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Introduction 

While eye tracking data are ubiquitous with various 

activities like human-computer interaction assessment and 

user behaviour analysis, little has been done to visually 

investigate the uncertainty of recorded gaze information. 

One of the main reasons for this gap is the complexity of  

gaze processing, starting from pupil detection up to gaze 

location in the user’s field of view (i.e. world space or 

world camera space). Gaze processing is considered to be 

a system with pupil center detection as entry raw data and 

the user gaze location as the output data. This paper tries 

to fill this gap by providing evidence that gaze processing 

can be depicted considering the uncertainty assessment. 

Furthermore, we provide an innovative visualization of 

uncertainty map computation which is based on the 

standard heat map where the kernel size is adjusted by the 

pupil location and its corresponding uncertainty.  

Estimating user gaze with high accuracy and good 

precision has long been the utmost objective in Human-

Computer Interaction and eye tracking research. Binocular 

eye trackers offer a good level of accuracy but involve 

supplementary materials and are expensive. The objective 

of this paper is to advance research in monocular eye-
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tracking research and help to make calibration procedure 

endeavors to be more precise, accurate yet succinct. It is 

crucial to investigate approaches to reduce calibration 

errors instead of restarting the calibration procedure. 

While there are plenty of empirical studies of calibration 

procedures, relatively limited progress has been made 

toward correcting estimated gaze error, reducing the time 

required, or making the calibration less tedious. Hence, we 

achieve more natural eye tracking calibration with the 

following benefits: 1) the calibration procedure is easier to 

perform, 2) gaze estimation is more precise and accurate, 

resulting in a Mean Angular Error of 0.25° (SD 0.15°) after 

applying the error correction methods we propose and 3) 

uncertainty is visually inspected.  

The remainder of the paper is as follows: First, we 

explain our gaze processing pipeline. This processing uses 

a standard head-mounted eye tracking system, where we 

capture the pupil video stream and the world camera. We 

then explain our calibration method and clarify its intrinsic 

calibration uncertainty. A method to correct the estimated 

gaze positions is presented afterward. Next, we explain the 

global data processing uncertainty propagation. To 

provide further insight into our method, we illustrate our 

findings with two application use cases where the 

calibration uncertainty is shown with recorded user gaze 

data. Finally, we discuss our findings and outline potential 

further studies. 

Related Work 

 
Related works on pupil detection algorithms: 

  

Robust gaze tracking is strongly related to 

accurate eye features detection. The most salient elements 

in the eye image are the sclera – the white outer layer of 

the eyeball –, the iris – the contractile muscle forming the 

colored portion of the eye – and the pupil – the contracting 

aperture through which light enters the eye. It is surprising 

to find that there is a wide variety of pupil detection 

methods that are developed for the same purpose, that is, 

to detect the true center locations (Fuhl, Tonsen, Bulling, 

& Kasneci, 2016) and in some cases, the contour of the 

pupil area. In video-based oculography, visible or infrared 

imaging data are used. The latter uses either bright pupil 

or dark pupil images (Morimoto, Amir, & Flickner, 2002). 

Kondou and Ebisawa used near-infrared LEDs arranged 

around each of the stereo cameras and configured them so 

that they were able to turn on and off synchronously 

(Kondou & Ebisawa, 2008). This way, the authors could 

obtain consecutive bright pupil and dark pupil images. 

Then, they computed the difference between the two 

images, making pupil detection easier. Some pupil 

detection techniques employ a histogram-based threshold 

(Goni et al., 2004) and give relatively good results under 

laboratory conditions. For example, in Starburst (Li, 

Winfield, & Parkhurst, 2005), an adaptive threshold was 

used on a region of interest to localize corneal reflection, 

then the corneal reflection was removed from the image 

using radial interpolation. Thereafter, the pupil contour 

candidates were detected using rays coming from the best 

guess of the pupil center. 

 In 2012, an algorithm employing coarse positioning using 

Haar-like features was proposed by Swirski et al. (2012) 

and, through their self-designed open source eye tracking 

system, Pupil Labs (Kassner et al., 2014), they exhibited 

an approach in which edges were detected using a Canny 

filter. Darker areas are then searched from lowest spike in 

histogram and pupil candidates are obtained using ellipse 

fitting. 

 More recently, Fuhl presented ExCuSe: an algorithm 

based on morphologic operations and the Angular Integral 

Projection Function to detect pupil contour (Fuhl et al., 

2015). However, they still seem to face the same 

challenges. The algorithms tend to be less robust in real-

world environments and changing light conditions, 

occlusions, viewing angles and head poses. To address 

those issues, ElSe (Fuhl, Santini, Kübler, & Kasneci, 

2016), analogous to ExCuSe, used Canny edge filter and if 

no ellipse was found, a second analysis was conducted. It 

first estimates a likely candidate and then refines its 

position. The results of a recent experiment designed by 

Fuhl et al. (2016) showed that the ElSe algorithm offers 

the best results in terms of accurate pupil positions on 

challenging everyday images when compared with state-

of-the-art pupil detection algorithms. However, the 

methods exhibited above do not mention the uncertainty of 

their pupil center detection. It is most likely that different 

pupil detection methods yield different pupil center 

locations using the same eye image, even if they are 

slightly different. In this paper, we address the crux of this 

issue by investigating an area that the pupil center is likely 

to be in and we propose a method to visually inspect this 

area.  

 

Related works on gaze estimation: 

 

Based on the information retrieved from the eye 

image, the gaze is estimated. There are two different 

leading approaches for estimating gaze position: feature–

based and appearance-based gaze estimation. Because of 

its design and geometric-based aspect, the latter does not 

ask for a calibration routine, however, the feature-based 
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approach requires eye image informative characteristics, 

namely the pupil center position and, in some cases, the 

corneal reflections as an input to provide the gaze position. 

