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Eye-tracking technology has to date been primarily employed in research. With recent ad-
vances in affordable video-based devices, the implementation of gaze-aware smartphones, and
marketable driver monitoring systems, a considerable step towards pervasive eye-tracking has
been made. However, several new challenges arise with the usage of eye-tracking in the wild
and will need to be tackled to increase the acceptance of this technology. The main challenge
is still related to the usage of eye-tracking together with eyeglasses, which in combination
with reflections for changing illumination conditions will make a subject "untrackable". If
we really want to bring the technology to the consumer, we cannot simply exclude 30% of
the population as potential users only because they wear eyeglasses, nor can we make them
clean their glasses and the device regularly. Instead, the pupil detection algorithms need to be
made robust to potential sources of noise. We hypothesize that the amount of dust and dirt
on the eyeglasses and the eye-tracker camera has a significant influence on the performance of
currently available pupil detection algorithms. Therefore, in this work, we present a systematic
study of the effect of dust and dirt on the pupil detection by simulating various quantities of dirt
and dust on eyeglasses. Our results show 1) an overall high robustness to dust in an off-focus
layer. 2) the vulnerability of edge-based methods to even small in-focus dust particles. 3) a
trade-off between tolerated particle size and particle amount, where a small number of rather
large particles showed only a minor performance impact.
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Introduction

With the advent of affordable eye-tracking technology to
consumer products like controllers for video gaming, interac-
tion with smartphones, or driver monitoring, new challenges
arises. Outside of the controlled conditions of a laboratory,
a reliable eye-tracking can hardly be achieved. The main
source of error in such settings is a non-robust pupil signal
which primarily arises from challenges in the image-based
detection of the pupil due to changing illumination, espe-
cially for subjects wearing glasses. Excluding such subjects
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or declaring a customer as untrackable (commonly 5-10% in
lab setups Schnipke and Todd (2000)) is not an option any-
more. Instead, customers expect eye-tracking to just work.
Hence, reliability of the eye-tracking signal is still an impor-
tant issue.

One of the first data processing steps for video based
eye-tracking is the localization of the pupil within the eye-
tracker image. Benchmark data for pupil detection are de-
clared especially challenging (and in fact are) if people are
simply walking around outdoors or driving a car Fuhl, San-
tini, Kübler, and Kasneci (2016); Fuhl, Tonsen, Bulling, and
Kasneci (2016); Tonsen, Zhang, Sugano, and Bulling (2016).
However, data quality means much more than the mere track-
ing rate Holmqvist, Nyström, and Mulvey (2012), yet it cer-
tainly is amongst the most fundamental factors. A tracking
loss affects all subsequent processing steps, such as calibra-
tion and fixation identification. Therefore, it alters almost
every key metric used in eye-tracking research Wass, Forss-
man, and Leppänen (2014) and can be extremely frustrating
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during interaction with a device.

The development of robust algorithms has to keep pace
with the availability of consumer devices. In order to im-
prove the current generation of algorithms, we need to get a
better understanding of the factors that cause a decrease of
tracking quality in real-world applications.

In this work, we systematically study the impact of dust
and dirt on the tracking rate. As most of today’s eye-trackers
are video based, dirt and smudges, both on the device as well
on the subject’s eyeglasses, are a potential source of error
that may be less common in a well maintained laboratory,
but become relevant in real-world applications. Just think of
a remote tracking setup in an automotive driver monitoring
system. Since it is hard to objectively quantify the amount
and nature of dirt in a real experiment, we employ an image
synthesis method on top of real eye-tracking videos recorded
during a driving experiment. Tracking rate and performance
of four state-of-the-art pupil detection algorithms, namely
Świrski and Dodgson (2014), ExCuSe Fuhl, Kübler, Sippel,
Rosenstiel, and Kasneci (2015), Set Javadi, Hakimi, Barati,
Walsh, and Tcheang (2015), and ElSe Fuhl, Santini, Kübler,
and Kasneci (2016) are evaluated.

