec-
tion with a few minor changes. The algorithm follows
the same steps as for microsaccades except that Equa-
tion (12) is changed to

σx =

√
〈(ẋ−〈ẋ〉)2〉, σy =

√
〈(ẏ−〈ẏ〉)2〉 (13)

where 〈·〉 again denotes the median estimator. The
same criterion is used for velocity thresholding, namely

(ẋn/ηx)2 +
(
ẏn/ηy

)2
> 1 again with ηx = λσx, ηy = λσy

except that for saccades λ is set to 8. For saccade detec-
tion Engbert et al. (2016) also exploit binocular events,
whereas we use the cyclopean averaging as for mi-
crosaccades.

Note that to detect saccades, we use an entire raw
eye movement time series, and we do not subject the
sequence to velocity detection with the Savitzky-Golay
filter. Also, we implement a similar criterion for min-
imum duration saccades as for microsaccades above.
In practice we look for a minimum of two successive
points (i.e., an edge) to define a saccade. In other
words, isolated points in the data stream that are over
threshold are not classified as saccades.

Results

Analysis of results aims to answer two questions:

1. how well does the inverse-linear logistic function
(9) fit peak velocity-amplitude data for microsac-
cades and saccades; and

2. can the inverse-linear logistic function, in its ex-
pression for duration (10), adequately describe
the linear duration-amplitude relationship of mi-
crosaccades and saccades?

Before providing empirical evidence for these queries,
in Table 1 we first present descriptive statistics of
microsaccades from our three experiments (saccades
captured in the third experiment are discussed later).
Microsaccadic amplitudes and durations are similar
across all three experiments, and are in line with what
is found in the literature, e.g., see Otero-Millan, Tron-
coso, Macknik, Serrano-Pedraza, and Martinez-Conde
(2008).

However, one should also note in Table 1 a greater
microsaccade mean peak velocity in Experiment 3
where participants were allowed to move their eyes
over the given stimuli (pictures of faces). This is also
consistent with the literature. For example, Martinez-
Conde (2006) previously showed that a steady fixation

leads to a decrease in microsaccade amplitude (result-
ing in visual fading).

Microsaccadic distributions and the microsaccadic
peak velocity vs. amplitude scatterplots are given in
Figures 7–9 for Experiments 1–3, respectively. Plots
of the microsaccadic and saccadic peak velocity-
amplitude relation include different functions fit to the
data, for comparison with the inverse-linear logistic
function fit. These function fits are discussed below.

Fitting Peak Velocity-Amplitude

A traditional approach to testing linear model (func-
tion) goodness of fit is through linear regression anal-
ysis, i.e., estimation of R2. The computation of R2,
however, relies on estimation of the distance between
the observations and the model (residuals), i.e., the
line that was determined through least squares mini-
mization (i.e., minimization of the distance), see Boggs,
Byrd, and Schnabel (1987). For R2 to be meaningful,
the distances computed assume orthogonality between
the observations and the line fit to them. For a nonlin-
ear fit, the assumption of orthogonality might not hold
(Wolter & Fuller, 1982; Stefanski, 1985).

Instead of R2, we examine the relative quality of
our nonlinear models through Akaike’s Information-
theoretic Criterion (AIC) (Akaike, 1974). What matters
is not AIC itself but the difference in AIC between mod-
els (∆AIC). Under this criterion, the model with the
smallest AIC exhibits the best fit. Supplementing AIC,
we also report results from Vuong’s test, a likelihood-
ratio based statistic, for non-nested, nonlinear model
comparison (Vuong, 1989). Vuong’s also tests for statis-
tical significance between the fits of the models under
consideration.

Microsaccade Peak Velocity-Amplitude. For mi-
crosaccade data from all experiments, the inverse-
linear logistic function provides the best fit, yielding
the smallest AIC. Moreover, as alluded by Lebedev et
al. (1996), the other nonlinear models show inconsis-
tency in their goodness of fits, see Table 2.

We should point out that for the prolonged fixation
of Experiments 1 and 2, the rank ordering of the AIC
is the same. In these experiments, the inverse-linear
model gave the worst fit. In Experiment 3, where the
eyes were free to move, the power-law function gives
the worst fit. Similar differences in microsaccades be-
tween fixating and free-viewing were noticed by Otero-
Millan et al. (2008), although they did not fit different
functions to the data.

