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Introduction 

 Scanpath analysis -- examination of the sequence in 

which people fixate on different parts of a stimulus -- is 

widely used in eye-tracking research (Groner, Walder,  & 

Groner, 1984; Holmqvist et al., 2011). Scanpaths can be 

considered in terms of the sequence of AOIs (Areas Of 

Interest defined by the researcher) that a participant vis-

its, which can be compared with string metrics such as 

the Levenshtein distance, or in terms of the spatial posi-

tions/alignment of fixations (vector sequence alignment). 

Methods such as vector strings can also include temporal 

aspects like fixation duration and saccadic amplitude 

(Holmqvist et al., 2011). Scanpath analysis attempts to 

provide insight into the cognitive processes of users in-

teracting with a visual stimulus, as eye movements  have 

been linked to decision making (Ehmke & Wilson, 2007). 

A basic method for enabling the visual comparison of 

scanpaths is the gaze plot, which displays all fixation data 

for a participant or set of participants over the stimulus. 

While this is comprehensive in the information it sup-

plies, it can quickly become difficult to interpret, due to 

the complexity of gaze data. 

Here we present a method for scanpath analysis, 

which combines the Levenshtein distance and other visu-

alization methods to produce summary data that can be 

simultaneously visualized for multiple participants in a 

simple matrix form. This allows us to query the data 

visually, and identify similarities and differences between 

participants at a glance. 
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The particular case we examine is clinician interpreta-

tion of elctrocardiogram (ECG) images. Eye tracking has 

been used to explore how humans interact with data in a 

variety of medical domains, most notably in radiology 

(Krupinski, Calvin, & L, 2013; Law, Atkins, Lomax, & 

Mackenzie, 2004; Litchfield, Ball, Donovan, Manning, & 

Crawford, 2008).  

This work has primarily provided a qualitative inter-

pretation of the diagnostic process, however. Here, we 

apply our methods to quantitatively analyze clinicians’ 

visual behavior in the medical sub-domain of electrocar-

diology. This field particularly lends itself to scanpath 

analysis, as electrocardiogram (ECG) data consists of 

signals from 12 sources, which are presented in different 

equal-sized areas on a single output. These areas natural-

ly form pre-existing “Areas of Interest” (AOIs) which can 

be interrogated for quantitative analysis. Here we exam-

ine the scanpaths of clinicians as they attempt to interpret 

ECGs. To do this we consider the transition behavior 

between the leads by determining and visualizing the 

Levenshtein distance. We do this to identify any system-

atic and consistent approaches taken to interpretation that 

are modelled by visual behavior, especially to determine 

if there are differences in this behavior that are attributed 

to the correct or incorrect interpretation of the ECG. 

Electrocardiology 

The electrical activity generated by the myocardium 

(heart) can be represented in graphical form by the 12-

lead electrocardiogram (ECG) (Davies & Scott, 2014).  

The ECG is one of the most commonly used medical 

tests and is carried out in a large variety of clinical envi-

ronments (Davies & Scott, 2014). This is primarily down 

to its low cost and availability. The electrical output is 

displayed as a waveform that is composed of various 

waves (P, Q, R, S, T, U), intervals (PR, QT, QRS) and 

the ST segment that represent the depolarization and 

repolarization of the constituent components of the cardi-

ac conduction system (Davies & Scott, 2014; Wagner, 

2008). The waveform is displayed on a grid (Figure 1), 

where time in seconds is represented on the x-axis and 

amplitude in millivolts on the y-axis (Clifford, Azuaje, & 

McSharry, 2006).  

The different “leads” are displayed as 12 equally sized 

regions on the graph that are labelled. The leads labelled 

I, II, III, aVR, aVL, aVF display activity “viewed” from 

the coronal/frontal plane. Leads V1 to V6 view the trans-

verse plane. The waveforms are presented differently in 

the different leads due to the direction of the electrical 

impulse relative to the poles of the electrodes that are 

attached to the surface of the patient (Davies & Scott, 

2015). 