This approach again splits into two different methods: 

model-based and interpolation-based approaches, banking 

on the type of mapping used to calculate the gaze output 

from the pupil feature(s) input. In most model-based 

approaches, the eye is modeled in 3D and gaze vector 

direction is calculated (Sigut & Sidha, 2011). 

Interpolation-based approaches are the most recently used 

method in both remote and obtrusive eye tracking systems. 

The method calls for the use of mapping functions which 

are based on neural networks or polynomial regressions 

(Cerrolaza, Villanueva, & Cabeza, 2012).  

In the case of parametric functions, the parameters are 

computed during a calibration routine. Polynomial 

regression has gained considerable interest in recent 

studies. Cerrolaza et al. compared over 400,000 forms of 

parametric mapping functions (2012). Many polynomial 

expressions with different orders have been tested by 

Blignaud (Blignaut, 2013). Mitsugami et al. (Mitsugami, 

Ukita, & Kidode, 2003) and Cerrolaza et al. (2012) used a 

second order polynomial in x and y with first order 

combinations. Furthermore, nonparametric functions 

enable the pupil features to be mapped to the point of 

regard by means of a trained neural network.  

 

Toward the calibration data recording pattern: 

 

The community’s standard and most used eye 

tracking calibration pattern is the 9-point visual stimulus 

calibration. Nonetheless, whereas the aim is to present the 

points sequentially to cover a large part of the visual scene, 

Pfeuffer et al. (2013) described it as tedious, dull and tiring 

for the eyes. Recent studies (Santini et al. 2017) showed 

that, unlike the conventional fixed-point calibration 

procedures, the approaches based on moving targets tend 

to be faster and reliable. Typically, the most convenient 

feature of this approach is the ability to obtain a larger 

amount of unique pupil-marker center tuples at various 

scene areas. In their Pursuit Calibration method, Pfeuffer 

et al. investigated a smooth pursuit calibration where they 

considered one moving marker at a constant velocity 

following a rectangular path. Similarly, Celebi et al. 

(2014) used smooth pursuit for their calibration technique, 

however, in contrast with Pursuit Calibration, a more 

predictable path followed by the marker was presented in 

their paper. Namely, they used an Archimedean spiral 

trajectory with constant linear velocity (6.4°/sec), 

circumventing the problems raised by the path used in 

(Pfeuffer et al. 2013): Following only the border of the 

rectangle may not help to retrieve the interior points and 

the rectangle’s corners may induce instabilities due to the 

abrupt change in the trajectory direction. However, to 

alleviate the corner instability problem, Pfeuffer et al. 

designed an experiment where they considered a constant 

speed target trajectory and an accelerated speed target 

trajectory where the target moved slowly, close to the 

corners, enabling a more natural transition.   

Celebi et al. applied quadratic regression to find the 

mapping function that is used to produce gaze estimation 

from the eye position. They corrected the lag between the 

smooth pursuit motion and the actual target positions and 

then they discarded the outliers using a simple fit residual 

rejection criterion applied three times. The results showed 

that the RMS of the non-truncated data of the smooth 

pursuit calibration was 0.838° (SD=.278, 27 seconds 

calibration time) compared to the 9-point calibration 

which gave 1.388° (SD=.963, 23 seconds calibration 

time). The authors truncated the smooth pursuit calibration 

data in order to consider a similar time to the 9-point 

calibration for proper comparison and obtained an error of 

0.913° (SD=0.272). Pfeuffer’s method builds on the 

correlation between the eye movement and the target’s 

trajectory using Pearson’s product-moment in a user-

defined moving window. The mapping model is obtained 

using the homography computation of OpenCV with 

RANSAC for outlier removal. The authors reported an 

accuracy under 1° for both the constant and accelerated 

speed calibration greater than 10 s. However, they did not 

apply estimation corrections to their results.  

In Evans et al. (Evans, Jacobs, Tarduno, & Pelz, 2012), the 

authors investigated the collection of calibration points 

while following a supervisor’s thumb relocated to five 

different positions, compared with an approach consisting 

of a user looking at a fixed point and moving his head in 

an asterisk-like trajectory. Approximately 20 calibration 

points were gathered, and an offline calibration 

computation gave a mean error of 0.83°.  

Similarly, in CalibMe (Santini, Fuhl, & Kasneci, 2017), 

the authors proposed a method to collect a large array of 

calibration points using automatically detecting fiducial 

markers, without the assistance of a supervisor. They also 

came up with a custom outliers’ removal method. Also, 

they provided a parameterizable method to automatically 

reserve evaluation points. Because the calibration 

procedure enabled a large number of points to be 

assembled, evaluation points could be selected from 

among those collected points and the remaining points 

served to calculate the mapping function. 

 In their second calibration methods, Kondou and Ebisawa 

proposed a method in which one visual marker was shown 

on the screen and moved from a position P1 to a position 

P2 onward and backward (Kondou & Ebisawa, 2008). The 
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user was asked to fixate on the marker during the entire 

movement, making a smooth pursuit eye movement. The 

results showed that the moving target calibration was 

better than the two-fixed-points calibration also proposed 

in the same paper. Significant differences between the two 

calibration methods (P<0.05) using a t-test were found. 

Unfortunately, no information about the Mean Angular 

Error was provided by the authors. Also, although their 

methods seem to give good results, supplementary 

materials were used (stereo wide view cameras and an 

additional pan-tilt-zoom camera) and NIR LEDs arranged 

around each camera.   

Gaze Estimation Method 

In this section, we explain the gaze data processing. 

The gaze positions are estimated using pupil center 

positions and a mapping function obtained during a 

calibration procedure. 