The remaining of this paper is organized as follows. The
next Section gives an overview over the competing pupil de-
tection algorithms and discusses related work in image syn-
thesis for eye tracking. Details on the particle simulation are
given in Section Methods. Section Results presents the per-
formance of the state-of-the-art pupil detectors for various
conditions. Finally, the obtained results are discussed and
conclusions are drawn.

Related work

Pupil detection algorithms

Although many commercial eye-tracker manufacturers do
not provide exact documentation of their pupil detection
method, there are a number of published algorithms. In the
following, we will provide a summary of the workflow for
a selection of algorithms. For a more detailed overview and
comparison of the state-of-the-art we refer the reader to a
recent review by Fuhl, Tonsen, et al. (2016). In the following
we will briefly discuss details of some of these algorithms,
namely Świrski, Bulling, and Dodgson (2012), Else Fuhl,
Santini, Kübler, and Kasneci (2016), and ExCuSe Fuhl et
al. (2015) due to their good performance in prior evaluations
Fuhl, Tonsen, et al. (2016) and their conceptual differences.
ElSe Fuhl, Santini, Kübler, and Kasneci (2016) was chosen
as the currently best performing state-of-the-art method Fuhl,
Geisler, Santini, Rosenstiel, and Kasneci (2016). We also in-
clude the Set algorithm Javadi et al. (2015) as a representative
of simple, threshold-based approach.

Algorithm ExCuSe

The Exclusive Curve Selector (ExCuSe) Fuhl et al. (2015)
first analyzes the image based on the intensity histogram with
regard to large reflections. For images with such reflections,
the algorithm tries to find the pupils outer edge, otherwise
this step is skipped. To localize the pupil boundary, a Canny
edge filter is applied and all orthogonally connected edges
are broken at their intersection. This is done by applying
different morphologic operations. All non-curvy lines are
then removed. For each curved line, the average intensity
of its enclosed pixels is computed. The curved line with the
darkest enclosed intensity value is selected as pupil bound-
ary candidate and an ellipse fit is applied to it. If the previ-
ous step did not yield a clear result or was skipped, a binary
threshold based on the standard deviation of the image is ap-
plied. For four orientations, the Angular Integral Projection
Function Mohammed, Hong, and Jarjes (2010) is calculated
on the binary image and an intersection of the four maximal
responses is determined. This intersection location is further
refined within the surrounding image region by using similar
or darker intensity values as attractive force. Based on the re-
fined position, the surrounding image region is extracted and
a Canny edge filter applied. These edges are refined using
the binary image obtained by applying a calculated thresh-
old. Beginning at the estimated center location, rays are send
out to select the closest edge candidates. The last step is a
least squares ellipse fit on the selected edges to correct the
pupil center location.

Algorithm ElSe

The Ellipse Selector (ElSe) Fuhl, Santini, Kübler, and
Kasneci (2016) begins by applying a Canny edge filter to
the eye image. Afterwards, all edges are filtered either mor-
phologically or algorithmically. In this work, we used the
morphological approach due to the lower computational de-
mands. The filter removes orthogonal connections and ap-
plies a thinning and straightening with different morphologic
operations than ExCuSe Fuhl et al. (2015). Afterwards, all
straight lines are removed and each curved segment is eval-
uated based on the enclosed intensity value, size, ellipse pa-
rameters, and the ease of fitting an ellipse to it. The last
evaluation metric is a pupil plausibility check. In case the
previously described step fails to detect a pupil, a convo-
lution based approach is applied. Therefore, a mean circle
and a surface difference circle are convolved with the down-
scaled image. The magnitude result of both convolutions is
then multiplied and the maximum is selected as pupil center
estimation. This position is refined on the full sized image
by calculating a intensity range from its neighborhood. All
connected pixels in this range are grouped and the center of
mass is calculated.