 

 

Figure 1. A “normal” 12-lead ECG 

 

Interpretation of the ECG is considered a complicated 

task and is carried out by a number of healthcare practi-

tioners, including doctors, nurses and allied health pro-

fessionals, paramedics and specially trained cardiac phys-

iologists/technicians. Failing to make a correct interpreta-

tion of the underlying medical conditions presented on 

the ECG can lead to inappropriate/incorrect or no treat-

ment being given, leading in some cases to injury and 

even death (Holst, Ohlsson, Peterson, & Edenbrandt, 

1999). Despite ongoing improvements in the field of 

automated ECG interpretation, humans are still more 

reliable (Salerno, Alguire, & Waxman, 2003) and remain 

the end point in interpretation as automated solutions are 

frequently inaccurate (Anh, Krishnan, & Bogun, 2006). 

The study presented in this paper represents a subsection 

of wider exploratory work related to the visual behavior 

of humans interpreting ECGs using eye-tracking technol-

ogy. Understanding this process could provide essential 

information for improving automated interpretation soft-

ware. This work synthesizes varied disciplines, including 

computer science, medicine and psychology. The initial 

stage reported in this paper concerns visual analysis of 

eye-movement data for hypothesis generation. 

Scanpath analysis techniques 

Similarity between two or more scanpaths can be es-

timated by applying scanpath comparison measures 

(Holmqvist et al., 2011). 
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The scanpath can also be formed from a set of loca-

tions represented by the order in which the AOI is visited 

(in computing terms, a string). One such method for the 

calculation of differences between two string sequences 

is the Levenshtein distance. It works by imposing a cost 

(penalty) for each operation (insertion, deletion and sub-

stitution) carried out to transform one string into another, 

where they both contain the same tokens in the same 

sequence (Levenshtein, 1966). The Levenshtein distance 

is still one of most frequently used methods applied to 

scanpath comparison (Holmqvist et al., 2011; Le Meur & 

Baccino, 2013) with applications spanning multiple do-

mains, including the scanning of websites (Pan et al., 

2004) and reasoning about others mental status 

(Meijering, van Rijn, Taatgen, & Verbrugge, 2012).  

Other string edit distances also exist, including the 

Damerau-Levenshtein distance, Hamming distance and 

Longest Common Subsequence (LCS) technique (Le 

Meur & Baccino, 2013). The initial Levenshtein distance 

has been adapted and improved. In one such example, 

Galgani et al. (2009) augmented the Levenshtein distance 

with the Needleman-Wunsch approach. This allows for 

the definition of custom defined cost functions. This 

approach was applied to improve evaluation and diagnos-

tic methods for classification of attention disorders 

(Galgani et al., 2009). Alternative methods for the visual-

ization of scanpaths include the Voronoi method, a spa-

tial method comparable to clustering fixations (Over, 

Hooge, & Erkelens, 2006). Dotplots have also been used 

to visualize scanpath similarities for the purpose of vali-

dation and exploration (Goldberg & Helfman, 2010).  

In this work we apply visualization methods to ex-

plore similarities and differences between participants’ 

scanpaths as they carry out an ECG interpretation task. 

Methods 

Participants 

Thirty one participants (males=8, females= 23) whose 

clinical role includes regularly interpreting ECGs took 

part in the study. Participants had an average of 9 years’ 

experience in interpreting ECGs (range=29). Participants 

were recruited from 3 hospitals in the north-west of Eng-

land. They belonged to 3 main professional categories: 

cardiac physiologists/technicians (n=19), doctors/nurses 

(n=7) and students (n=5).  

Stimuli 

Participants viewed eleven 12-lead ECGs taken from 

open access on-line libraries 

(http://lifeinthefastlane.com/ecg-library/ and 

www.emedu.org/ecg\_lib/index.htm) and displayed in a 

random order on a computer screen. The ECGs repre-

sented a selection of conditions that would be encoun-

tered in clinical and training scenarios: 

• Anterolateral STEMI (ST-segment elevation 

myocardial infarction) 

• Atrial Flutter 

• Hyperkalaemia 

• Torsades de pointes (polymorphic ventricular 

tachycardia) 

• Wolff-Parkinson-White syndrome (WPW) 

• Ventricular tachycardia (VT) 

• Left bundle branch block (LBBB) 

• Normal sinus rhythm (NSR) 

• Supra-ventricular tachycardia (SVT) 

• Ventricular paced rhythm 

• Sinus tachycardia 

Procedure 

The ECGs were presented in random sequence. No 

time limit was imposed, allowing participants to take as 

much time as they needed to reach an interpretation. 