Overview of the Gaze Estimation System 

Fig. 1 presents an overall view of the gaze estimation 

system developed. Initially, the pupil center of the subject 

was detected and tracked with a Pupil Lab eye tracking 

system’s eye Camera. We used the device equipped with 

one eye camera and a world camera. Detailed explanations 

of the pupil center detection are given in the following 

subsection Pupil Center Detection. A custom marker 

present in the large field-of-view of the Pupil Lab World 

Camera was detected, as explained in subsection Marker 

Detection (step 3 and 4 of Fig. 1). This marker will serve 

later on for the calibration. After that, the subject 

performed one of the two following calibration 

procedures: fixating on the center of the marker while 

moving his head to make a rotation as in CalibMe (Santini 

et al., 2017) or fixating on a moving object while keeping 

his head still as in Pursuit calibration (Pfeuffer, Vidal, 

Turner, Bulling, & Gellersen, 2013). 

In a pilot study, we asked some participants to do a 

different calibration procedure which consisted of fixating 

on a moving target (smooth pursuit) and rotating their head 

(vestibule-ocular movement) at the same time. The 

participants reported that this calibration procedure was 

difficult as they found it arduous and uncomfortable. Thus, 

we removed it from our experiment setup. After the initial 

stage of the calibration procedure, the pupil and the marker 

centers’ coordinates were gathered and stored for further 

processing. Each pupil center position corresponds to a 

marker center position at a specific time. Thus, the same 

number of pupil centers and marker centers are stored as 

pairs.  

The two sets of gathered data are used to get coefficients 

of a mapping function using a bivariate second order 

polynomial regression. This mapping function will be used 

to calculate the final planar gaze estimations based on new 

pupil centers given as input. After obtaining the mapping 

functions, we can then estimate the marker positions with 

the pupil center positions obtained during the calibration 

procedure to verify the reliability of the function. The 

estimated positions do not have exactly the same positions 

as the actual marker positions. We then correct the 

positions of those estimated marker centers with Inverse 

Distance Weighting (Shepard, 1968). Thus, every pupil 

center detected next will be corrected by Inverse Distance 

Weighting. Finally, we propose a method based on kernel 

density to visualize the uncertainty of the overall gaze 

estimation.  

  

 
Figure 1: Flowchart of the gaze estimation method. 
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Pupil Area and Center Detection 

Accurate pupil center detection (Fuhl et al., 2016) is 

the first and most important step of accurate gaze 

estimation. This section corresponds to step 2 of Fig. 1. 

While there are many pupil detection algorithms that 

proved to give good results (Fuhl et al., 2016; Javadi, 

Hakimi, Barati, Walsh, & Tcheang, 2015; Kassner et al., 

2014), and they would probably perform well in this study, 

we have developed our own easy and fast detection 

algorithm for flexibility and to have full control of the 

processes which will help with the visualization of the 

uncertainty (Uncertainty Computation Section). The pupil 

detection algorithm implemented in this study locates the 

features of the dark pupil present in the IR illuminated eye 

camera frame. Since our paper focuses on uncertainty 

visualization from pupil detection, the calibration 

algorithm is implemented so that the user can move his 

head freely, thus, we do not use pupil corneal reflection to 

compensate for small head movements. As such, we use 

the distance transform presented in (Strzodka & Telea, 

2004) to compute the resulting uncertainty of the pupil 

area, taking into account the detected pupil center location. 

The outcomes of the algorithm were sufficient to obtain an 

accurate pupil area and center, and give valid results in 

laboratory conditions.  

Marker Detection 

During the initial stage of user calibration, a user is 

asked to look at a reference point represented by the center 

of a marker. Choosing a marker to use is a well-studied 

problem (Santini et al., 2017). A simple marker, the shape 

of which is not confused with any other object in the room, 

is appropriate; the marker must not have many details, so 

as to not distract the participant, and its center must easily 

be computable with affordable computer vision 

techniques. The marker consists of a thick black circle 

containing a white circle which in turn encompass a 

smaller filled black circle drawn on white paper, 

comparable to the markers used by Tobii and Pupil Labs. 

A white cross is drawn on its center. The marker is tracked 

using computer vision methods with OpenCv 3.1.  

Pairing Target and Pupil Center Positions 

As the marker is fixed in a plane, the planar position of 

its center (Mx, My), obtained from the world camera, 

changes as soon as the subject moves his head or whenever 

the marker moves. In the same vein, if the subject is asked 

to look at the center (Mx, My) of the marker placed in the 

experimental environment while moving his head, the 

position of his pupil center (XPupil-center, YPupil-center) changes 

accordingly. Namely, either gazing at the marker center 

while rotating the head, or fixating on the center of the 

marker while it moves, enables different paired positions 

of the marker and pupil centers to be obtained. Each 

marker center position then corresponds to a pupil center 

position. Thus, using the paired positions (pupil centers-

marker centers) obtained, we can estimate gaze position 

using polynomial regression. The aim is to determine a 

transformation T such that the estimated gaze positions 

map as closely as possible to where the user is actually 

gazing. The result of this transformation is a form of 

isomorphism obtained thanks to a linear algebra method 

called Singular Value Decomposition SVD (Cerrolaza et 

al., 2008). There are downsides of using a higher order 

polynomial in a visual stimuli-type calibration, and the 

quality can decrease if there are not enough points 

(Blignaut et al., 2013). In most calibration procedures, a 

marker is used as visual stimuli. Five, nine or fifteen visual 

stimuli are displayed to the user. In our study, as the 

marker is not fixed in the world camera image, its position 

changes when the subject moves his head. The more the 

user moves and rotates his head in every direction, the 

more marker center positions are obtained and so the better 

the calibration process quality. For a set of n points, a 

polynomial of n order of less can be used. Consequently, 

care should be taken because going to a higher degree does 

not necessarily improve accuracy. The given known points 

may be accurate and well estimated by the polynomial 

regression, but the interpolated points may give 

surprisingly false results. 

