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Introduction 
 The extraction of eye movement features for model-

ing the structure and functionality of the oculomotor 
system is a vital task in many fields of research. Human 
eye movements can serve as an investigation tool in cog-
nitive and behavioral studies, given their inherent connec-
tion to the guiding mechanisms of visual attention. The 
connections of eye movements and the performed cogni-
tive task was systematically investigated in (Yarbus, 
1967). The advances in eye-tracking technology, allowed 
for the adoption of eye movement analysis in studies of 

cognitive psychology in various fields, such as linguis-
tics, spatial processing, reading, and problem solving 
(Just & Carpenter, 1976; Rayner, 1998). Several research 
studies specifically explored the underlying mechanisms 
connecting eye movements with visual attention and 
perception (Collins & Doré-Mazars, 2006; Eckstein, 
Beutter, Pham, Shimozaki, & Stone, 2007; Schütz, 
Braun, & Gegenfurtner, 2011). Also, the increasing af-
fordability of mobile eye-trackers facilitated the inspec-
tion of natural human behavior in out-of-the-lab envi-
ronments (Hayhoe & Ballard, 2005; Land, 2009). 

There are numerous studies that focused on the 
interconnections of oculomotor behavior and individual 
characteristics. Eye movements have been explored in 
relation to individual motivation (Kaspar & König, 
2011), and the ‘Big 5’ personality traits (agreeableness, 
conscientiousness, extraversion, neuroticism, openness) 
(Rauthmann, Seubert, Sachse, & Furtner, 2012). 
Recently, vigor of eye movements was associated with 
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the personal impulsiveness during decision-making tasks 
(Choi, Vaswani, & Shadmehr, 2014). Additionally, the 
research of personal traits in oculomotor structure and 
functionality has served as the basis for the field of eye 
movement biometrics (Rigas & Komogortsev, 2017). 

Another field of use of eye movements is clinical re-
search. Irregular eye movements have been examined as 
indicators of pathophysiological neural abnormalities, 
and for the identification of early signs of neurodegenera-
tive diseases (MacAskill & Anderson, 2016). The charac-
teristics of eye movements during reading have been 
investigated in research studies of early Alzheimer’s 
disease (Fernández et al., 2013) and Parkinson’s disease 
(Wetzel, Gitchel, & Baron, 2011). Furthermore, there are 
studies exploring the oculomotor behavior in various 
behavioral disorders, such as ADHD (Fried et al., 2014) 
and autism (Klin, Jones, Schultz, Volkmar, & Cohen, 
2002; Shirama, Kanai, Kato, & Kashino, 2016). 

The research on the extraction of eye movement fea-
tures has been fragmented, since most eye movement 
studies focus on small sets of features related each time to 
a special topic under consideration. This motivated our 
current study on the extraction and analysis of an exten-
sive set of eye movement features, from fixations, sac-
cades, and post-saccadic oscillations. For our analysis, we 
use data recorded during the task of reading. Such a task 
allows for the extraction of a large diversity of features 
that can be used to describe physiological and behavioral 
properties of eye movements.  

The contribution of our current work can be summa-
rized as follows: 

1) We present methods for the extraction of an exten-
sive collection of 101 general categories of eye 
movement features from pre-classified eye move-
ment events (fixations, saccades, and post-saccadic 
oscillations). Code and data for the extraction of fea-
tures are publicly available at the following link:  
https://digital.library.txstate.edu/handle/10877/6904  

2) We employ data from a large database of 298 sub-
jects recorded during a text reading task, in order to 
demonstrate normative values of central tendency 
(median) and overall variability (inter-quartile range) 
of the extracted features. 

3) We evaluate the test-retest reliability of the extracted 
features by using measures of absolute agreement, 
specifically, we use the Intraclass Correlation Coef-

ficient (ICC) for normally distributed and normalized 
features, and the Kendall’s coefficient of concord-
ance (W) for non-normally distributed features. 

4) We perform factor analysis with varimax rotation on 
normally distributed and normalized features, and we 
provide an interpretation of the resulting factors 
based on the most heavily weighted features contrib-
uting to each factor. 

Extraction of Eye Movement Features 
General Overview and Used Notation during 

Feature Extraction 
Prior to feature extraction, the raw eye movement re-

cordings (horizontal and vertical positional signal in 
degrees of visual angle) are preprocessed in order to 
classify the signal into parts corresponding to basic types 
of eye movement events, namely, fixations, saccades, and 
post-saccadic oscillations (see definitions in respective 
sections). The algorithm used to perform eye movement 
classification is a modified version of the velocity-based 
method presented in (Nyström & Holmqvist, 2010). The 
modifications focus on the adoption of thresholds and 
parameters that lead to optimum classification perfor-
mance for the data of our reading text experiment. The 
accuracy of the algorithm was complementarily verified 
via visual screening of classified eye movement events. 

The extracted features generally fall in one of two 
categories: single-value features and multi-value features. 
For single-value features, a unique value is calculated for 
each recording by applying a collective model over the 
values from the instances of an event-type (fixation, sac-
cade or post-saccadic oscillation). For multi-value fea-
tures, six descriptive statistics are used to model the dis-
tributions of feature values extracted from all instances of 
an event-type in a recording, thus generating six respec-
tive feature subtypes. The used descriptive statistics are: 
the mean (Mn), median (Md), standard deviation (Sd), 
interquartile range (Iq), skewness (Sk), and kurtosis (Ku). 
The features are extracted from horizontal, vertical and/or 
radial profiles (the term profile refers to the variation of a 
quantity –position, velocity, acceleration– in time/sample 
domain), or from 2-D trajectory in space. 

In List 1, we present various symbols and notation 
that will be used in the descriptions of feature extraction 
methods in following sections. 



Journal of Eye Movement Research Rigas, I., Friedman, L., & Komogortsev, O. (2018) 
11(1):3 Study of an Extensive Set of Eye Movement Features: Extraction Methods and Statistical Analysis 

  3 

List 1. Symbols and notation 

𝑭𝒊𝒙𝑵𝒖𝒎 , 𝑺𝒂𝒄𝑵𝒖𝒎 ,𝑷𝒔𝒐𝑵𝒖𝒎: denote total number of instances of an 
event-type (fixations, saccades, post-saccadic oscillations) in recording 
𝑭𝒊𝒙𝑷𝒐𝒔𝒊 𝒋 , 𝑺𝒂𝒄𝑷𝒐𝒔𝒊 𝒋 ,𝑷𝒔𝒐𝑷𝒐𝒔𝒊 𝒋 : denote the 𝑗!!  positional sample 
of 𝑖!!  instance of an event-type 
𝑭𝒊𝒙𝑽𝒆𝒍𝒊 𝒋 , 𝑺𝒂𝒄𝑽𝒆𝒍𝒊 𝒋 ,𝑷𝒔𝒐𝑽𝒆𝒍𝒊 𝒋 : denote the 𝑗!!  velocity sample of 
𝑖!!  instance of an event-type 
𝑭𝒊𝒙𝑨𝒄𝒄𝒊 𝒋 , 𝑺𝒂𝒄𝑨𝒄𝒄𝒊 𝒋 ,𝑷𝒔𝒐𝑨𝒄𝒄𝒊 𝒋 : denote the 𝑗!!  acceleration 
sample of 𝑖!!  instance of an event-type 
𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕: used as superscript to denote multi-value features. Feature 
subtypes are generated by applying 𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 𝑥!  (𝑥!  denotes feature 
values), with  𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  = Mn, Md, Sd, Iq, Sk, and Ku 
𝑯𝑽𝑹: used as superscript to denote features calculated for horizontal, 
vertical, and radial components of eye movement 
𝑯𝑽: used as superscript to denote features calculated only for horizontal 
and vertical components of eye movement 
𝑹: used as superscript to denote features calculated only for radial 
component of eye movement 
𝑯𝑽𝟐𝑫: used as superscript to denote features calculated for positional 
samples in 2-D space (2D-space trajectory) 

Fixation Features 
The term fixation is used to define the state when the 

eyes are focused on a specific area of interest, projecting 
the content of this area on the high-resolution processing 
region of the retina (fovea centralis). During fixation the 
eyes are not totally still but they perform various minia-
ture movements: slow ocular drifts, small saccades (mi-
cro-saccades), and high-frequency tremors (sometimes 
referred as physiological nystagmus) (Steinman, Haddad, 
A.A., & Wyman, 1973). In next subsections, we describe 
different categories of features that can be extracted to 
represent temporal, positional, and dynamic characteris-
tics of the eye movement signal during fixations. 

Features of fixation temporal characteristics 

The duration and rate of fixations (F01-F02, List 2) 
are two basic fixation features that describe the temporal 
behavior of the oculomotor system. For example, during 
reading, these characteristics can be used to examine 
cognitive functions co-modulated by various aspects, 
such as the context (Raney, Campbell, & Bovee, 2014), 
subject-related idiosyncrasies (Holland & Komogortsev, 
2011), and mental workload (Ahram et al., 2015). In 
Figure 1 (left), we can overview a sequence of fixations 
performed during reading, and we can observe the varia-
bility in their durations. 