Their interpretation, which was spoken aloud, was rec-

orded with a voice recorder. Tobii X2-60 and 1750 eye-

trackers were used to capture gaze-data as participants 

viewed the ECGs. Areas of interest (AOIs) labelled A-M 

were generated with Tobii studio software (V.1.2) for 

each of the 12-leads and the rhythm strip, which is an 

existing lead that is displayed for a longer time period at 

the bottom of the image (see Figure 2). Following the 

study, participants’ interpretations were rated as correct 

or incorrect for each ECG by two expert interpreters. The 

full stimuli, protocol, data and analysis code are available 

from our data repository (http://iam-

data.cs.manchester.ac.uk/investigations/12). 
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Figure 2. AOIs mapped onto ECG leads. Labelled A-M 

Analysis 

Many studies focus on determining the similarity of 

eye-movements across participants (Cirimele, Heer, & 

Card, 2014). Standard techniques, including heat/focus 

maps and gaze-plots are limited, as they often fail to 

properly display the sequential/temporal nature of these 

eye-movements (Cirimele et al., 2014), or allow for 

subject comparisons with multiple participants, without 

the introduction of the excessive visual complexity. 

Gazeplots display the fixation sequence superimposed on 

a stimulus, and therefore potentially allow a comparison 

between participants to be made visually. Gazeplots can, 

however, become overly complicated and even 

meaningless with large group comparisons (or even just a 

small subset of participants). 

Scanpaths can be represented as a set of tokens or 

characters, referred to as “strings”. The string contains 

the sequence of AOIs visited by a participant. This can be 

seen in an example from two participants in this study 

who viewed the anterolateral STEMI ECG.       

P25 =  {M,M,I,I,M,G,G,E,E,B,A,A,M,M,I,I}   

P19 = {H,E,D,D,E,H,H,G,G,G,I,F,F,F,D} 

Differences in fixation duration, fixation count, or the 

total amount of time spent viewing a particular AOI can 

be used to identify participant similarity. This does not, 

however, capture the similarity in the way participants 

visually transition around the ECG. This is a potentially 

important factor, as cross referencing different leads of 

the ECG is crucial to the correct interpretation of certain 

conditions, such as heart attacks. To examine these 

similarities we apply the Levenshtein distance to compute 

the distance (measure of similarity) of each participant 

with all the other participants in the study or sub-group. 

The distance is determined by the minimum number of 

insertion, deletion and substitution operations required to 

transform one string into another (Holmqvist et al., 2011; 

Levenshtein, 1966).   

When viewing the scanpath lengths for each stimulus 

we truncate (collapse) the scanpath to remove 

consecutive tokens. This is done to focus on the sequence 

of AOIs visited, essentially removing fixation frequency, 

i.e. a scanpath string consisting of {M,M,M,B,B,A,B,C} 

would become {M,B,A,B,C}. Unless stated specifically 

the results represent the un-truncated scanpaths.  

The scanpath analysis reported here focuses primarily 

on the anterolateral STEMI ECG, as the identification of 

a \quotes{heart attack} is a critical skill that is taught to 

ECG interpreters of all levels, as opposed to specialists 

(cardiologists). In order to identify the STEMI, one needs 

to first identify ST-segment elevation, then rule out other 

causes (i.e. pericarditis, pacemaker, bundle branch block) 

before finally identifying the leads affected (Davies & 

Scott, 2015). The pattern of ST elevation in certain leads 

identifies what type of STEMI it is. Table 1 shows the 

portion of the heart that the changes reflect. For example 

ST elevation in the inferior leads (II, III and aVF) would 

indicate an inferior STEMI. There can also be 

combinations of areas affected. The anterolateral STEMI 

would involve ST elevation in both the lateral and 

anterior leads. In order to make the correct interpretation, 

ST elevation needs to be identified in each relevant lead. 

This makes the STEMI stimuli a good starting point for 

exploratory analysis as with other conditions, the salient 

features can be identified in different leads on an 

individual basis or systematically. 

Table 1. ECG leads and portion of heart effected. 