Calibration Correction 

Many feature-based calibration studies focused on 

comparing mapping functions (Cerrolaza et al., 2012) to 

pin down the best gaze estimation results. However, 

improving the results, reducing the error of gaze 

estimation after the monocular calibration, and minimizing 

the residuals have not been rigorously examined. In this 

section, by considering two different approaches, accurate 

methods to reduce calibration errors are proposed. 

Raw Estimated Gaze 

We refer to raw estimated gazes as the gaze positions 

directly inferred by the mapping functions using pupil 

center locations as input. 

Inverse Distance Weighting  

Inverse Distance Weighting (IDW) is an interpolation 
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method that enables the unknown value of a point to be 

estimated according to the known values of its surrounding 

points based on their relative distance (Shepard, 1968). 

The theory is that nearby points devote more to the 

interpolated value than distant ones. The benefit of this 

method is that it is fast and easy to implement. The 

applicability of this method in this study is as follows: 

following the calibration procedure, paired pupil center 

and marker center points are gathered as shown in Fig. 2 

(A) and Fig. (2)-B respectively. Then, the same pupil 

center points are used to compute the estimated marker 

centers. Those estimated marker centers are called the 

reprojection points. They are slightly different from the 

actual marker centers. We now have a set of residuals 

which are the differences between the marker centers and 

the reprojection points.  

Thereafter, a new pupil center will be used to estimate the 

gaze position and the error of this estimated gaze position 

with regard to the actual gaze position can be corrected 

because we know the errors of the surrounding points 

obtained during the calibration procedure. The closest 

points will contribute more to the correction and the 

furthest ones will have a small impact. The function of the 

IDW is given by: 

 

𝐯𝑝 =
∑ 𝐯𝑖

1
𝑑𝑟

𝑛
𝑖=1

∑
1

𝑑𝑟
𝑛
𝑖=1

 

 

 

(Eq.1) 

Where 𝐯𝑖 denotes the set of all correction vectors between 

the calibration points and the estimated points. d is the 

Euclidean distance between the calibration points P (𝑥𝑖 , 𝑦𝑖)  

and the estimated points P (𝑥𝑝, 𝑦𝑝) given by: 

 

𝑑 = √(𝑥𝑖 − 𝑥𝑝)
2

+ (𝑦𝑖 − 𝑦𝑝)
2
 

 

And r is a positive real number chosen arbitrarily. For this 

study, it was determined that the most appropriate value 

for r was 2. 

 

Modified Inverse Distance Weighting  

The Modified Inverse Distance Weighting is original 

from this study. In this approach, the same function in 

(Eq.1) is applied. However, the calibration points used to 

approximate the interpolated value are selected differently. 

(Eq.1) is extended with the equation below: 

 

 𝐯𝑠 = ∀ 𝑒 ∈ 𝐯𝑖 , |𝑡𝑁𝑝(𝑥,𝑦) − 𝑡𝑒| ≤ 𝑇 (Eq.2) 

 

 

Figure 2: (A)-Pupil center positions obtained during the 

calibration procedure, (B)-Marker center positions obtained 

during the calibration procedure, C-The Reprojection points’ 

(blue points) positions are slightly different from the actual 

marker center positions (Purple Points), D-The reprojection 

points are corrected to fit the exact positions of the actual marker 

positions using the IDW. The images below C and D are their 

respective zoomed-in images to see the points clearly 

 

 
Where 𝐯𝑖 is the set of all correction vectors between the 

calibration points and the estimated point, 𝑡𝑁𝑝(𝑥,𝑦) is the  

timestamp of the nearest point, 𝑡𝑒 is the timestamp of an 

element of the calibration points and T is the length of the 

time window which serves to verify if e is in the current 

set. 𝐯𝑠 is the set of selected vectors contained in the current 

set.  

 First, for each new estimated gaze position Ep(x, y), 

we search for the nearest point Np(x, y) to this point among 

all marker center positions gathered during the calibration 

procedure as shown in Fig. 3.      
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Figure 3: The green point is the new estimated point. From 

among all marker points recorded during the calibration 

procedure, the closest one is selected. 

Because, Ep(x, y) is estimated by the mapping function, its 

position is likely be incorrect with respect to its actual 

position. To find this potential error and correct it, we will 

not consider all the marker points and their relative 

distances as in the IDW, instead, only the marker points 

recorded 200 milliseconds before and after the nearest 

point Np(x, y) will be used. The length of the time window 

is adjustable and defined by the user. In this study, we 

chose a time window of 200 milliseconds which is large 

enough to encapsulate sufficient points but not too large so 

as to avoid introducing distant points. To properly 

illustrate this, Fig. 4 shows the representation of the 

marker points and the estimated marker points for the Y 

and X values separately.  

 

The difference between the points selected using the 

Modified IDW method and the IDW is shown in the 

figures below (Fig. 5 and Fig. 6). The impact area using 

IDW is larger and outlined by a circle. The points outside 

the circle’s contribution are negligible or insignificant and 

the points inside devote more weight relative to their 

distance from the interpolated point. The considered points 

for the Modified IDW are selected as described above and 

represented in the yellow, blue-contoured overlay in Fig. 

6.   

 

 

 

Figure 4: The marker points (red) and the estimated marker 

points (blue) are plotted for the X and Y values separately. The 

yellow overlays encapsulate the values to be considered for the 

interpolation. The upper (resp. lower) green point is the Y (resp. 