2



Journal of Eye Movement Research
10(3):1, 1-9

Fuhl, W., Kübler, T. C. & et al. (2017)
Controlling the influence of dirt and dust on pupil detection

Algorithm Set

Set Javadi et al. (2015) can be subdivided into pupil ex-
traction and validation. An intensity threshold is provided as
a parameter and used to convert the input image into a binary
image. All connected pixels below (darker than) the thresh-
old are considered as belonging to the pupil and grouped to-
gether. Pixel groups that exceed a certain size, provided to
the algorithm as a second parameter, are selected as possi-
ble pupil candidates. For each such group the convex hull is
computed and an ellipse is fit to it. This ellipse fit is based
on comparing the sine and cosine part of each segment to
possible ellipse axis parameters. The most circular segment
is chosen as the final pupil.

Algorithm by Świrski et al.

In a first step of the algorithm introduced by Świrski et al.
(2012), Haar-Cascade-like features of different sizes are used
to find a coarse position for the pupil. To save computational
costs this is done on the integral image. The range at which
these features are searched is specified by a minimum and
maximum pupil radius.

This results in a magnitude map where the strongest re-
sponse is selected as coarse pupil center estimate. An inten-
sity histogram is calculated on the surrounding region. This
histogram is segmented using k-means clustering, resulting
thus in an intensity threshold. This threshold converts the
image into a binary pixel inside-pupil, outside-pupil image.
The largest continuously connected patch is selected as pupil
and its center of mass as the refined pupil center location. In
the final step, an ellipse is fitted to the pupil boundary. A
morphologic preprocessing by an opening operation is ap-
plied to the image to remove the eyelashes. Afterwards, the
canny edge detector is used for edge extraction. Edges that
surround the refined pupil location are selected and an ellipse
is fitted using RANSAC and an image aware support function
for edge pixel selection.

Image synthesis in eye-tracking algorithm development

Each eye-tracking recording is associated with a quite
unique mixture of noise components. Therefore, artificial
eye models and image synthesis methods for eye-tracker im-
ages were created in order to produce mostly artifact-free
recordings. Świrski and Dodgson (2014) even model and
render the complete head to generate data for remote as
well as head mounted eye trackers. The model renders as
physically correct as possible, including reflections, refrac-
tion, shadows and depth-of-field blur together with the facial
marks like eyelashes and eyebrows.

Wood, Baltrušaitis, Morency, Robinson, and Bulling
(2016) used rendered images for estimating the gaze of a
person using a k nearest neighbors estimator. For fast render-
ing they employed the Unity game engine. Furthermore, the
authors generated data for different skin colors, head poses,

Figure 1. Example eye images of two subjects showing
dust particles in the focus layer of the camera (because they
are best visible in print). Most dust particles in our data
were placed slightly outside of the focus layer and therefore
blurred.

and pupil states. The accuracy of this concept was further
improved by Zhang, Sugano, Fritz, and Bulling (2016) using
a convolution neuronal network trained on the complete face.

The work by Kübler, Rittig, Kasneci, Ungewiss, and
Krauss (2016) advances in a different direction. More specif-
ically, the authors evaluate the effect of eyeglasses on tra-
ditional gaze estimation methods by including the optical
medium into the simulation model. The authors showed that
eyeglasses have a major impact on gaze direction predicted
by a geometrical model, but not on that of a polynomial fit.

Methods

Observations on real recordings

To get an impression of the impact of dust during real-
world eye-tracking, we browsed about 30 datasets from a
real-world driving experiment Kasneci et al. (2014). Dust
particles are almost invisible on still images, but become
clearly visible in a video. This is due to the static behavior of
dust while the eye is moving. Figure 1 shows some examples
of dust we found in the dataset.

Dirt particle image synthesis

In 2005, Willson et al. first described a method for the
simulation of dust particles on optical elements in Willson,
Maimone, Johnson, and Scherr (2005). They formulated a
camera model, derived the influence of dust particles on the
final image, and specified formulae to calculate these effects.
However, their particle model and the final image synthe-
sis were still lacking some of the occurring effects: particles
were modeled as circular achromatic shapes that were dis-
tributed on a plane perpendicular to the image sensor. We
extended their work by modeling particles as triangulated ob-
jects with color and positions in 3D, which allows distribu-
tion in potentially arbitrary 3D-subspaces, e.g. curved and
rotated planes. By modeling particles as a set of triangles
and adding color information, the formulae for intersection
calculation and color blending are significantly different and
more expensive to compute. To calculate the final image in
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Figure 2. Camera model of the dust simulation. Notice the
parameters A (area of the projected collection cone), pw (in-
tersection point of the collection cone with the dust plane and
px,y (pixel position on the sensor)

reasonable time, a rtree is used to speed the location of parti-
cles close to a specified point.