Features of fixation position and drift 

A simple way to model the overall fixated position is 
to calculate the centroid (F03, List 3) of samples in the 
fixation position profile. However, this simple feature 
cannot model the characteristics of fixation drift, i.e. the 
slow movement of the eye around a fixated location. 
Computational modeling of fixation drift can provide 
information about the stability of visual input in retina 
and the related cognitive implications (Poletti, Listorti, & 
Rucci, 2010), and also, properties of fixation drift could 
be used as cues for the detection of pathological condi-
tions like amblyopia (Schor & Westall, 1984) and cere-
bellar disease (Leech, Gresty, Hess, & Rudge, 1977). It 
should be mentioned that fixation drift can be also at-
tributed to device dependent sources (sometimes called 
‘baseline drift’), and so, the modeling of fixation drift can 
be particularly useful for human-computer interaction 
applications (Stampe & Reingold, 1995) and during the 
inspection of eye-tracking quality (Hornof & Halverson, 
2002). Fixation drift can be manifested in various forms 
(Figure 1, right), and for this reason we present a number 
of alternative features that can be used to model the char-
acteristics of fixation drift (F04 to F13, List 3). 

Features of fixation velocity and acceleration 

Due to limited eye mobility during fixations, their ve-
locity and acceleration profiles are usually affected by 
noise. However, the variability in these profiles can also 
reflect information stemming from physiological sources, 
e.g., micro-movements and oculomotor function irregu-
larities. Such movements have been explored in studies 
of visual perception (Martinez-Conde, Macknik, & 
Hubel, 2004), or for the examination of pathological 
conditions (Bolger et al., 2000; Bylsma et al., 1995). In 
Lists 4-5 we present the features that model fixation ve-
locity and acceleration (F14 to F25), and in Figure 2 we 
show examples of fixation velocity and acceleration pro-
files. Most features are extracted via the statistical model-
ing of profiles using the mean, median, standard devia-
tion, skewness and kurtosis. Such profile-modeling fea-
tures have been previously employed in eye movement 
biometrics (George & Routray, 2016) both for fixations 
and saccades. It is important to clarify that the statistical 
modeling of profiles should not be confused with the 
mechanism used for creating feature subtypes (previously 
described in general overview section). The employed 
statistics are similar but, in the current case, they are used 
as the means for modeling the ‘shapes’ of profiles. 
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List 2. Fixation temporal features 

𝑭𝟎𝟏:𝑭𝒊𝒙𝑹𝒂𝒕𝒆 
The fixation rate: 𝐹𝑖𝑥!"# 𝑅𝑒𝑐!"# , where 𝑅𝑒𝑐!"#  is the total recording 
duration 
𝑭𝟎𝟐:𝑭𝒊𝒙𝑫𝒖𝒓𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on durations of fixations: 𝐹𝑖𝑥𝐷𝑢𝑟! , 𝑖 = 1,… ,𝐹𝑖𝑥!"#  
 

List 3. Fixation position and drift features 

𝑭𝟎𝟑:𝑭𝒊𝒙𝑷𝒐𝒔𝑪𝒆𝒏𝒕𝒓𝒐𝒊𝒅𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on position centroids of fixations: 
𝐹𝑖𝑥𝑃𝑜𝑠𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑! = 𝐹𝑖𝑥𝑃𝑜𝑠! 𝑗!

!!! 𝑁 , 𝑖 = 1,… ,𝐹𝑖𝑥!"# , with N 
the number of samples in fixation 
𝑭𝟎𝟒:𝑭𝒊𝒙𝑫𝒓𝒊𝒇𝒕𝑫𝒊𝒔𝒑𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on drift displacements of fixations: 𝐹𝑖𝑥𝐷𝑟𝑖𝑓𝑡𝐷𝑖𝑠𝑝! =
𝐹𝑖𝑥𝑃𝑜𝑠! 𝑒𝑛𝑑 − 𝐹𝑖𝑥𝑃𝑜𝑠! 𝑠𝑡𝑎𝑟𝑡 , 𝑖 = 1,… ,𝐹𝑖𝑥!"#  
𝑭𝟎𝟓:𝑭𝒊𝒙𝑫𝒓𝒊𝒇𝒕𝑫𝒊𝒔𝒕𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on drift distances of fixations: 𝐹𝑖𝑥𝐷𝑟𝑖𝑓𝑡𝐷𝑖𝑠𝑡! =

𝐹𝑖𝑥𝑃𝑜𝑠! 𝑗 + 1 − 𝐹𝑖𝑥𝑃𝑜𝑠! 𝑗!!!
!!! , 𝑖 = 1,… ,𝐹𝑖𝑥!"#  

𝑭𝟎𝟔:𝑭𝒊𝒙𝑫𝒓𝒊𝒇𝒕𝑨𝒗𝒈𝑺𝒑𝒆𝒆𝒅𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on drift average speeds of fixations: 
𝐹𝑖𝑥𝐷𝑟𝑖𝑓𝑡𝐴𝑣𝑔𝑆𝑝𝑒𝑒𝑑! = 𝐹𝑖𝑥𝐷𝑟𝑖𝑓𝑡𝐷𝑖𝑠𝑝! 𝐹𝑖𝑥𝐷𝑢𝑟! , 𝑖 = 1,… ,𝐹𝑖𝑥!"#  
𝑭𝟎𝟕:𝑭𝒊𝒙𝑫𝒓𝒊𝒇𝒕𝑭𝒊𝒕𝑳𝒏𝑺𝒍𝒐𝒑𝒆𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on drift linear-regression-fit slope of fixations: 
𝐹𝑖𝑥𝐷𝑟𝑖𝑓𝑡𝐹𝑖𝑡𝐿𝑛!"#$%!  calculated via linear regression fit on positional 
samples 𝐹𝑖𝑥𝑃𝑜𝑠! 𝑗 , 𝑗 = 1,… ,𝑁 in each fixation 𝑖, 𝑖 = 1,… ,𝐹𝑖𝑥!"#  

𝑭𝟎𝟖:𝑭𝒊𝒙𝑫𝒓𝒊𝒇𝒕𝑭𝒊𝒕𝑳𝒏𝑹𝟐
𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽 

𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on drift linear-regression-fit R2 of fixations: 
𝐹𝑖𝑥𝐷𝑟𝑖𝑓𝑡𝐹𝑖𝑡𝐿𝑛!!!  calculated via linear regression fit on positional 
samples 𝐹𝑖𝑥𝑃𝑜𝑠! 𝑗 , 𝑗 = 1,… ,𝑁 in each fixation 𝑖, 𝑖 = 1,… ,𝐹𝑖𝑥!"#  

𝑭𝟎𝟗:𝑭𝒊𝒙𝑫𝒓𝒊𝒇𝒕𝑭𝒊𝒕𝑸𝒅𝑹𝟐
𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽 

𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on drift quadratic-regression-fit R2 of fixations: 
𝐹𝑖𝑥𝐷𝑟𝑖𝑓𝑡𝐹𝑖𝑡𝑄𝑑!!!  calculated via quadratic regression fit on positional 
samples 𝐹𝑖𝑥𝑃𝑜𝑠! 𝑗 , 𝑗 = 1,… ,𝑁 in each fixation 𝑖, 𝑖 = 1,… ,𝐹𝑖𝑥!"#  
𝑭𝟏𝟎:𝑭𝒊𝒙𝑫𝒓𝒊𝒇𝒕𝑷𝒓𝑳𝟎𝑸𝟎𝑯𝑽 
The L0Q0 parameter percentage: 100% · 𝐿0𝑄0!!"#!"#

!!! 𝐹𝑖𝑥!"# , with 
𝐿0𝑄0!* calculated via stepwise multilinear regression fit on positional 
samples 𝐹𝑖𝑥𝑃𝑜𝑠! 𝑗 , 𝑗 = 1,… ,𝑁 in each fixation 𝑖, 𝑖 = 1,… ,𝐹𝑖𝑥!"#  
𝑭𝟏𝟏:𝑭𝒊𝒙𝑫𝒓𝒊𝒇𝒕𝑷𝒓𝑳𝟎𝑸𝟏𝑯𝑽 
The L0Q1 parameter percentage: 100% · 𝐿0𝑄1!!"#!"#

!!! 𝐹𝑖𝑥!"# , with 
𝐿0𝑄1!* calculated via stepwise multilinear regression fit on positional 
samples 𝐹𝑖𝑥𝑃𝑜𝑠! 𝑗 , 𝑗 = 1,… ,𝑁 in each fixation 𝑖, 𝑖 = 1,… ,𝐹𝑖𝑥!!"  
𝑭𝟏𝟐:𝑭𝒊𝒙𝑫𝒓𝒊𝒇𝒕𝑷𝒓𝑳𝟏𝑸𝟎𝑯𝑽 
The L1Q0 parameter percentage: 100% · 𝐿1𝑄0!!"#!"#