X) value of the interpolated point and the upper (resp. lower) 

filled red point is its actual position with corrected error.  

Experimental Evaluation 
  

Through a series of calibration procedures, we 

investigated the results of the gaze estimations. The 

participants were only asked to perform the calibration 

procedure; all post-processing and calculations were 

carried out after the experiment. To this end, only data 

were collected during the experiment. The experiment 

spanned two days. 

Participants 

We conducted an experiment with 12 participants, 

making a particular effort to include participants with 

different qualifications and educational levels. 3 

participants were women, aged from 18 to 26 years old, 

and 9 were men, aged from 18 to 30 years old. The 

Figure 5: Inverse Distance 

Weighting impact area. 

 

Figure 6: Modified Inverse 

Distance Weighting impact 

area. 
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completed questionnaires showed that 2 participants were 

familiar with eye tracking, 2 had vaguely heard about it 

and 8 were completely ignorant of its existence. 6 

participants were university students, 2 were researchers in 

human factors and 4 were Airline pilot students. Firstly, 

the purpose of the study was explained to the participants, 

thereafter they carefully read and signed a consent form. 2 

participants wore glasses during the experiments. 

Apparatus and Analysis 

A Pupil Labs Eye tracker was used during the 

experiment. The device was equipped with one world 

camera (sampling rate: 120Hz, resolution: 1920×1080 

pixels) and one eye camera (sampling rate: 120HZ, 

resolution: 640×480 pixels). The computer vision 

algorithms used to detect and track the different targets in 

the world camera reduced the frame speed by 5%, and 5% 

of the eye camera speed was reduced by the pupil detection 

area and center location. Thus, pairs of points were 

collected at approximatively 114 frames per second for 

both world and eye camera. 

A C# desktop software was built for the experiment 

including EmguCv 3.1 (an OpenCV 3.1 wrapper for C#) 

for the computer vision’s part implementation. The 

equipment setup was an XPS 15 9530 Dell Laptop 64 bits 

with an Intel(R) Core(TM) I7-4712HQ CPU 2.30GHz, 4 

core(s), 8 processes, 16 GB of Random Access Memory, 

2GB swapping Memory. We used a 24 inches Dell 

2408WFP monitor (L × W × H Dimensions: 22 × 8.17 × 

15.62 inches) with a resolution of 1920×1200 pixels and a 

24-millisecond response time. The marker was placed 75 

cm from the participants on a plane surface (screen) to 

avoid introducing errors due to distortion of the target 

location. 

Procedure and Tasks 

The study was structured as a between-subjects 

experiment wherein each participant of group A performed 

a short-time calibration procedure, and each participant of 

group B performed a long-time calibration procedure. We 

used the term short-time calibration to refer to any 

calibration procedure that is performed in less than 6 

seconds, and long-time calibration to refer to any 

calibration procedure that takes more than 6 seconds. Each 

calibration time must not exceed 12 seconds, otherwise, it 

was not considered in the analysis.  

First, the experimenter gave the participant general 

instructions and reminded him that he was going to 

perform a calibration procedure and that the resulting 

points would be stored for further processing. To avoid 

unintentional shifts in glances, participants were given 

instructions to: “Please do not speak during the calibration 

procedure”. The task was to look at the target and turn the 

head to make two rotations. Only one target was shown in 

the scene. In CalibMe (Santini et al., 2017), the users were 

asked to make a spiral pattern backward and forward with 

their head while fixating on the target. No such instruction 

was required in this study.  

Once all the instructions had been given and understood, 

the task began. When the participant was ready to perform 

a calibration, he was asked to say "READY". Then the 

experimenter hit the button to start collecting the 

calibration data. At the end of the calibration, the 

participant was asked to remain quiet because speaking in 

order to inform the experimenter that the task was 

complete may have led to false data registration before the 

experimenter effectively stopped the data collection. In the 

same vein, if the participant hit a button on the keyboard 

or the mouse, false data may have been produced due to 

pupil shifts when looking for the key or the mouse. The 

participant could have been asked to leave his finger on the 

completion button but in this case, the participant may 

have focused on not losing the button during the 

calibration. 

Data Collection and Cleansing 

The data cleansing tasks were a significant feature of 

the proposed study. This involved developing a cleaning 

process for all collected points. No filtering was done 

during the collection. If the calibration lasted 2 seconds,   

N ≤ 2×114 paired points were recorded as the cameras 

retrieved 114 frames per second. Each frame enabled the 

detection of one or zero points (zero if there was no 

detection). For each calibration, we are excluding 

duplicated points’ entries and their corresponding pairs. 

Results and Statistical Analysis 

We are providing the results of our calibration method 

(in degree and in cm) from the between-subjects 

experiment designed with 12 participants in a laboratory. 

Through a series of calibrations performed by the 

participants, we explored the difference in results on how 

IDW and Modified IDW improve accuracy.  

The initial analysis showed that the two methods can 

improve the accuracy of gaze estimation at a cost of 

additional time processing. We provide:  

 Results for raw estimated gaze data, namely the 

estimated points without any post processing and 

without correction.  

 Results for estimated gaze data corrected using 
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the Inverse Distance Weighting.  

 And results for estimated gaze data corrected 

using the Modified Inverse Distance Weighting.  

 

We found that the IDW method gave better results 

compared to the raw estimated data. And the Modified 

IDW gave the smallest Mean Angular Error (MAE) 

compared to the two precedents, aggregating results for all 

participants:  

 Raw Estimated Gaze data MAE: 1.644 cm (1.26°, 

SD=0.51°)  

 IDW MAE: 1.4609 cm (1.16°, SD = 0.31°)  

 Modified IDW MAE: 0.326 cm (0.25°, 

SD=0.15°).  