As presented by Willson et al. (2005), the influence of dust
particles on the final image depends on the camera model and
the dust particle model. These models are presented in the
following subsections.

Camera model. In real cameras, an aperture controls
the amount of light and the directions from which light is
collected. This bundle of light rays is called the collection
cone. Such a camera model that respects was employed in
this work to vary the depth of field, to gain naturally blurred
images of objects that are out of focus and control for the
amount of light and blur, Figure 2.

Dust particle model. We model dust particles based on
position, color (including an alpha channel for transparency),
shape variance, and size. They are randomly distributed on a
user-defined plane, not necessarily perpendicular to the im-
age plane. As shape we modify a basic circle by smooth
deviations. The final shape is triangulated and the triangula-
tion detail level controlled by specifying the number of edges
for each particle. The maximum extent of the dust plane is
calculated using the maximum angle of view of the camera.
Finally, by setting the number of particles for the next simu-
lation run, the desired particles are distributed over the given
plane subset. Using the center of location di of the dust par-
ticle d̂i with index i, its radius ri and the number of edges n,
the edge vertices vi of a circle-like particle can be calculated
as formulated in the following equation

v j = di + ri · cos(2π ·
j
n

) (1)

where 0 ≤ j ≤ n. These vertices are then appended to form a
polygon. A similar approach is used for varying the particle
shape. Setting a property value k ∈ [0, 2], which controls
the scale of the shape variance, a new radius is calculated for

each of the edge vertices by

snew = sold · k (2)

These randomly shaped particles are then smoothed by us-
ing simple interpolation between two edge points. For each
particle at location di, the left and right neighbor (di−1 and
di+1) are taken into account. Finally, the edge vertices are
smoothed using the equation

v′i =
vi−1 + vi + vi+1

3
(3)

Image composition. Every image that enters the sim-
ulation has already been recorded with a real camera. The
parameters chosen for the simulation should therefore be as
close as possible to the real recording camera. The appear-
ance of the dust particles will only yield correct results if
this condition holds. For each pixel px,y on the output image,
the following steps are performed to calculate the final pixel
output color.

First, the intersection point pw of the light ray starting at
the pixel at px,y and leaving through the center of the aper-
ture towards the scene with the dust plane needs to be found.
In case of perpendicular planes, this can be calculated rather
easy using similar triangles Willson et al. (2005). If the plane
can have arbitrary geometry, it is best calculated using ray-
plane-intersection.

Second, the projection of the collection cone at the point
pw needs to be calculated. This is done by projecting the
triangle edge points of the aperture onto the plane, gaining a
projected polygon cw of the collection cone section with area
A.

To determine the influence of the dust particles on the final
output color, all surrounding particles that satisfy the condi-
tion ‖pw − di‖ < a + 2 ∗ ri are retrieved. They are referred
to as the subset C of dust particles in the following. These
particles potentially have an influence on the final pixel color.
To calculate the magnitude of that influence, for each particle
di ∈ C, the intersection area Ai with cw is calculated. If we
assume that the particles are not mutually overlapping, then
the following equation for the overall area holds:

A ≤
∑

i

Ai (4)

The fraction αi = Ai
A is the alpha-blending factor of d̂i and

determines the amount of its color contributing to the final
pixel color. Therefore, if a particle has huge overlap with the
current collection cone, the final output color of that pixel is
strongly mixed with the particle color. Figure 3 visualizes
this process.

Optimization of the computational time. For fast re-
trieval of the particles close to cw, the boost implementation
of a rtree is used. Further, since the blending factors are con-
stant as long as the camera parameters remain the same, an
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Figure 3. Estimation the mixing factors for the final output
color. The blending factor is calculated as the fraction of
each particle of the projected aperture area.