Pairwise comparison of the inverse-linear logistic
function with all others with Vuong’s test (with AIC
correction) revealed a statistically significant difference
in fits, with the inverse-linear logistic function giving
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Table 1
Descriptive statistics of microsaccade parameters: amplitude (deg), peak velocity (deg/sec), duration (sec), and rate (count/sec)
from Experiments 1, 2, and 3.

Mean SD Minimum Maximum Skewness Kurtosis
Experiment 1. Fixating @ 500 Hz: microsaccades

amplitude 0.40 0.16 0.02 1.60 1.21 2.34
peak velocity 70.64 34.97 4.00 215.74 1.19 1.49
duration 0.01 0.01 0.01 0.04 1.51 2.76
rate 4.31 7.2 0.1 55.56 4.13 19.79

Experiment 2. Fixating @ 300 Hz: microsaccades
amplitude 0.54 0.25 0.06 1.98 0.85 0.63
peak velocity 66.73 35.81 10.38 200.28 0.89 0.22
duration 0.02 0.01 0.01 0.04 1.18 0.78
rate 1.56 3.38 0 33.49 4.92 32.48

Experiment 3. Free-viewing @ 500 Hz: microsaccades
amplitude 0.48 0.21 0.03 1.55 0.58 0.09
peak velocity 101.01 47.57 5.40 219.63 0.24 -0.79
duration 0.02 0.01 0.01 0.04 0.52 -0.73
rate 3.83 4.34 0.08 55.56 6.45 57.47

Table 2
Tests of nonlinear model fit to microsaccades. For all ∆AIC the inverse-linear logistic model is the base as it yields the
smallest AIC criterion. Vuong’s tests (last column) compare all other models to the inverse-linear logistic fit. Data from
Experiments 1 (top), 2 (middle), and 3 (bottom).

Model Residual SE model df AIC ∆AIC Vuong’s tests
Experiment 1. Fixating @ 500 Hz

inverse-linear logistic SEe =12.13 22347 175008.7 0.0 —
power-law SEe =12.52 22349 176419.9 1411.2 z=7.59, p<0.001
exponential SEe =12.66 22349 176893.8 1885.1 z=9.85, p<0.001
inverse-linear SEe =12.66 22349 176913.2 1904.6 z=10.05, p<0.001

Experiment 2. Fixating @ 300 Hz
inverse-linear logistic SEe =13.29 14146 113376.6 0.0 —
power-law SEe =13.68 14148 114187.7 811.1 z=7.74, p<0.001
exponential SEe =13.79 14148 114412.3 1035.7 z=9.57, p<0.001
inverse-linear SEe =13.79 14148 114421.3 1044.7 z=9.72, p<0.001

Experiment 3. Free viewing @ 500 Hz
inverse-linear logistic SEe =19.41 57027 500146.2 0.0 —
exponential SEe =20.32 57029 505383.5 5237.3 z=41.32, p<0.001
inverse-linear SEe =20.34 57029 505467.8 5321.6 z=41.33, p<0.001
power-law SEe =20.56 57029 506687.3 6541.1 z=41.33, p<0.001

better fits in all cases, see Table 2. Table 3 gives the
parameter estimates for the inverse-linear logistic func-
tion in each of the three experiments. Significance tests
indicate that all parameters differed significantly from
zero.

Saccade Peak Velocity-Amplitude. Saccades were
captured only in Experiment 3 because only in this re-
ported study participants could freely move their eyes.
There were N = 89020 saccades detected in total. De-
tailed descriptive statistics for saccades are given in Ta-
ble 4. Notice that the maximum amplitude observed

was over 6 degrees visual angle, placing these saccades
in the small- to mid-amplitude range. Saccade distribu-
tions and the saccade peak velocity-amplitude scatter-
plot from Experiment 3 is given in Figure 10, along with
depictions of functions fit to the data in Figure 10(a).

The same nonlinear goodness of fit analysis was car-
ried out for the saccadic peak velocity-amplitude rela-
tion as for microsaccades, above. Similar to microsac-
cades, the AIC shows that the function providing the
best fit is the inverse-linear logistic function, see Ta-
ble 5. The inverse-linear function gives the worst fit.
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(a) Microsaccade peak velocity and amplitude.
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(c) Distribution of microsaccade peak velocity (deg/sec).
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(d) Distribution of microsaccade duration (sec).