During the experiment, we compared two calibration 

types: Short-time Calibration procedure (6 participants, 

Mean calibration Time = 4.7 seconds, SD = 0.375 seconds) 

and Long-time Calibration procedure (6 participants, 

Mean calibration Time = 9.8 seconds, SD = 0.368 

seconds). 

 

Comparison between long & short time calibrations: Each 

participant performed a calibration procedure and let’s 

assume Z pupil-target tuples are obtained. As in CalibMe 

(Santini, 2017), X tuples are retrieved for calibration 

points to obtain the mapping function, and the remaining 

Y (Z= X+Y) points are used to evaluate the gaze 

estimation and compute the Mean Angular Error. Fig. 7 

shows that the IDW helps to reduce the MAE by 0.182 cm 

for the Short Time Calibration procedure and 0.186 cm for 

the Long Time Calibration procedure. In the same vein, 

Fig. 7 shows that error reduction is greater using the 

Modified IDW: by about 81.29% for the Short Time 

Calibration procedure (Gaze Estimation MAE = 1.882 cm 

vs. Modified IDW MAE =0.3524 cm) and by 78.74% for 

the Long Time Calibration procedure (Gaze Estimation 

MAE = 1.407 vs. Modified IDW MAE =0.299cm) 

compared to the raw estimated gaze position.  

Also, compared to the standard IDW, the Modified IDW 

reduced the error by about 79.27% for the Short Time 

Calibration procedure (IDW MAE = 1.700 cm vs. 

Modified IDW MAE =0.3524 cm) and by 63.49% for the 

Long Time Calibration procedure (Gaze Estimation  

MAE = 1.221 vs. Modified IDW MAE =0.299cm). 

 

 
Figure 7: In this image, one can see that the gaze estimation’s 

Mean Angular Error is reduced by the Inverse Distance 

Weighting and is significantly reduced by the Modified Inverse 

Distance Weighting. 

Comparison between short time calibrations: A paired 

samples T-test showed that on average the Modified IDW 

is better than the raw gaze estimation given by the mapping 

function by about 1.52 cm (t = 4.777, p=0.0025) for short 

time calibration. Also, we found that the IDW enabled the 

MAE to be reduced but no significant difference between 

the IDW results and the raw estimated points was found 

statistically for short time calibration (t (1,5)= 0.95, 

p=0.19), however, the mean of the differences is 0.18 cm. 

To be concise, we are giving the mean results for the 6 

participants in cm (Table 1). The extended version of this 

table in the Appendix gives detailed results in cm and in 

degree of visual angle.  
 

Comparison between long time calibrations:  The results 

of the comparison between long time calibrations are given 

in table 2. On average the Modified IDW is statistically 

better than the raw estimated point results by about 1.10 

cm (t = 6.04, p<0.001), based on a paired Student T-test. 

Although the IDW helped to reduce the MAE, no 

significant difference between the IDW and the raw 

estimated points was found statistically for long time 

calibration (t (1,5)= 1.7, p=0.074). 
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Table 1. Mean and Standard Deviation of the results for the Short Time 

Calibration. 

 
 

Mean 

Calibration 

Time (sec) 

No. 

Evaluation 

Points 

MAE 

Evaluation 

Points 

(cm) 

MAE 

Evaluation 

Points 

Corrected 

by IDW 

(cm) 

MAE 

Evaluation 

Points 

Corrected 

by 

Modified 

IDW (cm) 

Mean 4.7 151.667 1.88 1.700 0.352 

SD 0.38 29.323 0.788 0.428 0.285 

 
 
Table 2. Mean and Standard Deviation of the results for the Long Time 

Calibration procedure.  

 
Mean 

Calibration 

Time (sec) 

No. 

Evaluation 

Points 

MAE 

Evaluation 

Points 

(cm) 

MAE 

Evaluation 

Points 

Corrected 

by IDW 

(cm) 

MAE 

Evaluation 

Points 

Corrected 

by 

Modified 

IDW (cm) 

Mean 9.83 284.833 1.407 1.221 0.299 

SD 0.37 27.665 0.481 0.236 0.065 

 

Summary of the Calibration Assessment 

Overall, the results showed that calibration time can 

heavily influence accuracy. When considering raw 

estimated points, unsurprisingly, long time calibration is 

most accurate. However, this is sacrificed at the cost of 

calibration time, as it is the lowest calibration procedure. 

In particular, if time is not an issue for users performing 

the calibration procedure, taking more time to complete 

the calibration has significant value in terms of accuracy 

for a monocular eye tracker. Nevertheless, we did not test 

a calibration time of more than 12 seconds. When accuracy 

is not an absolute need, for instance using gaze location on 

larger targets (big buttons, areas, etc.), one may prefer to 

consider a short calibration procedure. However, when 

using the Modified IDW method to correct raw estimated 

point errors, the difference between short and long 

calibration results is very small (0.352 cm Vs. 0.299 cm). 

This indicates that, instead of performing long-time 

calibration, approximatively the same results can be 

obtained with short-time calibration using the Modified 

IDW.   

As shown, the Mean Angular Error (MAE) was usually 

computed to assess the quantitative evaluation of this 

calibration process. This corresponded to the mean of the 

sum of the error norms between the actual and the 

estimated gaze location. While this value gives a global 

metric to assess the quality of the calibration, in the 

following section, we propose visualization methods for 

such errors in order to offer interesting qualitative insights. 

 Uncertainty Computation 

Uncertainty and Pupil Detection 

Understanding the eye tracking data quality is essential 

to the research community (Holmqvist et al., 2012). There 

are many sources of gaze estimation errors (Nyström et al., 

2013), including pupil dynamics (Drewes et al., 2012). 