!!! 𝐹𝑖𝑥!"# , with 
𝐿1𝑄0!* calculated via stepwise multilinear regression fit on positional 
samples 𝐹𝑖𝑥𝑃𝑜𝑠! 𝑗 , 𝑗 = 1,… ,𝑁 in each fixation 𝑖, 𝑖 = 1,… ,𝐹𝑖𝑥!"#  
𝑭𝟏𝟑:𝑭𝒊𝒙𝑫𝒓𝒊𝒇𝒕𝑷𝒓𝑳𝟏𝑸𝟏𝑯𝑽 
The L1Q1 parameter percentage: 100% · 𝐿1𝑄1!!"#!"#

!!! 𝐹𝑖𝑥!"# , with 
𝐿1𝑄1!* calculated via stepwise multilinear regression fit on positional 
samples 𝐹𝑖𝑥𝑃𝑜𝑠! 𝑗 , 𝑗 = 1,… ,𝑁 in each fixation 𝑖, 𝑖 = 1,… ,𝐹𝑖𝑥!"#  
* LxQy shows whether linear/quadratic terms were used in regression, 
e.g., L0Q1i = 1 when only quadratic terms were used, L1Q0i = 1 when 
only linear terms were used, etc. 

 

List 4. Fixation velocity features 

𝑭𝟏𝟒:𝑭𝒊𝒙𝑽𝒆𝒍𝑷𝒓𝒐𝒇𝑴𝒏𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on velocity profile-sample mean of fixations: 
𝐹𝑖𝑥𝑉𝑒𝑙𝑃𝑟𝑜𝑓𝑀𝑛! = 𝐹𝑖𝑥𝑉𝑒𝑙! 𝑗!

!!! 𝑁 , 𝑖 = 1,… ,𝐹𝑖𝑥!"#  

𝑭𝟏𝟓:𝑭𝒊𝒙𝑽𝒆𝒍𝑷𝒓𝒐𝒇𝑴𝒅𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on velocity profile-sample median of fixations: 
𝐹𝑖𝑥𝑉𝑒𝑙𝑃𝑟𝑜𝑓𝑀𝑑! = 𝑚𝑒𝑑𝑖𝑎𝑛 𝐹𝑖𝑥𝑉𝑒𝑙! , 𝑖 = 1,… ,𝐹𝑖𝑥!"#  
𝑭𝟏𝟔:𝑭𝒊𝒙𝑽𝒆𝒍𝑷𝒓𝒐𝒇𝑺𝒅𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on velocity profile-sample standard deviation of fixations: 

𝐹𝑖𝑥𝑉𝑒𝑙𝑃𝑟𝑜𝑓𝑆𝑑! = 𝐹𝑖𝑥𝑉𝑒𝑙! 𝑗 − 𝐹𝑖𝑥𝑉𝑒𝑙𝑃𝑟𝑜𝑓𝑀𝑛! !!
!!! 𝑁 , 𝑖 =

1,… ,𝐹𝑖𝑥!"#  
𝑭𝟏𝟕:𝑭𝒊𝒙𝑽𝒆𝒍𝑷𝒓𝒐𝒇𝑺𝒌𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on velocity profile-sample skewness of fixations: 

𝐹𝑖𝑥𝑉𝑒𝑙𝑃𝑟𝑜𝑓𝑆𝑘! =
!"#$%&! ! !!"#$%&'()*+,! !

!
!!! !

!"#$%&! ! !!"#$%&'()*+,! !
!
!!! !

! , 𝑖 =

1,… ,𝐹𝑖𝑥!"#  
𝑭𝟏𝟖:𝑭𝒊𝒙𝑽𝒆𝒍𝑷𝒓𝒐𝒇𝑲𝒖𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on velocity profile-sample kurtosis of fixations: 

𝐹𝑖𝑥𝑉𝑒𝑙𝑃𝑟𝑜𝑓𝐾𝑢! =
!"#$%&! ! !!"#$%&'()*+,! !

!
!!! !

!"#$%&! ! !!"#$%&'()*+,! !!
!!! !

! , 𝑖 =

1,… ,𝐹𝑖𝑥!"#  
𝑭𝟏𝟗:𝑭𝒊𝒙𝑷𝒓𝑨𝒃𝑷𝟗𝟎𝑽𝒆𝒍𝑻𝒉𝒓𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on percentages of the velocity samples of fixations that are 
above 90-th percentile** threshold: 𝐹𝑖𝑥𝑃𝑟𝐴𝑏𝑃90𝑉𝑒𝑙𝑇ℎ𝑟! , 𝑖 =
1,… ,𝐹𝑖𝑥!"#  
𝑭𝟐𝟎:𝑭𝒊𝒙𝑷𝒓𝑪𝒓𝑷𝟗𝟎𝑽𝒆𝒍𝑻𝒉𝒓𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on percentages of the velocity samples of fixations that 
cross 90-th percentile threshold: 
𝐹𝑖𝑥𝑃𝑟𝐶𝑟𝑃90𝑉𝑒𝑙𝑇ℎ𝑟! , 𝑖 = 1,… ,𝐹𝑖𝑥!"#  
 

List 5. Fixation acceleration features 

𝑭𝟐𝟏:𝑭𝒊𝒙𝑨𝒄𝒄𝑷𝒓𝒐𝒇𝑴𝒏𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on acceleration profile-sample mean of fixations: 
𝐹𝑖𝑥𝐴𝑐𝑐𝑃𝑟𝑜𝑓𝑀𝑛! = 𝐹𝑖𝑥𝐴𝑐𝑐! 𝑗!

!!! 𝑁 , 𝑖 = 1,… ,𝐹𝑖𝑥!"#  

𝑭𝟐𝟐:𝑭𝒊𝒙𝑨𝒄𝒄𝑷𝒓𝒐𝒇𝑴𝒅𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on acceleration profile-sample median of fixations: 
𝐹𝑖𝑥𝐴𝑐𝑐𝑃𝑟𝑜𝑓𝑀𝑑! = 𝑚𝑒𝑑𝑖𝑎𝑛 𝐹𝑖𝑥𝐴𝑐𝑐! , 𝑖 = 1,… ,𝐹𝑖𝑥!"#  
𝑭𝟐𝟑:𝑭𝒊𝒙𝑨𝒄𝒄𝑷𝒓𝒐𝒇𝑺𝒅𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  over acceleration profile-sample standard deviation of 
fixations: 

𝐹𝑖𝑥𝐴𝑐𝑐𝑃𝑟𝑜𝑓𝑆𝑑! = 𝐹𝑖𝑥𝐴𝑐𝑐! 𝑗 − 𝐹𝑖𝑥𝐴𝑐𝑐𝑃𝑟𝑜𝑓𝑀𝑛! !!
!!! 𝑁 , 𝑖 =

1,… ,𝐹𝑖𝑥!"#  
𝑭𝟐𝟒:𝑭𝒊𝒙𝑨𝒄𝒄𝑷𝒓𝒐𝒇𝑺𝒌𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on acceleration profile-sample skewness of fixations: 

𝐹𝑖𝑥𝐴𝑐𝑐𝑃𝑟𝑜𝑓𝑆𝑘! =
!"#$%%! ! !!"#$%%&'()*+! !

!
!!! !

!"#$%%! ! !!"#$%%&'()*+! !
!
!!! !

! , 𝑖 =

1,… ,𝐹𝑖𝑥!"#  
𝑭𝟐𝟓:𝑭𝒊𝒙𝑨𝒄𝒄𝑷𝒓𝒐𝒇𝑲𝒖𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on acceleration profile-sample kurtosis of fixations: 

𝐹𝑖𝑥𝐴𝑐𝑐𝑃𝑟𝑜𝑓𝐾𝑢! =
!"#$%%! ! !!"#$%%&'()*+! !

!
!!! !

!"#$%%! ! !!"#!""#$%&'(! !!
!!! !

! , 𝑖 =

1,… ,𝐹𝑖𝑥!"#  
** P90 (90-th percentile) threshold calculated over all fixation samples. 