Figure 7. Experiment 1. Distribution of microsaccade amplitude (b), peak velocity (c), and duration (d). Figure (a)
depicts the nonlinear relationship between peak velocity and amplitude with different function fits. Data were
captured at 500 Hz.

Voung’s tests, also in Table 5, suggest that the inverse-
linear logistic function fits the data significantly better
than any of the other functions. Table 6 lists the param-
eter estimates for the inverse-linear logistic function.

Superpositioning Microsaccades and Saccades.
To test whether the inverse-linear logistic function pro-
vides a good fit across microsaccade and saccade am-
plitude ranges, we superpositioned both types of eye

movements into a single data set and followed the
same analytical procedure as above for the separate mi-
crosaccade and saccade analysis.

Results of AIC analysis suggests the inverse-linear
logistic function goodness of fit is maintained across
the small and mid-amplitude ranges, see Table 7. Ta-
ble 7 also shows results of Voung’s tests which again in-
dicate a statistically significant better fit of the inverse-
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(a) Microsaccade peak velocity and amplitude.
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(c) Distribution of microsaccade peak velocity (deg/sec).
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Figure 8. Experiment 2. Distribution of microsaccade amplitude (b), peak velocity (c), and duration (d). Figure (a)
depicts the nonlinear relationship between peak velocity and amplitude with different function fits. Data were
captured at 300 Hz.

linear logistic function compared to the others. Table 8
lists the parameter estimates for the inverse-linear lo-
gistic function.

Fitting the Duration-Amplitude Main Sequence

While empirical evidence thus far shows that the
inverse-linear logistic function produces the best fit to
the relation between peak velocity and amplitude, it

may not be immediately obvious whether the function
can also serve to express the classic linear relation be-
tween duration and amplitude, i.e., the main sequence
(Bahill et al., 1975).

We have shown mathematically that the inverse-
linear logistic expression (10; restated below) can be
used to describe the duration-amplitude relation. Here,
we test this assertion empirically by comparing the ex-
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(a) Microsaccade peak velocity and amplitude.
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Figure 9. Experiment 3. Distribution of microsaccade amplitude (b), peak velocity (c), and duration (d). Figure (a)
depicts the nonlinear relationship between peak velocity and amplitude with different function fits. Data were
captured at 500 Hz.

pression’s fit to that of the linear function given by (1a).
To do so, we use the data from the above three exper-
iments, this time plotting duration vs. amplitude and
compare the linear fit of (1a)

MT = a + b · A

to that of (10).
For the analysis, the inverse-linear logistic function

is manually fit to the data, while the linear fit is ob-

tained automatically through linear model fitting in
software (R). Linear curve fitting for the inverse-linear
logistic function proceeds by first automatically fitting
expression (9) for peak velocity-amplitude. This was
performed automatically in software (using R’s nls()
function, see Fox and Weisberg (2010). Recall expres-
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Table 3
Non-linear regression coefficients and their significance tests for the inverse-linear logistic function fit to microsaccades.

Parameter Estimate SE t-test
Experiment 1. Fixating @ 500 Hz

Va 236.22 4.71 t(22347)=50.18, p<0.001
A1 0.16 0.02 t(22347)=8.25, p<0.001
A2 3.93 0.07 t(22347)=53.76, p<0.001
A0 −0.48 0.007 t(22347)=−71.73, p<0.001

Experiment 2. Fixating @ 300 Hz
Va 188.58 3.87 t(14146)=48.62, p<0.001
A1 0.11 0.02 t(14146)=5.33, p<0.001
A2 3.37 0.07 t(14146)=47.28, p<0.001
A0 −0.64 0.008 t(14146)=81.63, p<0.001

Experiment 3. Free viewing @ 500 Hz
Va 323.29 8.95 t(57351)=36.11, p<0.001
A1 0.71 0.05 t(57351)=15.39, p<0.001
A2 5.79 0.12 t(57351)=47.47, p<0.001
A0 −0.18 0.008 t(57351)=22.96, p<0.001

Table 4
Descriptive statistics of saccade parameters: amplitude (deg), peak velocity (deg/sec) and duration (sec) from Experiment 3.
There were N =89020 in total saccades detected.