Different pupil center detection algorithms exist (Droege 

& Paulus, 2010; Zhu et al., 1999; Santini et al., 2017). 

However, whatever algorithm is used, there is an inherent 

uncertainty over the exact position of where gaze vector 

“passes” through the pupil. The worst estimate is the 

convex polygon (or ellipse) constituting the border of the 

detected pupil. The pupil center position may be incorrect 

due to many artifacts in the eye image (experimental 

environment, noise, light, corneal reflection or even the 

algorithm itself). That is why, in this study, after the 

detection of the pupil center, we proposed an uncertainty 

area (Fig. 8) from the detected center, within which the 

exact pupil center may be. The uncertainty varies from 0 

(red color in Fig. 8(B)) to 1 (blue color in Fig. 8(B)). 

 

  
Figure 8: A. Pupil center position. B. Pupil location uncertainty 

area from 0 (Red area) to 1 (Blue area). 

Uncertainty and the Calibration Method 

The choice of calibration method is important. 

The mapping functions tend to give more accurate 

estimations in the area where the markers were placed 

during the calibration procedure. The common calibration 

method used is the nine visual stimuli arrangement in a 
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uniform grid because it enables most parts of the 

calibration plan to be covered. However, whatever 

calibration method is used, there is still uncertainty in the 

gaze data processing results as the polynomial regression 

tends to give results that fit the calibration points and try 

to interpolate the points inside the calibration area. In 

section Calibration Correction, we proposed a method to 

correct the positions of the points estimated by the 

polynomial regression after the calibration procedure. 

Qualitative Evaluation 

Uncertainty visualization of gaze estimation during the 

calibration procedure provides information about the 

influence of the calibration setup (camera position, light 

conditions, calibration method) on eye tracking data 

quality. In this section, we illustrate the insights obtained 

using the visualizations generated with the proposed 

pipeline. By the time we had assessed and confirmed the 

validity of our gaze estimation method during the previous 

experiment, we were able to use the calibration procedure 

with different patterns and setups. To investigate different 

visualizations, we considered three different calibration 

procedures (Fig. 9): 

- Classic 9-point calibration using a uniform grid, 

- Smooth-Pursuit calibration: where the participant 

is asked to fixate on a moving target on a screen. 

- Head rotation: where the participant is asked to 

rotate his head while fixating on a static target. 

Next, we illustrate the advantage of the proposed 

visualization, how it makes it possible to choose between 

different calibration setups, and helps with investigating 

the error of the calibration mapping. 

 
Figure 9: A) Common 9-point Calibration method. B) Pursuit 

calibration with rectangular trajectory. C) Fixed marker and head 

movement calibration 

 
 
Figure 10: In this image, we show our uncertainty visualization 

results. This image corresponds to the accumulation (density 

map) of the recorded pupil location uncertainty. We used a bump-

mapping technique to emphasize the strong variations (gradient 

detection). This image shows strong inaccuracy on the left part 

of the image and a lack of records in the center of the image. 

Uncertainty Visualization 

Fig. 10 and Fig. 11 show the advantage of using 

varying shape distance transform to visualize the 

uncertainty of gaze estimation after calibration. Fig.11 (A) 

indicates only which parts of frontal field camera were 

covered during the calibration, and thus, corresponds to the 

most accurate eye data. Fig.11 (B) clearly shows that the 

uncertainty induced by the pupil center detection is not 

constant across the field camera image. In particular, we 

note that the ellipses are pulled vertically, indicating that 

the uncertainty is greater in the vertical direction compared 

to the horizontal. This means that the certainty of detecting 

a gaze shift between two objects placed on the same 

vertical line is higher compared to when these objects are 

on the same horizontal line. We also note that the ellipses 

are more stretched out on the upper part of the image, 

meaning that the uncertainty is higher when the object that 

a participant is looking at is placed in the upper part of the 

frontal field camera.  

In addition, when following “+” alike trajectory (Fig. 

12), the uncertainty seems to be uniform with the Gaussian 

kernel, but with the varying-pupil-polygon kernel, one can 

clearly see that the uncertainty is greater on the right 

horizontal axis and tends to lessen on the lower and upper 

edges of the vertical axis. 
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Figure 12: Uncertainty visualization using Gaussian kernel (A) 

and pupil-shape-dependent kernel (B) after performing “+” 

pattern calibration. The Gaussian kernel in (A) is circular, but the 

one used in (B) depends on the orientation, the size, and the shape 

of each pupil. 

 

Homogeneous error 

Uncertainty visualization also gives us insights 

when comparing different eye camera positions. Fig. 13 

shows different visualizations corresponding to two 

different eye camera positions (placed in front of the eye 

and at the bottom) and two different pupil sizes (large and 

small) induced by the room lighting conditions. The 

images tell us that the frontal position of the eye camera is 

preferable because it corresponds to smaller and more 

homogeneous uncertainty. This is especially visible during 

the calibration with large pupil size. We also note that, 

generally, the uncertainty is higher when the calibration is 

performed with dimmer light conditions (and the pupil is 

dilated).  

 
Figure 13: Uncertainty visualization of gaze estimation after 

performing 9-point calibration with two different eye camera 

positions (frontal and bottom) and two different pupil sizes 

(large and small). The size of the pupil changes with the varying 

lighting conditions. 

Polynomial Regression Errors and Weakness 

The mapping function enables the interpolation of 

points within the calibration area during the initial stage of 

the calibration procedure. Fig. 14 shows that the points 

outside the area (rectangle) result in inaccurate 

estimations. One can see clearly that there is a folding area 

on the top left corner of the estimated pupil boundary in 

the top right image. This folding area is due to the 

weakness of the polynomial regression in extrapolating 

points that are outside the calibration points’ area. 

 

 

Figure 14: Left, pupil contours detected in the pupil camera. 