Lists of Fixation Features 



Journal of Eye Movement Research Rigas, I., Friedman, L., & Komogortsev, O. (2018) 
11(1):3 Study of an Extensive Set of Eye Movement Features: Extraction Methods and Statistical Analysis 

  5 

Saccade Features 
The saccades are very fast movements rotating the 

eyes from one position of focus to another. The peak 
velocities of saccades can reach over 600°/s. During the 
initiation of a saccade, the saccade-generating neural 
circuitry makes an estimation of the difference between 
the starting and target positions and sends sequences of 
neural guiding pulses to the extra-ocular muscles to rotate 
the eye. If the intended target is not accurately reached, 
one or more small corrective saccades are performed to 
transfer the eye to the final target position. In next sub-
sections, we present a large variety of features that can be 

extracted from saccades. Prior to the extraction of sac-
cade features, we post-process the data by filtering out 
any saccades with durations larger than 70 ms and radial 
sizes larger than 8° (the adjacent post-saccadic oscilla-
tions are filtered out as well). This procedure is per-
formed to avoid any large outliers that can skew the dis-
tributions of saccade features, given that during reading 
usually relatively small saccades are performed. An ex-
ception on this post-processing rule was made for fea-
tures S49 to S52, since the exact role of these features is 
to measure the frequency of occurrence of such large 
saccadic events. 

Figure 1. Eye movement positional signal, and examples of different ways of modeling fixation drifts (right top: linear fit is 
preferred; right bottom: quadratic fit is preferred). 

Figure 2. Examples of fixation velocity and acceleration profiles for horizontal and vertical components of eye movement (P90 
denotes the 90-th percentile velocity threshold). 
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Features of saccade temporal characteristics 

Two basic temporal features of saccades are their du-
ration and rate (S01-S02, List 6). During reading for ex-
ample, saccade durations usually are in range of 20-40 
ms. The incorporation (or not) of saccadic durations 
when analyzing eye movement data is an important con-
sideration in studies of cognitive processing (Inhoff & 
Radach, 1998) and during tasks of perceptual selection in 
human-computer interaction (Canosa, 2009). Also, atypi-
cal values of saccade temporal features (e.g., larger than 
usual durations) can be signaling the onset of neural dis-
orders (Ramat, Leigh, Zee, & Optican, 2007), whereas 
increased saccadic rates have been reported in studies of 
behavioral disorders like autism (Kemner, Verbaten, 
Cuperus, Camfferman, & van Engeland, 1998). 

Features of saccade amplitude and curvature 

The amplitude of saccades (S03, List 7) is frequently 
used as the basic feature to describe their size. The ampli-
tudes of saccades are related to the respective durations 
and peak velocities (Bahill, Clark, & Stark, 1975), giving 
the opportunity of co-examination of these characteris-
tics. Although the amplitude can provide a basic descrip-
tion of the overall size of a saccade, it cannot describe the 
curvature characteristics of saccadic trajectories. The 
modeling of saccade curvature can be important for be-
havioral studies, given the observed connections of cur-
vature with the distractor-related modulation of eye 
movements (Doyle & Walker, 2001). The representation 
of saccade curvature has been thoroughly reviewed in 
(Ludwig & Gilchrist, 2002), where a large variety of 
curvature features (old and new) were described. We 
have included these features in the current set (S08 to 
S19, List 7) along with additional features that can model 
the non-linearity of saccade trajectory (S04-S05, List 7). 
Based on our observation that the ending parts of sac-
cades often show larger degree of non-linearity, we also 
present two more features for modeling the saccade end-
ing parts (‘tails’) (S06-S07, List 7). In Figure 3, we show 
examples of saccade trajectories both in time domain 
(position profile) and in 2D-space domain. 

 

 

Features of saccade velocity and acceleration 

Saccades are considered to be of ballistic nature and it 
is assumed that their velocity cannot be modulated inten-

tionally (Becker & Fuchs, 1969). Thus, the dynamic 
features of saccades provide a valuable source for explor-
ing the background neurophysiological activity. In previ-
ous studies, the characteristics of saccadic velocity have 
been investigated as indicator of (de-)activation (Galley, 
1989) and arousal (Di Stasi, Catena, Cañas, Macknik, & 
Martinez-Conde, 2013). In Figure 4, we can observe 
examples of the characteristics of various saccade veloci-
ty profiles. A prominent feature that can be extracted 
easily from velocity profiles is peak velocity (S21, List 
8). Additionally, as previously done for fixations, we 
extract a set of profile-modeling features by employing 
descriptive statistics to represent the overall ‘shape’ 
properties of velocity profiles (S22 to S26, List 8). 

The acceleration of saccades is directly related to the 
underlying forces moving the eyeball. Thus, saccadic 
acceleration can provide important information related to 
the dynamic properties of eye movements. The existence 
of asymmetries in the shapes of saccadic acceleration-
deceleration phases has been previously reported in 
(Fricker, 1971), and it has been shown that the character-
istics of these phases can be modulated by motor learning 
(Collins, Semroud, Orriols, & Doré-Mazars, 2008). Also, 
abnormal characteristics of the saccade acceleration-
deceleration phases have been reported in studies of au-
tism spectrum disorders (Schmitt, Cook, Sweeney, & 
Mosconi, 2014). In Figure 5, we show examples of sac-
cade acceleration profiles (for the same saccades as in 
Figure 4) demonstrating the peaks, durations, and shapes 
of the acceleration-deceleration phases. To describe the 
basic properties of saccadic acceleration, we extract fea-
tures for the peak values of acceleration and deceleration 
phases (List 9, S27-S28), and also, we extract acceleration 
profile-modeling features via the application of descrip-
tive statistics (List 9, S29 to S33). 

Features of saccade-characteristic ratios 

Features that represent ratios of saccadic characteris-
tics can provide valuable clues for the inter-connections 
of oculomotor mechanisms. Also, such features can be 
used to provide robustness against exogenous effects 
when such effects are not desired (e.g., effects of stimulus 
layout). Various ratio features have been investigated in 
the past in studies of Parkinson’s disease (peak velocity-
mean velocity ratio or Q-ratio) (Garbutt, Harwood, 
Kumar, Han, & Leigh, 2003), as indicators of alertness 
(peak velocity-duration ratio or Saccadic-ratio) (Gupta & 
Routray, 2012), and in biometrics (peak acceleration-
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peak deceleration ratio) (Rigas, Komogortsev, & 
Shadmehr, 2016). In List 10, we present the extracted 

saccade-characteristic ratio features (S34 to S40). 

 

Figure 3. Examples of saccade trajectories in time domain (top panel) and in 2-D plane (bottom panel). 

Figure 4. Examples of saccade velocity profiles showing the differences in their peak values and overall shapes. 

Figure 5. Examples of saccade acceleration profiles showing the differences in their peak values, durations, and shapes of the 
acceleration-deceleration phases. 
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List 6. Saccade temporal features 

𝑺𝟎𝟏: 𝑺𝒂𝒄𝑹𝒂𝒕𝒆 
The saccade rate: 𝑆𝑎𝑐!"# 𝑅𝑒𝑐!"#  
𝑺𝟎𝟐: 𝑺𝒂𝒄𝑫𝒖𝒓𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on durations of saccades: 𝑆𝑎𝑐𝐷𝑢𝑟! , 𝑖 = 1,… , 𝑆𝑎𝑐!"#  
 

List 7. Saccade amplitude and curvature features 

𝑺𝟎𝟑: 𝑺𝒂𝒄𝑨𝒎𝒑𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on amplitudes of saccades: 𝑆𝑎𝑐𝐴𝑚𝑝! = 𝑆𝑎𝑐𝑃𝑜𝑠! 𝑒𝑛𝑑 −
𝑆𝑎𝑐𝑃𝑜𝑠! 𝑠𝑡𝑎𝑟𝑡 , 𝑖 = 1,… , 𝑆𝑎𝑐!"#  
𝑺𝟎𝟒: 𝑺𝒂𝒄𝑻𝒓𝒂𝒗𝑫𝒊𝒔𝒕𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on travelled distances of saccades: 𝑆𝑎𝑐𝑇𝑟𝑎𝑣𝐷𝑖𝑠𝑡! =

𝑆𝑎𝑐𝑃𝑜𝑠! 𝑗 + 1 − 𝑆𝑎𝑐𝑃𝑜𝑠! 𝑗!!!
!!! , 𝑖 = 1,… , 𝑆𝑎𝑐!"#  

𝑺𝟎𝟓: 𝑺𝒂𝒄𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on efficiency metric of saccades: 𝑆𝑎𝑐𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦! =
!"#$%&!

!"#$%"&'()*!
, 𝑖 = 1,… , 𝑆𝑎𝑐!"#  

𝑺𝟎𝟔: 𝑺𝒂𝒄𝑻𝒂𝒊𝒍𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on tail efficiency metric of saccades: 
𝑆𝑎𝑐𝑇𝑎𝑖𝑙𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦! =

!"#$"%&'()!
!"#$"%&$'"()%*+!