Mean SD Minimum Maximum Skewness Kurtosis
Experiment 3. Free viewing @ 500 Hz: saccades

amplitude 0.74 0.54 0.07 6.31 1.17 1.18
peak velocity 160.19 135.47 10.35 719.31 1.16 0.55
duration 0.02 0.01 0.01 0.07 0.89 -0.07

sion (9)

Vm =
Va · A

(A + A1)
[
1 + exp (−A2 · (A + A0))

]
is converted to expression (10)

MT = a (A + d)
[
1 + exp (−c · (A + b))

]
by using (6) and solving for MT = A/Vm with a = 1/Va,
b=k0−A0, c=k2 ·A2, and d =k1 ·A1, using constant e such
that K = e · Va as per (7) to produce MT = K · Vm. Coef-
ficients k0–k2 and K, given in Table 9, were obtained by
manually fitting the inverse-linear logistic function to
each of the data sets used for fitting the peak velocity-
amplitude relation, but replotted using duration vs.
amplitude. In each instance, a linear fit of (1a) was ob-
tained automatically via minimization of least squares
(in R) for comparison to (10).

In line with expectations, for microsaccadic data in
Experiments 1, 2, and 3 the linear and inverse-linear lo-
gistic functions fit the data similarly. Comparison of the
AIC for linear (AIC = −170475.2) and inverse-linear lo-
gistic (AIC =−170475.2) functions for microsaccades in
Experiment 1 showed that both models fit similarly to
the data. Analyses of Experiment 2 also showed similar

fits for both linear (AIC = −103460.1) and the inverse-
linear logistic model (AIC = −103460.1). Analyses of
Experiment 3 also yielded similar results for the lin-
ear (AIC=−388684.6) and inverse-linear logistic models
(AIC=−388684.7).

Similar AIC results were found for saccades fit by
the linear (AIC = −576451.0) and inverse-linear logistic
(AIC = −576450.7) models in Experiment 3. Combined
saccade and microsaccade data also yielded similar fits
by the linear (AIC=−956121.2) and inverse-linear logis-
tic (AIC=−956120.7) models.

AIC statistics for each of the pairs of the linear and
inverse-linear logistic fits are nearly identical, suggest-
ing that both models are indistinguishable. One may
argue, as we do above, that AIC statistics are more suit-
able to nonlinear goodness of fit estimates and that in
this instance of testing linear models, the traditional ap-
proach to testing goodness of fit is through linear re-
gression analysis, i.e., estimation of R2. Linear regres-
sion statistics of each pair of models is provided in Ta-
ble 10, which shows identical R2 for the model pairs in
each of the five data sets.

In sum, when applied to the amplitude-duration re-
lation, the inverse-linear logistic function fits the data
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Table 5
Tests of nonlinear model fits to saccades. For all ∆AIC the inverse-linear logistic model is the base as it yields the smallest
AIC criterion. Vuong’s tests (last column) compare all other models to the inverse-linear logistic fit. Data from Experiment 3
(free viewing @ 500 Hz).

Model Residual SE model df AIC ∆AIC Vuong’s tests
inverse-linear logistic SEe =37.59 89016 898344.4 0.0 —
power-law SEe =40.20 89018 910293.4 11949.0 z=14.39, p<0.001
exponential SEe =45.68 89018 933030.7 34686.3 z=80.83, p<0.001
inverse-linear SEe =53.34 89018 960638.5 62294.1 z=99.72, p<0.001
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Figure 10. Experiment 3. Distribution of saccade amplitude (b), peak velocity (c), and duration (d). Figure (a)
depicts the nonlinear relationship between peak velocity and amplitude with different function fits. Data were
captured at 500 Hz.
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Table 6
Non-linear regression coefficients and their significance tests for the inverse-linear logistic function fit to saccades.

Parameter Estimate SE t-test
Va 895.06 18.24 t(89016)=49.07, p<0.001
A1 1.56 0.08 t(89016)=18.03, p<0.001
A2 1.70 0.01 t(89016)=156.46, p<0.001
A0 −0.63 0.02 t(89016)=−26.95, p<0.001

Table 7
Tests of nonlinear model fits to saccades and microsaccades. For all ∆AIC the inverse-linear logistic model is the base as it
yields the smallest AIC criterion. Vuong’s tests (last column) compare all other models to the inverse-linear logistic fit. Data
from Experiment 3 (free viewing @ 500 Hz).

Model Residual SE model df AIC ∆AIC Vuong’s tests
inverse-linear logistic SEe =32.69 148565 1457793.0 0.0 —
power-law SEe =34.05 148567 1469847.0 12054.0 z=10.808, p<0.001
exponential SEe =39.10 148567 1511004.5 53211.5 z=82.466, p<0.001
inverse-linear SEe =45.48 148567 1555887.6 98094.6 z=108.325, p<0.001

as well as the classically assumed linear expression.
The inverse-linear logistic function fit extends the main
sequence from the microsaccadic small to the saccadic
mid-amplitude range.