(a) X (b) XII

(c) XIV (d) XVII
Figure 4. Example images selected from the respective data
sets published by Fuhl et al. (2015).

attenuation image is calculated that can be applied to all sub-
sequent images of a stream. The generation of the attenuation
image is computationally expensive, whereas the application
to an image can be done in real-time. The attenuation image
contains the alpha-blending values and the color information
for each pixel on the sensor and is valid as long as the camera
parameters remain fixed.

Dataset

We evaluated our approach on a subset of the data set
by Fuhl et al. Fuhl et al. (2015), namely data set X, XII,
XIV, and XVII (Figure 4). Based on visual inspection, these
data sets were found to be mostly free of dust particles and
provided thus good baseline results for all of evaluated al-
gorithms. A total of 2,101 images from four different sub-
jects were extracted. These images do not contain any other
challenges to the pupil detection such as make-up or contact
lenses, since we wanted to investigate the isolated influence
of dust and dirt. However, all subjects wore eyeglasses and
the ambient illumination changed. Furthermore, we did not
use completely synthetic images as comparable results can
only be achieved within strict laboratory conditions, where

(a) Original image. (b) focal 2.8 mm

(c) focal 4.0 mm (d) focal 5.6 mm
Figure 5. Simulation results for different focal lengths on one
image. 200 particle of size group 2 were inserted.

dust would usually simply be removed from the recording
devices.

Figure 5 shows the influence of the focal length on the fi-
nal image. It should be noted here that in a realistic scenario
the focal length would also have an influence on the image
of the eye, not just on the particles. This effect was omitted
here (visible for example at the eyelashes). For the images in
Figure 5, a focal length of 5.6 puts the dust particles in focus.
For real dust particles this is based on their distance to the
camera and depends mainly on the design of worn glasses.
Most eye cameras do not employ an autofocus mechanism
but provide a possibility of adjusting the focus. However, it
is rarely adjusted with dust on the eyeglasses in mind (to our
experience also by the manufacturers). In the following, we
will use the value of 5.6mm focus as a reference.

Another important aspect of dirt is the size of different
particles. This effect is shown in figure 6. The amount and
focal length is fixed to 200 and 5.6 respectively. For real
world recordings dust can occur in different sizes for which
we used four size groups. As can be seen in figure 6(d) they
are not simple dots they are varying polygons.

The effect of the amount of particles rendered can be seen
in Figure 7. The particles are spread uniformly over the im-
age. This is one limitation of the current simulation, as realis-
tic dust distributions would include the lens lenticular buckle
of the camera and the curvature of the glasses of a subject.

Results

Figure 8 shows the detection rate of the evaluated algo-
rithms over all data sets. The detection rate is reported based
on the difference in pixels between the manually labeled and
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(a) Size group 1 (b) Size group 2

(c) Size group 3 (d) Size group 4
Figure 6. Simulation results for different particle size groups
on one image. The particle amount is set to 200 and the focal
length is 5.6.

(a) 50 particles (b) 150 particles

(c) 250 particles (d) 350 particles
Figure 7. Simulation results for different amounts of parti-
cles on one image. The particle size group is set to 2 and the
focal length is 5.6.

the automatically detected pupil center (pixel error). The red
vertical line marks the results (i.e., detection rate) for a pixel
error of 5, which is considered as an acceptable pixel error
for the given image resolution.

For the evaluation, we simulated the data sets with all
combinations of focal length (i.e., 2.8, 4.0, and 5.6), size
groups (1-4) and particle amount (50-500). Dirt particle
placement is calculated based on a uniform distribution. To
ensure the same dirt placement for each algorithm, we stored
the simulation results and performed the evaluation on im-
ages.

Figure 8. Results on all data sets without dust simulation.
The detection rate is shown with regard to the Euclidean dis-
tance error in pixels. The vertical red line shows the track-
ing rate at a 5 pixel error, the tolerance where all algorithms
have reached saturation and that we will use throughout the
following evaluation.