, 𝑖 = 1,… , 𝑆𝑎𝑐!"# , where ‘Tails’ 
are defined as the samples of the last 7ms of a saccade 
𝑺𝟎𝟕: 𝑺𝒂𝒄𝑻𝒂𝒊𝒍𝑷𝒓𝑰𝒏𝒄𝒐𝒏𝒔𝒊𝒔𝒕𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝟐𝑫 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on percentage tail inconsistency metric of saccades: 
𝑆𝑎𝑐𝑇𝑎𝑖𝑙𝑃𝑟𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡! , 𝑖 = 1,… , 𝑆𝑎𝑐!"#  is the percentage of saccade 
‘Tail’ for which 𝑎𝑛𝑔𝑙𝑒 𝐿𝐷! ,𝑂𝐷! ≥ 60°, where 𝐿𝐷!  the vector connect-
ing the current and the previous point of a saccade, and 𝑂𝐷!  the vector 
connecting the starting and ending point of a saccade (raw signal was 
used) 
𝑺𝟎𝟖: 𝑺𝒂𝒄𝑰𝒏𝒊𝒕𝑫𝒊𝒓𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝟐𝑫 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on initial direction of saccades: 
𝑆𝑎𝑐𝐼𝑛𝑖𝑡𝐷𝑖𝑟! = 𝑎𝑛𝑔𝑙𝑒 𝐼𝐷! ,𝑂𝐷! , 𝑖 = 1,… , 𝑆𝑎𝑐!"# , where 𝐼𝐷!  the 
vector connecting the starting point of a saccade and a predefined point 
(20ms afterwards), and 𝑂𝐷!  the vector connecting the starting and 
ending points of a saccade (in x-y plane) 
𝑺𝟎𝟗: 𝑺𝒂𝒄𝑰𝒏𝒊𝒕𝑨𝒗𝒈𝑫𝒆𝒗𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝟐𝑫 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on initial average deviation of saccades: 
𝑆𝑎𝑐𝐼𝑛𝑖𝑡𝐴𝑣𝑔𝐷𝑒𝑣! = 𝐼𝑛𝑖𝑡𝐷𝑒𝑣! 𝑗!

!!! , 𝑖 = 1,… , 𝑆𝑎𝑐!"# , where m the 
samples in a window of 10ms after the start of a saccade. 𝐼𝑛𝑖𝑡𝐷𝑒𝑣! 𝑗  is 
calculated by subtracting the eye position (of sample j) on the dimen-
sion orthogonal to the saccade direction from the value on that dimen-
sion at the start of the saccade 
𝑺𝟏𝟎, 𝑺𝟏𝟏: 
𝑺𝒂𝒄𝑴𝒂𝒙𝑹𝒂𝒘𝑫𝒆𝒗𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝟐𝑫 , 𝑺𝒂𝒄𝑷𝒐𝒊𝑴𝒂𝒙𝑹𝒂𝒘𝑫𝒆𝒗𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝟐𝑫 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on maximum raw deviation of saccades and the respective 
point: 𝑆𝑎𝑐𝑀𝑎𝑥𝐶𝑢𝑟𝑣! = max!!!,…,! 𝑃𝑒𝑟𝑝𝐷𝑖𝑠𝑡 𝑗 , 𝑖 = 1,… , 𝑆𝑎𝑐!"# , 
where 𝑃𝑒𝑟𝑝𝐷𝑖𝑠𝑡(𝑗) is the perpendicular distance (deviation) of sample 𝑗 
from the straight line connecting the starting and ending points of a 
saccade (metrics expressed as percentages of saccade amplitude) 
𝑺𝟏𝟐: 𝑺𝒂𝒄𝑨𝒓𝒆𝒂𝑪𝒖𝒓𝒗𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝟐𝑫 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on area curvature metric of saccades: 𝑆𝑎𝑐𝐴𝑟𝑒𝑎𝐶𝑢𝑟𝑣! =

𝑆𝐷 𝑗 ∙ 𝑃𝐷 𝑗!
!!! , 𝑖 = 1,… , 𝑆𝑎𝑐!"# , where 𝑆𝐷 𝑗  the distance cov-

ered by sample j along the straight path between onset and endpoint 
since the previous sample (j-1), and 𝑃𝐷 𝑗  is the perpendicular (signed) 
deviation of sample j (metric expressed as percentage of saccade ampli-
tude) 
𝑺𝟏𝟑: 𝑺𝒂𝒄𝑸𝒖𝒂𝒅𝑪𝒖𝒓𝒗𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝟐𝑫 

𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on quadratic-fit curvature metric of saccades: 
𝑆𝑎𝑐𝑄𝑢𝑎𝑑𝐶𝑢𝑟𝑣!  𝑖 = 1,… , 𝑆𝑎𝑐!"#  is the quadratic coefficient calculated 
via quadratic fitting on saccade position points*. 
𝑺𝟏𝟒, 𝑺𝟏𝟓: 
𝑺𝒂𝒄𝑪𝒖𝒃𝑪𝒖𝒓𝒗𝑴𝟏𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝟐𝑫 , 𝑺𝒂𝒄𝑷𝒐𝒊𝑪𝒖𝒃𝑪𝒖𝒓𝒗𝑴𝟏𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝟐𝑫 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on cubic-fit-extreme-1 of saccades and the respective 
point: 𝑆𝑎𝑐𝐶𝑢𝑏𝐶𝑢𝑟𝑣𝑀1!  𝑖 = 1,… , 𝑆𝑎𝑐!"#  is the maximum of the cubic 
function fitted on the position points of a saccade* (metrics expressed as 
percentages of saccade amplitude) 
𝑺𝟏𝟔, 𝑺𝟏𝟕: 
𝑺𝒂𝒄𝑪𝒖𝒃𝑪𝒖𝒓𝒗𝑴𝟐𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝟐𝑫 , 𝑺𝒂𝒄𝑷𝒐𝒊𝑪𝒖𝒃𝑪𝒖𝒓𝒗𝑴𝟐𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝟐𝑫 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on cubic-fit-extreme-2 of saccades and the respective 
point: 𝑆𝑎𝑐𝐶𝑢𝑏𝐶𝑢𝑟𝑣𝑀2!  𝑖 = 1,… , 𝑆𝑎𝑐!"#  is the minimum of the cubic 
function fitted on the position points of a saccade* (metrics expressed as 
percentages of saccade amplitude) 
𝑺𝟏𝟖, 𝑺𝟏𝟗: 
𝑺𝒂𝒄𝑪𝒖𝒃𝑪𝒖𝒓𝒗𝑴𝒂𝒙𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝟐𝑫 , 𝑺𝒂𝒄𝑷𝒐𝒊𝑪𝒖𝒃𝑪𝒖𝒓𝒗𝑴𝒂𝒙𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝟐𝑫 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on cubic-fit-curvature-maximum of saccades and the 
respective point: 
𝑆𝑎𝑐𝐶𝑢𝑏𝐶𝑢𝑟𝑣𝑀𝑎𝑥! =
𝑚𝑎𝑥 𝑆𝑎𝑐𝐶𝑢𝑏𝐶𝑢𝑟𝑣𝑀1! , 𝑆𝑎𝑐𝐶𝑢𝑏𝐶𝑢𝑟𝑣𝑀2! , 𝑆𝑎𝑐𝑃𝑜𝑖𝐶𝑢𝑏𝐶𝑢𝑟𝑣𝑀𝑎𝑥! =
𝑚𝑎𝑥 𝑆𝑎𝑐𝑃𝑜𝑖𝐶𝑢𝑏𝐶𝑢𝑟𝑣𝑀1! , 𝑆𝑎𝑐𝑃𝑜𝑖𝐶𝑢𝑏𝐶𝑢𝑟𝑣𝑀2! , 𝑖 = 1,… , 𝑆𝑎𝑐!"#  
(metrics expressed as percentages of saccade amplitude) 

* for this features every saccade is translated so that the axis through its 
starting and ending positions coincides with the abscissa. The horizontal 
axis is rescaled so that each saccade starts at -1 and ends at +1 
 

List 8. Saccade velocity features 

𝑺𝟐𝟎: 𝑺𝒂𝒄𝑵𝒖𝒎𝑽𝒆𝒍𝑳𝒐𝒄𝑴𝒊𝒏𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on number of local minima in velocity profile of saccades: 
𝑆𝑎𝑐𝑁𝑢𝑚𝑉𝑒𝑙𝐿𝑜𝑐𝑀𝑖𝑛!  is the number of sign changes from negative to 
positive in vector 𝑆𝑖𝑔𝑛𝑉𝑒𝑙 𝑗 = 𝑠𝑖𝑔𝑛 𝑆𝑎𝑐𝑉𝑒𝑙! 𝑗 − 𝑆𝑎𝑐𝑉𝑒𝑙! 𝑗 −
1 , 𝑗 = 2,… ,𝑁, 𝑖 = 1,… , 𝑆𝑎𝑐!"#  

𝑺𝟐𝟏: 𝑺𝒂𝒄𝑷𝒌𝑽𝒆𝒍𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on peak velocities of saccades: 
𝑆𝑎𝑐𝑃𝑘𝑉𝑒𝑙! = max!!!,…,! 𝑆𝑎𝑐𝑉𝑒𝑙! 𝑗 , 𝑖 = 1,… , 𝑆𝑎𝑐!"#  

𝑺𝟐𝟐: 𝑺𝒂𝒄𝑽𝒆𝒍𝑷𝒓𝒐𝒇𝑴𝒏𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on velocity profile-sample mean of saccades: 
𝑆𝑎𝑐𝑉𝑒𝑙𝑃𝑟𝑜𝑓𝑀𝑛! = 𝑆𝑎𝑐𝑉𝑒𝑙! 𝑗!