Discussion

Our results indicate that the inverse-linear logis-
tic function provides the best fit to the peak velocity-
amplitude relation in both small- and mid-amplitude
ranges. We should note that due to the nature of the ex-
periment conducted allowing free eye movement, the
range of eye movements was fairly limited, extend-
ing to about 6◦ instead of 15◦ demarked by Lebedev
et al. (1996). Nevertheless, we are confident that the
inverse-linear logistic function will serve as a good
model of peak velocity-amplitude across all ranges of
saccadic amplitudes. Our goodness of fit analysis over
the combination of observed microsaccades and sac-
cades shows that the function gives a good fit when
the two data sets are superpositioned. Mathematically,
the logistic function is linear in its midsection, hence
in terms of fit, it is no worse than the other alternative
nonlinear functions. What is of primary concern is the
flattening of the curve at the low and high ranges (i.e.,
the asymptotes). Neither of the other nonlinear models
have this flexibility, which makes the logistic function
more suitable.

The inverse-linear logistic function, while requiring
additional parameters over other models, offers greater
flexibility in its fit to peak velocity across a wider
range of amplitudes. This is due to its logistic com-
ponent which allows greater control of the function
particularly at the low- and large-amplitude ranges

where peak velocity tends to asymptote. In the mid-
amplitude range, the logistic component of the func-
tion allows control of the functions adherence to the
observed slope of peak velocity.

The inverse-linear logistic function can also be used
to express the expected linearity of the duration-
amplitude relation. Our results show that the linear fit
afforded by the function is no worse than, and in the
least-squares sense identical to, the established linear
main sequence.

Limitations

One limitation of our approach involves our “cyclo-
pean simplification” wherein we average the left and
right gaze points into a single point prior to microsac-
cade detection. This averaging may distort the shape
of the main sequence. However, our examination of
the inverse-linear logistic function was made with the
assumption of the suitability of the exponential, power-
law, and inverse-linear fits, as has been demonstrated
in the past. Because these latter models also fit the
main sequence produced by our algorithm, it is likely
that whatever distortion may have been introduced, if
any, did not unfairly disadvantage the other functions.
Still, our choice of algorithmic simplification should be
examined with greater scrutiny in future evaluation of
the inverse-linear logistic function.

Conclusion

We have derived a new model for the main sequence
of eye movements, based on an inverse-linear logis-
tic function. We have shown the model’s robust per-
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Table 8
Non-linear regression coefficients and their significance tests for the inverse-linear logistic function fit to superpositioned
microsaccades and saccades.

Parameter Estimate SE t-test
Va 793.48 8.73 t(148565)=90.86, p<0.001
A1 0.91 0.04 t(148565)=25.34, p<0.001
A2 1.49 0.01 t(148565)=133.21, p<0.001
A0 −0.88 0.01 t(148565)=−64.64, p<0.001

Table 9
Linear coefficients for the inverse-linear logistic function fit to duration-amplitude of all data sets.

Experiment Parameter
k0 k1 k2 K

Exp. 1. Fixating @ 500 Hz
(microsaccades) .516223 3.51575 2.29179 0.0132·Va
Exp. 2. Fixating @ 300 Hz
(microsaccades) .336892 14.32469 2.866794 0.0076·Va
Exp. 3. Free viewing @ 500 Hz
(microsaccades) .769782 .995477 1.70962 0.01685·Va
Exp. 3. Free viewing @ 500 Hz
(saccades) .369424 0.262244 5.278945 0.018·Va
Exp. 3. Free viewing @ 500 Hz
(superpositioned microsaccades and saccades) .369424 0.262244 5.278945 0.0177·Va

formance when applied to three distinct eye move-
ment data sets, captured at three different laboratories
using different eye trackers running at either 300 or
500 Hz. We have shown that the inverse-linear logis-
tic function suitably fits both peak velocity-amplitude
and duration-amplitude relations over the low- to mid-
amplitude range. We are confident the function will
suitably extend over a wide range of eye movement
amplitudes. A particularly usable aspect of the model
is its demonstrated capacity to simultaneously fit mi-
crosaccades and saccades when superpositioned to-
gether.
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