Table 1
Performance of the SET algorithm. The results show the re-
duction in detection rate (in %) due to dirt for an error rate of
5 pixels. The baseline are detection rates achieved on clean
images. F represents the focal length, SG the size group,
whereas P50-P500 values specify the amount of particles.
Bold highlights a reduction in the detection rate relatively to
clean data of more than 10%.

F SG P50 P100 P200 P300 P400 P500
1 0 0 -2 -2 -2 -3

2.8 2 0 -2 -7 -9 -12 -13
3 -3 -1 -12 -17 -29 -24
4 -3 -13 -24 -22 -37 -52
1 0 1 -1 -2 -1 -2

4.0 2 0 0 -2 -3 -4 -11
3 -1 -6 -7 -9 -9 -2
4 -1 -3 -6 -12 -2 -36
1 0 -1 -1 -2 -3 -2

5.6 2 -1 0 -3 -1 -5 -5
3 0 -2 -9 -8 -8 -14
4 -2 -2 -8 -18 -18 -21

Tables 1, 2, 3, and 4 show the impact of different simula-
tion parameters on the detection rate of the algorithms SET,
Swirski, ExCuSe, and Else, respectively. The provided val-
ues describe the loss of detection rate for a pixel error of five
in direct comparison to the detection rate on the original data
set. According to these result, the algorithm SET Javadi et al.
(2015) seems to be more robust to dust than the competitor
algorithms. Interestingly, in Fuhl, Tonsen, et al. (2016), SET
was found to handle reflections inappropriately, yet in this
evaluation SET showed highest robustness to simulated dirt.
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Table 2
Performance of the Swirski algorithm. The results show the
reduction in detection rate (in %) due to dirt for an error
rate of 5 pixels. The baseline are detection rates achieved
on clean images. F represents the focal length, SG the size
group, whereas P50-P500 values specify the amount of par-
ticles. Bold highlights a reduction in the detection rate rela-
tively to clean data of more than 10%.

F SG P50 P100 P200 P300 P400 P500
1 -3 -2 -2 -4 -2 -4

2.8 2 -3 -5 -23 -25 -16 -33
3 -12 -18 -36 -48 -58 -43
4 -23 -42 -46 -44 -55 -65
1 -1 -4 -5 -14 -2 -3

4.0 2 -3 -3 -14 -15 -17 -31
3 -8 -29 -36 -39 -6 -52
4 -8 -37 -36 -42 -46 -69
1 -2 -1 -5 -1 -5 -2

5.6 2 0 0 -14 -4 -14 -13
3 -1 -14 -25 -42 -29 -6
4 -9 -25 -56 -44 -58 -66

Table 3
Performance of the ExCuSe algorithm. The results show the
reduction in detection rate (in %) due to dirt for an error
rate of 5 pixels. The baseline are detection rates achieved
on clean images. F represents the focal length, SG the size
group, whereas P50-P500 values specify the amount of par-
ticles. Bold highlights a reduction in the detection rate rela-
tively to clean data of more than 10%.

F SG P50 P100 P200 P300 P400 P500
1 2 1 2 1 1 0

2.8 2 0 -1 -2 -7 -11 -14
3 -2 -7 -14 -27 -35 -37
4 -4 -17 -31 -45 -42 -59
1 2 1 1 0 -1 -2

4.0 2 0 -5 -12 -17 -25 -28
3 -5 -11 -26 -26 -57 -54
4 -6 -18 -29 -47 -62 -75
1 0 0 -2 -5 -5 -8

5.6 2 -3 -8 -2 -25 -4 -42
3 -5 -16 -31 -48 -53 -76
4 -13 -25 -44 -58 -71 -83

Only the focal length in combination with large amounts of
white dust interferes with the pupil detection of this method.
The reason for this robustness is related to the threshold-
based nature of SET.

The algorithms Świrski et al. (2012), ExCuSe Fuhl et al.
(2015) and ElSe Fuhl, Santini, Kübler, and Kasneci (2016)
are, in contrast, all based on edge detection. Since dust parti-
cles in the image interfere with the performance of the Canny

Table 4
Performance of the ElSe algorithm. The results show the re-
duction in detection rate (in %) due to dirt for an error rate of
5 pixels. The baseline are detection rates achieved on clean
images. F represents the focal length, SG the size group,
whereas P50-P500 values specify the amount of particles.
Bold highlights a reduction in the detection rate relatively to
clean data of more than 10%.