!!! 𝑁 , 𝑖 = 1,… , 𝑆𝑎𝑐!"#  

𝑺𝟐𝟑: 𝑺𝒂𝒄𝑽𝒆𝒍𝑷𝒓𝒐𝒇𝑴𝒅𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on velocity profile-sample median of saccades: 
𝑆𝑎𝑐𝑉𝑒𝑙𝑃𝑟𝑜𝑓𝑀𝑑! = 𝑚𝑒𝑑𝑖𝑎𝑛 𝑆𝑎𝑐𝑉𝑒𝑙! , 𝑖 = 1,… , 𝑆𝑎𝑐!"#  
𝑺𝟐𝟒: 𝑺𝒂𝒄𝑽𝒆𝒍𝑷𝒓𝒐𝒇𝑺𝒅𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on velocity profile-sample standard deviation of saccades: 

𝑆𝑎𝑐𝑉𝑒𝑙𝑃𝑟𝑜𝑓𝑆𝑑! = 𝑆𝑎𝑐𝑉𝑒𝑙! 𝑗 − 𝑆𝑎𝑐𝑉𝑒𝑙𝑃𝑟𝑜𝑓𝑀𝑛! !!
!!! 𝑁 , 𝑖 =

1,… , 𝑆𝑎𝑐!"#  
𝑺𝟐𝟓: 𝑺𝒂𝒄𝑽𝒆𝒍𝑷𝒓𝒐𝒇𝑺𝒌𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on velocity profile-sample skewness of saccades: 

𝑆𝑎𝑐𝑉𝑒𝑙𝑃𝑟𝑜𝑓𝑆𝑘! =
!"#$%&! ! !!"#$%&'()*+,! !

!
!!! !

!"#$%&! ! !!"#$%&'()*+!! !
!
!!! !

! , 𝑖 =

1,… , 𝑆𝑎𝑐!"#  
𝑺𝟐𝟔: 𝑺𝒂𝒄𝑽𝒆𝒍𝑷𝒓𝒐𝒇𝑲𝒖𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on velocity profile-sample kurtosis of saccades: 

𝑆𝑎𝑐𝑉𝑒𝑙𝑃𝑟𝑜𝑓𝐾𝑢! =
!"#$%&! ! !!"#$%&'()*+,! !

!
!!! !

!"#$%&! ! !!"!"#$%&'()*! !!
!!! !

! , 𝑖 =

1,… , 𝑆𝑎𝑐!"#  

Lists of Saccade Features 
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List 9. Saccade acceleration features 

𝑺𝟐𝟕: 𝑺𝒂𝒄𝑷𝒌𝑨𝒄𝒄𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 · on peak accelerations of saccades: 𝑆𝑎𝑐𝑃𝑘𝐴𝑐𝑐! =
max!!!,…,!"#!! 𝑆𝑎𝑐𝐴𝑐𝑐! 𝑗 , 𝑖 = 1,… , 𝑆𝑎𝑐!"# , where 𝑖𝑑𝑥 is the sample 
where 𝑆𝑎𝑐𝑃𝑘𝑉𝑒𝑙!  occurs 
𝑺𝟐𝟖: 𝑺𝒂𝒄𝑷𝒌𝑫𝒆𝒄𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on peak decelerations of saccades: 𝑆𝑎𝑐𝑃𝑘𝐷𝑒𝑐! =
max!!!"#!!,…,! 𝑆𝑎𝑐𝐴𝑐𝑐! 𝑗 , 𝑖 = 1,… , 𝑆𝑎𝑐!"# , where 𝑖𝑑𝑥 is the sample 
where 𝑆𝑎𝑐𝑃𝑘𝑉𝑒𝑙!  occurs 
𝑺𝟐𝟗: 𝑺𝒂𝒄𝑨𝒄𝒄𝑷𝒓𝒐𝒇𝑴𝒏𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on acceleration profile-sample mean of saccades: 
𝑆𝑎𝑐𝐴𝑐𝑐𝑃𝑟𝑜𝑓𝑀𝑛! = 𝑆𝑎𝑐𝐴𝑐𝑐! 𝑗!

!!! 𝑁 , 𝑖 = 1,… , 𝑆𝑎𝑐!"#  

𝑺𝟑𝟎: 𝑺𝒂𝒄𝑨𝒄𝒄𝑷𝒓𝒐𝒇𝑴𝒅𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on acceleration profile-sample median of saccades: 
𝑆𝑎𝑐𝐴𝑐𝑐𝑃𝑟𝑜𝑓𝑀𝑑! = 𝑚𝑒𝑑𝑖𝑎𝑛 𝑆𝑎𝑐𝐴𝑐𝑐! 𝑗 , 𝑖 = 1,… , 𝑆𝑎𝑐!"#  
𝑺𝟑𝟏: 𝑺𝒂𝒄𝑨𝒄𝒄𝑷𝒓𝒐𝒇𝑺𝒅𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on acceleration profile-sample standard deviation of 
saccades: 

𝑆𝑎𝑐𝐴𝑐𝑐𝑃𝑟𝑜𝑓𝑆𝑑! = 𝑆𝑎𝑐𝐴𝑐𝑐! 𝑗 − 𝑆𝑎𝑐𝐴𝑐𝑐𝑃𝑟𝑜𝑓𝑀𝑛! !!
!!! 𝑁 , 𝑖 =

1,… , 𝑆𝑎𝑐!"#  
𝑺𝟑𝟐: 𝑺𝒂𝒄𝑨𝒄𝒄𝑷𝒓𝒐𝒇𝑺𝒌𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on acceleration profile-sample skewness of saccades: 

𝑆𝑎𝑐𝐴𝑐𝑐𝑃𝑟𝑜𝑓𝑆𝑘! =
!"#$##! ! !!"#$##%&'()*! !

!
!!! !

!"#$##! ! !!"#$##%&'()*! !
!
!!! !

! , 𝑖 =

1,… , 𝑆𝑎𝑐!"#  
𝑺𝟑𝟑: 𝑺𝒂𝒄𝑨𝒄𝒄𝑷𝒓𝒐𝒇𝑲𝒖𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on acceleration profile-sample kurtosis of saccades: 

𝑆𝑎𝑐𝐴𝑐𝑐𝑃𝑟𝑜𝑓𝐾𝑢! =
!"#$##! ! !!"#$##%&'()*! !

!
!!! !

!"#$##! ! !!"#$##%&'()*! !!
!!! !

! , 𝑖 =

1,… , 𝑆𝑎𝑐!"#  

List 10. Saccade-characteristic ratio features 

𝑺𝟑𝟒: 𝑺𝒂𝒄𝑨𝒎𝒑𝑫𝒖𝒓𝑹𝒂𝒕𝒊𝒐𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on amplitude-duration ratio of saccades: 
𝑆𝑎𝑐𝐴𝑚𝑝𝐷𝑢𝑟!"#$%! =

!"#$%&!
!"#$%&!

 𝑖 = 1,… , 𝑆𝑎𝑐!"#  

𝑺𝟑𝟓: 𝑺𝒂𝒄𝑷𝒌𝑽𝒆𝒍𝑨𝒎𝒑𝑹𝒂𝒕𝒊𝒐𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on peak velocity-amplitude ratio of saccades: 
𝑆𝑎𝑐𝑃𝑘𝑉𝑒𝑙𝐴𝑚𝑝!"#$%! =

!"#$%&'(!
!"#$%&!

 𝑖 = 1,… , 𝑠𝑎𝑐!"#  

𝑺𝟑𝟔: 𝑺𝒂𝒄𝑷𝒌𝑽𝒆𝒍𝑫𝒖𝒓𝑹𝒂𝒕𝒊𝒐𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on peak velocity-duration ratio of saccades: 
𝑆𝑎𝑐𝑃𝑘𝑉𝑒𝑙𝐷𝑢𝑟!"#$%! =

!"#$%&'(!
!"#$%&!

 𝑖 = 1,… , 𝑆𝑎𝑐!"#  

𝑺𝟑𝟕: 𝑺𝒂𝒄𝑷𝒌𝑽𝒆𝒍𝑴𝒏𝑽𝒆𝒍𝑹𝒂𝒕𝒊𝒐𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on peak velocity-mean velocity ratio of saccades: 
𝑆𝑎𝑐𝑃𝑘𝑉𝑒𝑙𝑀𝑛𝑉𝑒𝑙!"#$%! =

!"#$%&'(!
!"#$%&'()!"#$%!