Right the same pupil contours process into the world camera. The 

outlined red contours show significant deformation due to the 

calibration transfer function. Bottom figures are the 

corresponding density maps. 

Figure 11: Comparison of uncertainty visualization using 

Gaussian kernel (A) and pupil polygon with distance transform 

(B) when following the circular trajectory. The right image in 

figure B shows the result in a different color space for more 

clarity.  
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Visualization of the Mapping Function 

Results 

In this example, we provide evidence of visualization 

usages to explore the result of a calibration process in 

detail. As previously explained, the computation of the 

user gaze location is done during a calibration phase. 

During this calibration, a set of pupil center locations and 

their corresponding user gaze locations are recorded as 

shown in Fig. 15. The calibration estimates a transfer 

function which turns every pupil location into its 

corresponding gaze location. This function is, in most 

feature-based calibrations, a polynomial function 

(Blignaut, 2013). Considering Fig. 2-A-D with recorded 

pupil and gaze position, one can visualize the residuals 

between the estimated gaze locations and their true 

locations. Since this error is only known where the 

calibration has a recorded position, we estimate the errors 

in every location with the Inverse Distance Weight 

processing (Donald, 1968). In Fig. 2-D, the gaze location 

is corrected thanks to this estimated error.  

Fig. 16 shows a map of the global error estimation. While 

this estimation is based on the known points, one can 

detect that some gaze locations suffer from a high error 

value. In this sense, the error map provides effective 

insight to assess the global quality of the calibration. One 

possible way of improving the recorded calibration data, 

could be to remove the calibration points where the 

estimated error is too high. 

Conclusion and Further Works 

In this paper, we present our gaze data visualization results 

to better support the understanding of calibration quality. 

We first explain the gaze estimation methods and through 

a between-subjects experiment, we showed the validity of 

our gaze estimation pipeline. This led us to gather 

calibration data and test two different methods to reduce 

the mean angular error. The better of the two methods 

yielded a mean angular error of 0.25°. Also, the 

experiment served to compare short and long calibration 

procedures and the results showed that the long calibration 

procedure provides better accuracy, which is in line with 

our thought. Next, we visually inspected the uncertainty of 

the whole gaze estimation pipeline taking into account, the 

pupil area, the mapping function, the eye camera position 

relative to the eye, the lighting conditions and the pupil 

size, which gave us an effective tool to depict the quality 

 
Figure 15: Recorded pupil location (in the pupil camera) on the 

left, corresponding target position on the right. Similarly, 

EyeRecToo (Santini, 2017) proposes an innovative way to collect 

such calibration points using a marker on a mobile phone.  

 

 

Figure 16: Visualization of the norm of the error between the 

computed gaze location and its actual position. Lower errors are 

dark in the left image and green in the right image. 

Of the calibration. In the near future, we plan to expand on 

this study in various areas. Firstly, we will provide 

qualitative measurements extracted from the presented 

visualizations. In comparison with existing measurements, 

which are based on data analytical computation, we will 

perform image-based computation and thus will qualify 

the visual results. Secondly, we will investigate how these 

produced visualizations can be a support for interaction 

and thus provide new interactive tools where the user can 

adjust the calibration process (for instance, the user may 

add or remove calibration points). Existing calibration 

systems only provide limited interaction tools and future 

research in this area may greatly improve calibration 

efficiency. We believe that this work would serve as an 

important guide for monocular eye tracking system 

calibration and uncertainty visualization.  
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Appendix 

 
Table 1. Short Time Calibration results 

 
 

Mean 
Calibrat

ion 

Time 

Nb 
Evaluation 

Points 

MAE 
Evaluation 

Points 

Cm 

(Degree) 

MAE 
Evaluation 

Points 

Corrected 

by IDW 

Cm 

(Degree) 

MAE  
Evaluation 

Points 

Corrected 

by 

Modified 

IDW 

Cm 

(Degree)  

Mean 4737.

167 

151.666 1.88220 

(1.43°) 

1.70019 

(1.29°) 

0.35240 

(0.27°) 

SD 375.9

912 

29.3234 0.78752 

(0.60 °) 

0.42815 

( 0.33°) 

0.28483 

(0.22°) 

 

 

 

Table 2. Long Time Calibration results 

 
 

Mean 
Calibra

tion 

Time 

Nb 
Evaluatio

n Points 

MAE 
Evaluatio

n Points 

Cm 

(Degree) 

MAE 
Evaluatio

n Points 

Corrected 

by IDW 

Cm 

(Degree) 

MAE 
Evaluation 

Points 

Corrected 

by 

Modified 

IDW  

Cm 

(Degree) 

Mean 9833.

833 

284.833 1.40711 

(1.075°) 

1.22161 

(0.93°) 

0.29985 

(0.23°) 

SD 368.4

13 

27.6652 0.48057 

( 0.37°) 

0.23570 

(0.18°) 

0.06472 

( 0.05°) 

 

 

 

 

 

 

Table 3. Calibration results for All 12 Participants (Short & 

Long) 

 
 

Mean 
Calibrat

ion 

Time 

Nb 
Evaluation 

Points 

MAE 
Evaluation 

Points 

Cm 

(Degree) 

MAE 
Evaluation 

Points 

Corrected 

by IDW 

Cm 

(Degree) 

MAE 
Evaluation 

Points 

Corrected 

by 

Modified 

IDW  

Cm 

(Degree) 

Mean 7285.

5 

218.25 1.64465 

(1.26°) 

1.46090 

( 1.16°) 

0.32613 

(0.25°) 

SD 2685.

204 

74.66 0.6965 

( 0.51°) 

0.4135 

(0.31°) 

0.1988 

( 0.15°) 

 