STEMI leads Myocardial area 

II, III, aVF Inferior 

I, aVL, V5, V6 Lateral 

V1, V2, V3, V4 Anterior 
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To this end each of the participants’ scanpaths were 

compared against all the other participants’ for this 

stimulus and the results were displayed using a matrix to 

allow for rapid visual comparison. The darker the matrix 

cell the greater the difference between compared 

scanpaths; conversely the lighter the cell the greater the 

scanpath similarity. This method of visualization also 

makes it easier to spot outliers and make multiple 

comparisons simultaneously. In addition to this, we were 

interested in the specific areas of the stimulus that were 

fixated the most. It was hypothesized that these areas may 

be different from the top down researcher-defined AOIs 

that were mapped onto each ECG lead. This is because 

we know from ECG training texts that in order to 

interpret the ECG correctly one needs to focus on specific 

parts of the ECG waveform (the various waves, intervals 

and segments). In order to define these areas in a non-

arbitrary data-driven way we use the DBSCAN clustering 

algorithm (Density-based spatial clustering of 

applications with noise) (Ester, Kriegel, Sander, & Xu, 

1996). This allowed us to cluster fixations and then 

subsequently determine the smallest radius for what is 

termed a “core point” (threshold for the number of points 

in a given radius to be included in a core point). We use 

this value to inform the cell size for a grid (minimum cell 

dimension = core point diameter). As the stimulus is 

rectangular, the smallest cell dimension is used to 

determine the width of the cell. This allows cells to be 

rectangular, in order to increase coverage of the stimulus. 

We are then able to detect fixations in each grid cell and 

generate heat maps based on these values. As the cell 

sizes for each stimulus are the same, we can then produce 

heatmaps for the correct and incorrect groups for each 

ECG and directly compare differences between cells to 

quantify how similar or different they are as well as using 

them to identify key areas of attention. All statistical 

analysis was carried out using the R project for statistical 

computing, version 3.3.2. (R Core Team, 2014), with α < 

0.05. Mann-Whitney U tests were used to compare 

groups with non-parametric data. We also demonstrate 

the utility of web diagrams for analyzing scanpath length, 

and chord diagrams for showing differences in transition 

behavior. 

Results 

We present the results in terms of the scanpath lengths 

and differences between scanpaths across all stimuli 

using the Levenshtein distance. We then focus on the 

anterolateral STEMI stimuli, looking at scanpath similari-

ties for the correct and incorrect interpretation groups. 

Finally we look at distribution of attention using data-

driven heatmaps, and differences in visual transition 

behavior between the salient leads. 

 

Figure 3. Average scanpath lengths for each stimulus for 

correct and incorrect groups 

The aggregated scanpath lengths (with truncation) repre-

senting the scanpath as the sequence of AOIs visited are 

shown in the web diagram in Figure 3 for both groups for 

each ECG. The average length of the scanpaths across all 

stimuli for the combined groups was 23 AOIs (SD= 

18.25, Mo=9, range=134). 
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Figure 4: The average Levenshtein distance for both 

groups for each ECG (errorbars represent the SE) 

Figure 4 shows the average Levenshtein distance per 

group for each ECG. As the number of participants mak-

ing correct and incorrect interpretations varies considera-

bly across the different ECGs (Table 2), using standard 

statistical comparisons is problematic in all but one case. 

It is necessary to group participants into correct and in-

correct interpretation groups per stimulus on a post hoc 

basis, as they may get a certain ECG right and another 

wrong and vice versa, making it impossible to assign 

them to groups prior to beginning the task. The Anterol-

ateral STEMI (heart attack) has fairly evenly sized groups 

making comparison possible. We compared the average 

Levenshtein distance for the correct and incorrect groups 

using a Mann-Whitney U test for this stimulus, which 

highlights a significant difference (W = 21284, p = .004), 

with the incorrect group having a larger Levenshtein 

distance on average (M=86, SD=102.63) than the correct 

group (M=46, SD =12.53).   

Table 2. The number of participants making correct and 

incorrect interpretations per ECG. 

Stimuli (ECG) Correct (n) Incorrect (n) 

Anterolateral STEMI 16 14 

Atrial Flutter 26 5 

Hyperkalaemia 2 30 

Torsades de pointes 5 27 

WPW 13 18 

VT 27 5 

LBBB 24 8 

NSR 24 7 

SVT 10 21 

Ventricular paced 9 22 

Sinus tachycardia 12 20 

Matrix visualizations (Figure 5) are used to compare each 

participant against every other participant in the group 

(correct or incorrect). The darker the cell, the greater the 

distance, meaning that the compared scanpaths are less 

similar. The plots are normalized by the maximum Le-

venshtein distance to aid visual comparison. Participant 

13 (P13M, a student cardiac physiologist) in the incorrect 

group has a very different scanpath to all of the other 

participants. This participant also has the longest individ-

ual scanpath length (377) and the longest average fixation 

duration (M=312.97, SD=384.86). Figure 6 shows the 

average fixation duration per participant for each group 

for the STEMI ECG. 