 𝑖 = 1,… , 𝑆𝑎𝑐!"#  

𝑺𝟑𝟖: 𝑺𝒂𝒄𝑷𝒌𝑽𝒆𝒍𝑳𝒐𝒄𝑵𝒐𝒊𝒔𝒆𝑹𝒂𝒕𝒊𝒐𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on peak velocity-local noise ratio of saccades: 
𝑆𝑎𝑐𝑃𝑘𝑉𝑒𝑙𝐿𝑜𝑐𝑁𝑜𝑖𝑠𝑒!"#$%! =

!"#$%&'(!
!"#$%#&%'()!

 𝑖 = 1,… , 𝑆𝑎𝑐!"# , where 
𝑆𝑎𝑐𝐿𝑜𝑐𝑁𝑜𝑖𝑠𝑒!  calculated from velocity samples preceding a saccade 
𝑺𝟑𝟗: 𝑺𝒂𝒄𝑨𝒄𝒄𝑫𝒆𝒄𝑫𝒖𝒓𝑹𝒂𝒕𝒊𝒐𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on acceleration-deceleration duration ratio of saccades: 

𝑆𝑎𝑐𝐴𝑐𝑐𝐷𝑒𝑐𝐷𝑢𝑟!"#$%! =
!"#$##!

!"#$%&'!!"#$##!
!"#$"%&'(

!"#$%#!
!"#$%&'!!"#$##!

!"#$!"#$%  𝑖 = 1,… , 𝑆𝑎𝑐!"# , 

𝑆𝑎𝑐𝐴𝑐𝑐!!"#$"%&'( , 𝑆𝑎𝑐𝐴𝑐𝑐!!"#$%&' , 𝑆𝑎𝑐𝐷𝑒𝑐!!"#$"%&'( , 𝑆𝑎𝑐𝐷𝑒𝑐!!"#$%&'  are 
the starting and ending times of the acceleration/decelerations phases 

𝑺𝟒𝟎: 𝑺𝒂𝒄𝑷𝒌𝑨𝒄𝒄𝑷𝒌𝑫𝒆𝒄𝑹𝒂𝒕𝒊𝒐𝑫𝒔𝒄𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑠𝑐𝑟𝑆𝑡𝑎𝑡 ·  on peak acceleration-peak deceleration ratio of saccades: 
𝑆𝑎𝑐𝑃𝑘𝐴𝑐𝑐𝑃𝑘𝐷𝑒𝑐!"#$%! =

!"#$%&##!
!"#$%&'#!

 𝑖 = 1,… , 𝑆𝑎𝑐!"#  

 

List 11. Saccade main-sequence features 

𝑺𝟒𝟏: 𝑺𝒂𝒄𝑨𝒎𝒑𝑫𝒖𝒓𝑭𝒊𝒕𝑳𝒏𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕𝑹  
The intercept from the linear-regression-fit performed collectively on all 
saccades to model the overall amplitude-duration relationship 𝑦 = 𝑓 𝑥 , 
where 𝑦 = 𝑆𝑎𝑐𝐴𝑚𝑝! , 𝑥 = 𝑆𝑎𝑐𝐷𝑢𝑟! , 𝑖 = 1,… , 𝑆𝑎𝑐!"#  
𝑺𝟒𝟐: 𝑺𝒂𝒄𝑨𝒎𝒑𝑫𝒖𝒓𝑭𝒊𝒕𝑳𝒏𝑺𝒍𝒐𝒑𝒆𝑹  
The slope from the linear-regression-fit performed collectively on all 
saccades to model the overall amplitude-duration relationship 𝑦 = 𝑓 𝑥 , 
where 𝑦 = 𝑆𝑎𝑐𝐴𝑚𝑝! , 𝑥 = 𝑆𝑎𝑐𝐷𝑢𝑟! , 𝑖 = 1,… , 𝑆𝑎𝑐!"!  

𝑺𝟒𝟑: 𝑺𝒂𝒄𝑨𝒎𝒑𝑫𝒖𝒓𝑭𝒊𝒕𝑳𝒏𝑹𝟐
𝑹  

The R2 from the linear-regression-fit performed collectively on all 
saccades to model the overall amplitude-duration relationship 𝑦 = 𝑓 𝑥 , 
where 𝑦 = 𝑆𝑎𝑐𝐴𝑚𝑝! , 𝑥 = 𝑆𝑎𝑐𝐷𝑢𝑟! , 𝑖 = 1,… , 𝑆𝑎𝑐!"#  
𝑺𝟒𝟒: 𝑺𝒂𝒄𝑷𝒌𝑽𝒆𝒍𝑨𝒎𝒑𝑭𝒊𝒕𝑳𝒏𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕𝑹  
The intercept from the linear-regression-fit performed collectively on all 
saccades to model the overall logarithm peak velocity-logarithm ampli-
tude relationship 𝑦 = 𝑓 𝑥 , where 𝑦 = log 𝑆𝑎𝑐𝑃𝑘𝑉𝑒𝑙! , 𝑥 =
log 𝑆𝑎𝑐𝐴𝑚𝑝! , 𝑖 = 1,… , 𝑆𝑎𝑐!"#  
𝑺𝟒𝟓: 𝑺𝒂𝒄𝑷𝒌𝑽𝒆𝒍𝑨𝒎𝒑𝑭𝒊𝒕𝑳𝒏𝑺𝒍𝒐𝒑𝒆𝑹  
The slope from the linear-regression-fit performed collectively on all 
saccades to model the overall logarithm peak velocity-logarithm ampli-
tude relationship 𝑦 = 𝑓 𝑥 , where 𝑦 = log 𝑆𝑎𝑐𝑃𝑘𝑉𝑒𝑙! , 𝑥 =
log 𝑆𝑎𝑐𝐴𝑚𝑝! , 𝑖 = 1,… , 𝑆𝑎𝑐!"#  

𝑺𝟒𝟔: 𝑺𝒂𝒄𝑷𝒌𝑽𝒆𝒍𝑨𝒎𝒑𝑭𝒊𝒕𝑳𝒏𝑹𝟐
𝑹  

The R2 from the linear-regression-fit and performed collectively on all 
saccades to model the overall logarithm peak velocity-logarithm ampli-
tude relationship 𝑦 = 𝑓 𝑥 , where 𝑦 = log 𝑆𝑎𝑐𝑃𝑘𝑉𝑒𝑙! , 𝑥 =
log 𝑆𝑎𝑐𝐴𝑚𝑝! , 𝑖 = 1,… , 𝑆𝑎𝑐!"#  

List 12. Special features of saccade reading behavior 

𝑺𝟒𝟕: 𝑺𝒂𝒄𝑺𝒎𝑹𝒊𝒈𝒉𝒕𝑹𝒂𝒕𝒆 
The number of small rightward saccades per second, i.e. saccades where 
𝑆𝑎𝑐𝐴𝑚𝑝!! ≤ 8° and 𝑆𝑎𝑐𝑃𝑜𝑠!! 𝑒𝑛𝑑 − 𝑆𝑎𝑐𝑃𝑜𝑠!! 𝑠𝑡𝑎𝑟𝑡 > 0, 𝑖 =
1,… , 𝑆𝑎𝑐!"#  
𝑺𝟒𝟖: 𝑺𝒂𝒄𝑺𝒎𝑳𝒆𝒇𝒕𝑹𝒂𝒕𝒆 
The number of small leftward saccades per second, i.e. saccades where 
𝑆𝑎𝑐𝐴𝑚𝑝!! ≤ 8° and 𝑆𝑎𝑐𝑃𝑜𝑠!! 𝑒𝑛𝑑 − 𝑆𝑎𝑐𝑃𝑜𝑠!! < 0, 𝑖 = 1,… , 𝑆𝑎𝑐!"#  
𝑺𝟒𝟗: 𝑺𝒂𝒄𝑳𝒈𝑹𝒊𝒈𝒉𝒕𝑹𝒂𝒕𝒆 
The number of large rightward saccades per second, i.e. saccades where 
𝑆𝑎𝑐𝐴𝑚𝑝!! > 8° and 𝑆𝑎𝑐𝑃𝑜𝑠!! 𝑒𝑛𝑑 − 𝑆𝑎𝑐𝑃𝑜𝑠!! 𝑠𝑡𝑎𝑟𝑡 > 0, 𝑖 =
1,… , 𝑆𝑎𝑐!"#  
𝑺𝟓𝟎: 𝑺𝒂𝒄𝑳𝒈𝑳𝒆𝒇𝒕𝑹𝒂𝒕𝒆 
The number of large leftward saccades per second, i.e. saccades where 
𝑆𝑎𝑐𝐴𝑚𝑝!! > 8° and 𝑆𝑎𝑐𝑃𝑜𝑠!! 𝑒𝑛𝑑 − 𝑆𝑎𝑐𝑃𝑜𝑠!! 𝑠𝑡𝑎𝑟𝑡 > 0, 𝑖 =
1,… , 𝑆𝑎𝑐!"#  
𝑺𝟓𝟏: 𝑺𝒂𝒄𝑺𝒎𝑳𝒆𝒇𝒕𝑺𝒎𝑹𝒊𝒈𝒉𝒕𝑹𝒂𝒕𝒊𝒐 
The ratio of the number of small leftward saccades to the number of 
small and rightward saccades 
𝑺𝟓𝟐: 𝑺𝒂𝒄𝑺𝒎𝑨𝒍𝒍𝑳𝒈𝑳𝒆𝒇𝒕𝑹𝒂𝒕𝒊𝒐 
The ratio of the number of all small saccades to the number of large and 
leftward saccades 
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Features of saccade main-sequence characteristics 