F SG P50 P100 P200 P300 P400 P500
1 0 0 0 -1 -2 -1

2.8 2 -2 -4 -5 -8 -12 -14
3 -3 -7 -13 -21 -31 -33
4 -5 -15 -31 -4 -43 -59
1 0 -1 -2 -3 -3 -5

4.0 2 -3 -9 -14 -18 -29 -31
3 -8 -13 -3 -27 -54 -51
4 -1 -22 -33 -51 -61 -79
1 -2 -2 -5 -8 -8 -11

5.6 2 -4 -8 -21 -28 -4 -38
3 -4 -14 -29 -43 -5 -7
4 -13 -21 -41 -54 -69 -77

Figure 9. Heatmap visualization of the results shown in Ta-
bles 1-4. The chosen colors reach from yellow over green to
blue, where yellow stands for no influence on the algorithmic
performance, whereas dark blue represents highest negative
influence on the performance of the pupil detection.

edge detector, the pupil boundary cannot be extracted ro-
bustly. In addition, the induced edges by the particles them-
selves connected to the pupil edge make the ellipse fit much
harder. Therefore, further improvements to the algorithms
should inspect automatic threshold adjustments. In addi-
tion, preliminary image refinement steps are necessary since
thresholding is not appropriate for light gradients over the
pupil.

For a better overview, a heatmap visualization of the re-
sults given in Tables 1-4 is shown in Figure 9. In this visual-
ization, yellow represents lowest influence on the algorithm
performance, whereas dark blue represent highest negative
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influence on the algorithmic performance. Detailed results
for all evaluated scenarios are provided in the Appendix.

Discussion

We proposed a dirt simulation and evaluation for eye
images as obtained by commercially available eye-trackers.
Such a simulation can help to evaluate algorithms regarding
their applicability in the wild and to explore their limitations.
Besides simulating different colors and particle sizes for dirt,
our approach offers the possibility the vary the focal length,
which could also happen in real scenarios since the automatic
focus estimation is influenced by the dirt layer.
We found most algorithms to be relatively robust towards few
large off-focus dust particles. These are particles close to the
camera lens (or for example a glass cover when the camera is
mounted within a car dashboard). We can therefore conclude
that the amount of dust that can be tolerated on the tracking
device itself is quite large, given the right choice of pupil
detection algorithm.

Overall, it has to be mentioned that lower detection rates
of individual algorithms also impact the tracking loss sig-
nificantly. While the edge-based pupil localization methods
still outperformed threshold-based methods for most of the
simulations, even small in-focus dust particles can result in a
huge impact on their performance. However, this impact is
likely occurring in images where the pupil is hard to detect,
so that other methods already failed at the baseline level and
show therefore only a smaller percentual loss. This finding
highlights (i) that the current generation of pupil detection
algorithms are vulnerable to dust particles and (ii) the impor-
tance of a sharp and intelligent autofocus for head-mounted
trackers in order to select the actual eye depth layer instead
of the eyeglasses as accurately as possible.

This work provides a task-plan for the further improve-
ment of pupil edge-based pupil localization methods that
should focus on automatic threshold range adjustments, im-
age refinement, and reconstruction (dirt removal and filter-
ing). Dirt particles are static on the subject’s glasses and can
therefore be identified in a video sequence. Removing this
noise factor could improve the algorithmic performance and
robustness.

In future work, we will evaluate our simulation results
against real dirt conditions on the camera and on subject’s
glasses. In addition, we will investigate the robustness of
pupil detection algorithms based on deep neural networks,
such as PupilNet Fuhl, Santini, Kasneci, and Kasneci (2016),
to dust. Further improvements to the simulation itself will
include a combination with the synthesis module for glasses
from Kübler et al. (2016) and inclusion of different dirt area
distributions.
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