 

Figure 6. Average fixation duration for each participant 

for anterolateral STEMI ECG by group 
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Figure 5. Levenshtein distance plots for correct (left) and 

incorrect (right) groups for the anterolateral STEMI ECG. 

 

The average fixation duration for each lead of the ECG 

for the anterolateral STEMI (Figure 7) is then examined. 

For the fixation duration we apply pairwise comparisons 

with Bonferroni correction (α = 0.004). A significant 

difference between groups for lead I (W = 628.5, p = 

0.002) was identified (Table 3). The most fixations were 

made in lead V1 and then the rhythm strip for both of the 

groups. 

 

 

Figure 7. Average fixation duration for both groups, per 

lead (errorbars represent the SE) 

Table 3. Pairwise comparisons for each lead (Mann-Whitney U) 

with Bonferroni correction α = 0.004. 

ECG lead name W p-value 

I 628.5 0.002* 

II 467.5 0.071 

III 591 0.741 

aVR 253 0.186 

aVL 2021 0.702 

aVF 1532.5 0.594 

V1 3479.5 0.695 

V2 12994 0.346 

V3 5679.5 0.452 

V4 675 0.017 

V5 1294 0.022 

V6 363 0.046 

Rhythm strip (II) 6777 0.016 

 

Figure 8 highlights differences between the correct and 

incorrect groups for the anterolateral STEMI stimulus in 

relation to the dwell time (total fixation time) for each 

grid cell (displayed in each cell). The correct group has a 

greater dwell time in lead V1 and V2, which are two of 
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the most important leads for providing clues to interpret 

this particular stimulus (ST segment elevation in the 

anterior and lateral leads). In contrast the incorrect group 

dwells mostly on the less useful lead (aVL). By segment-

ing the stimulus into equal sized regions and proving a 

numerical overlay on each cell, specific areas of stimuli 

can be more readily compared, with measurable differ-

ences between cells easily computed. This also provides 

an overview of the focus of attention made by both 

groups. 

 

(a) Correct group 

 

(b) Incorrect group 

Figure 8. Heatmaps showing the total fixation duration in 

each grid cell for the anterolateral STEMI stimulus 

Finally the transitions between the leads (V1-V4) pre-

senting the most relevant salient information (highest 

degree of ST-segment elevation) are computed for both 

of the groups. Figure 9 shows the number of transitions 

from one lead to another or within the same lead itself. 

The number of transitions is represented by the thickness 

of the arrow, with the arrow point showing the direction 

of the transition (from - to). The actual number of transi-

tions is also displayed on arrow heads. The incorrect 

group made a greater number of overall transitions 

(n=2307) than the correct group (n=2146). 

 

Figure 9. Chord diagrams representing the number of 

visual transitions from one lead to another (or within the 

same lead) for the incorrect (left) and correct (right) 

groups. The thicker the line the more transitions occurred. 

The arrow head displays the direction of the transitions. 

Discussion 

Data-driven analysis can be challenging, especially when 

exploring factors such as accuracy, which can only be 

determined on a post hoc basis. The various visualiza-

tions applied to the data through this work provide useful 

information about and insights into the differences in 

visual behavior between these two groups. The “heart 

attack” stimulus is of special interest due to the clinical 

urgency of the condition and death by ischemic heart 

disease remaining the leading cause of mortality globally 

(WHO, 2017).  

Overall we see a greater variability in the scanpaths be-

tween, rather than within, the two groups. When we con-

sider differences in fixations on the leads of the ECG, we 

identify a significant difference between the accurate and 

inaccurate groups for lead I using a conservative ap-

proach. Lead I is not one of the leads showing the great-

est degree of ST-segment elevation. It does, however, 

help the interpreter to see that there is elevation in the 

lateral leads as well as the anterior leads - leading to the 

conclusion that the interpretation should reflect lateral as 

well as anterior involvement. Comparing the leads on a 

pairwise basis may also be over simplistic; as the time 

spent viewing different leads may have an impact on time 

spent viewing subsequent leads. The heatmaps do, how-

ever, indicate that the correct group focuses more atten-

tional resources on the lead showing the greatest degree 

of ST-segment elevation (the salient clue essential to 

identifying a heart attack).  
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The results of the analysis show large differences be-

tween the participants' individual scanpaths, which is 

indicative of differing search strategies. This difference 

could be attributable to the disparate backgrounds of the 

participants. There are many different methods of teach-

ing ECG interpretation that vary in approach and duration 

(Alinier, Gordon, Harwood, & Hunt, 2006). These meth-

ods also differ between countries and institutions as well 

as varying according to the medical discipline that the 

practitioner belongs to (Kadish et al., 2001). Using a 

matrix to visualize the similarities/differences between 

the scanpaths with the Levenshtein distance is a helpful 

initial way of gaining a comparative overview of multiple 

participants in a study, and locating outliers who have 

markedly different or similar scanpaths. This can com-

plement traditional methods, such as box plots. 

An example of this is seen in the Levenshtein distance 

matrix (Figure 5). Here we can see participant 13 is a 

clear outlier and has a markedly different scanpath to all 

of the other participants in his group. This shows that 

metrics such as dwell time and fixation duration alone do 

not give us the whole picture with regard to behaviour 

and strategy. A richer understanding can be obtained by 

combining approaches to explore different aspects, such 

as temporal and sequential factors. 

Scanpath analysis suffers from some limitations, includ-

ing the issue of scanpath length, with very different 

lengths confounding alignment calculations (Goldberg & 

Helfman, 2010). It should also be noted that visual be-

havior is very rich, and “naïve” scanpath analysis will not 

tell the whole story. Future work will focus on refining 

this approach, by considering visual transitions between 

leads, which is discussed in more detail in other work 

(Davies, 2016), and will also consider how factors such 

as accuracy of interpretation affect the results in greater 

detail.   

The gridded heatmap visualizations serve a qualitative 

function, as visual differences in fixation duration can be 

quite striking. As the areas (cells) share the same size, 

direct comparison can be made quantitatively to focus on 

certain areas. Gridded AOIs also allow for analysis to 

take place in a content independent manner (Goldberg & 

Kotval, 1999). The use of gridded AOIs and the segmen-

tation approach used is consistent with the recommenda-

tions of (Orquin, Ashby, & Clarke, 2016) that AOIs mar-

gins should be predefined or based on data. In this case 

we can see that the fixations are clustered around smaller 

areas within the leads. This is consistent with the fact that 

practitioners need to measure changes in durations and 

morphologies of different parts of the ECG waveform in 

different conditions (Dayan, Kreutzer, & Clark, 2015). 

This is in keeping with previous work that demonstrates 

people tend to focus on some leads more than others 

(Bond et al., 2014). This indicates that participants were 

drawn toward specific features, possibly the lead or a 

component of the waveform that displays features of the 

ECG abnormality. This may also be the case regardless of 

making a correct or incorrect interpretation, as a partici-

pant may notice an abnormal feature without necessarily 

understanding its significance. Eye tracking data is fre-

quently used to augment usability studies (Ehmke & 

Wilson, 2007). The small sample sizes frequently used in 

usability studies coupled with the richness of eye-

tracking data can make analysis of datasets such as the 

one used in this study challenging and often not amenable 

to traditional statistical approaches. The techniques de-

scribed in this paper go some way toward providing a 

quantitative approach for exploration of this type of data, 

and we therefore anticipate they will have a scope wider 

than the ECG sub-domain, as they provide a means of 

understanding whether individuals are employing a sys-

tematic approach, or have some intrinsic similarity in 

their visual behavior. 

Conclusions and future work 

The methods presented here offer a way of exploring 

and visualizing the visual behavior of practitioners view-

ing ECGs. They allow us to visualize differences in scan-

paths that can indicate different search strategies, which 

may result from different training or experience. A 

weighted distance metric could also be introduced to 

incorporate the effect of time spent viewing the areas, as 

well as transitions between them. The techniques in this 

work provide a way of viewing the similarities and dif-

ferences in multiple scanpaths and stimuli simultaneous-

ly, providing a quantifiable measure of difference without 

increasing visual complexity. The results of this study 

may be of future use in clinical practice, as differences in 

visual behavior may be used to identify potential failures 

to correctly interpreting ECGs that could be fed back to 

the practitioner in training scenarios.   
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