A more sophisticated way to describe the relation-
ships between basic saccadic characteristics is to create a 
collective model (e.g., via curve fitting) using all the 
saccadic event instances in a recording. In the work of 
(Bahill et al., 1975) the general relationships of feature-
pairs of amplitude-duration and peak velocity-amplitude 
were investigated, and the term ‘main-sequence’ (bor-
rowed from Astronomy) was used to describe them. The 
properties of main-sequence have been investigated in 
connection to mental workload and arousal (Di Stasi, 
Antolí, & Cañas, 2011; Di Stasi et al., 2013), and also, 
they have been employed for modeling saccadic vigor in 
eye movement biometrics (Rigas et al., 2016). The fea-
tures extracted to describe the main-sequence relation-
ships (S41 to S46, List 11) were modeled by fitting linear 
curves directly on the amplitude-duration data and on the 
logarithms of peak velocity-amplitude data (due to non-
linear relationship). In Figure 6, we show examples of 
the performed fitting on the main-sequence data. 

Special features of saccade reading behavior 

Due to the use of reading paradigm, we also extracted 
a specialized group of saccadic features (S47 to S52, List 
12) that combine amplitude and direction cues, and they 
can potentially represent saccadic events connected to the 
reading behavior of subjects, e.g., forward read words, 
corrections and word regressions, line changes etc. It 
should be mentioned that previous research specialized 
on the study of eye movements during reading has out-

lined the importance of similar features and identified 
possible sources of their variability (Rayner, 1998). The 
modeling of the extracted features into more complex 
entities specifically related to reading behavior is out of 
the scope of our work, however, in section Limitations 
and Further Extensions we discuss about several studies 
that can be useful during the implementation of such 
complex features. 

Post-saccadic Oscillation Features 
A post-saccadic oscillation is a small oscillatory 

movement that can occasionally appear after a saccade. 
The term post-saccadic oscillation can be used to cover 
movements appearing in various manifestations, e.g., as 
small rapid movements, known as dynamic overshoot 
(Kapoula, Robinson, & Hain, 1986), or as slower and 
smoother movements, known as glissadic overshoots 
(Weber & Daroff, 1972). Although, there are several 
studies that relate the appearance of glissadic phenomena 
with fatigue (Bahill & Stark, 1975b) and idiosyncratic 
characteristics (Kapoula et al., 1986), the exact sources 
and the role of post-saccadic oscillations is not yet fully 
understood. Also, their recording has been found to be 
pronounced for specific eye-tracking technologies (Frens 
& van der Geest, 2002) and influenced by filtering. 

Features of post-saccadic oscillation temporal char-
acteristics 

The basic features that are extracted to model the 
temporal characteristics of post-saccadic oscillations are 

Figure 6. Saccade main-sequence relationships and the respective linear regression fits for amplitude-duration (left) and the 
logarithms of peak velocity-amplitude (right). 
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the duration (P01) and two features modeling the fre-
quency of appearance of post-saccadic oscillations, the 
interval between post-saccadic oscillations and the per-
cent of saccades followed by a post-saccadic oscillation 
(P02, P03, List 13). To further quantify the frequency of 
appearance of different manifestations of post-saccadic 
oscillations we extract features that quantify the percent-
ages of slow, moderate, and fast post-saccadic oscilla-
tions (P04, P05, P06, List 13). The thresholds for the 
categorization of post-saccadic oscillations into slow, 
moderate and fast were selected after careful examination 
of their characteristics during the pre-processing stage. 

Features of post-saccadic oscillation shape 

Instead of extracting the ‘amplitude’ of post-saccadic 
oscillations (absolute difference between starting and 
ending positions), which is probably less informative due 
to their ‘oscillatory’ shape, we extract a feature that rep-
resents the maximum absolute deviation in these ‘oscilla-
tory’ shapes (P07, List 14). We further model the position 
profiles of post-saccadic oscillations by extracting two 
features that represent the number of local minima (val-
leys) and maxima (peaks) (P08, P09, List 14). In Figure 
7, we present examples of post-saccadic oscillation posi-
tion profiles demonstrating the variability in their ‘oscil-
latory’ shapes, and showing the features that can be ex-
tracted to model this variability. 

Features of post-saccadic oscillation velocity and ac-
celeration 

Due to the nature of post-saccadic oscillations their 
velocity profiles usually have multiple peaks. We extract 
the feature of peak velocity (P10, List 15) from the larg-
est of them –most times it is the first peak. In Figure 8, 
we show examples of velocity profiles of post-saccadic 
oscillations (for the same events as in Figure 7) and 
demonstrate the differences in the peak velocities of fast, 
moderate, and slow post-saccadic oscillations. In Figure 
9, we present the respective acceleration profiles. As was 
performed for fixations and saccades, we extract a set of 
features that model the ‘shapes’ of velocity and accelera-
tion profiles of post-saccadic oscillations via the use of 
descriptive statistics (P11 to P20, Lists 15-16). 

Features of saccade/post-saccadic oscillation charac-
teristic ratios 

Given the fact that every post-saccadic oscillation can 
be tied to a preceding ‘parent’ saccade, we extract three 

additional categories of features that can be used to mod-
el the possible interrelationships between the characteris-
tics of saccades and their adjacent post-saccadic oscilla-
tions. These features (P21 to P24, List 17) are extracted 
by computing the ratios between important characteristics 
of post-saccadic oscillations and saccades, specifically, 
duration, amplitude (saccade) or deviation (post-saccadic 
oscillation), and peak velocity. 

Experiments 
Subjects 
The experiments were performed with the participa-

tion of 298 subjects (162 males/136 females) with ages 
from 18 to 46 years, (M = 22, SD = 4.3). All subjects had 
normal or corrected vision (151 normal / 147 corrected 
with 61 glasses / 86 contact lenses) and filled a question-
naire to verify that they did not have any recent severe 
head injury that could affect the oculomotor functionality. 
The study was approved by the institutional review board 
of Texas State University and the participants provided 
signed informed consent. 

Apparatus and Recording Setup 
The eye tracking system used for the experiments was 

an EyeLink 1000 eye tracker with a sampling rate of 
1000 Hz. The eye tracker operated in monocular mode 
capturing the left eye. The typical vendor specifications 
of this system report accuracy of 0.5° and spatial resolu-
tion of 0.01° RMS. In our experiments, we followed a 
strict protocol to ensure the high quality of recordings by 
restricting the allowed calibration accuracy error to max-
imum values lower than 1.5° and average values lower 
than 1°. We practically measured the average calibration 
accuracy over all recordings to be 0.48° (SD = 0.17°) and 
the average data validity to be 94.2% (SD = 5.7%). Va-
lidity is defined as the percentage of samples that were 
successfully captured by the eye-tracking device during a 
recording. Common sources of failure to capture (invalid-
ity) can be blinks, moisture, squinting etc. During the 
recordings, each subject was comfortably positioned at a 
distance of 550 mm from a computer screen with dimen-
sions 474 × 297 mm and resolution 1680 × 1050 pixels, 
where the visual stimulus was presented. To mitigate any 
possible eye-tracking artifacts from small head move-
ments, the subjects’ heads were stabilized using a chin-
rest with a forehead. 
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List 13. Post-saccadic oscillation temporal features 

𝑷𝟎𝟏:𝑷𝒔𝒐𝑫𝒖𝒓𝑫𝒊𝒔𝒕𝒓𝑺𝒕𝒂𝒕 
𝐷𝑖𝑠𝑡𝑟𝑆𝑡𝑎𝑡 ·  on durations of post-saccadic oscillations: 𝑃𝑠𝑜𝐷𝑢𝑟! , 𝑖 =
1,… ,𝑃𝑠𝑜!"#  
𝑷𝟎𝟐:𝑷𝒔𝒐𝑰𝒏𝒕𝒆𝒓𝒗𝑫𝒊𝒔𝒕𝒓𝑺𝒕𝒂𝒕 
𝐷𝑖𝑠𝑡𝑟𝑆𝑡𝑎𝑡 ·  on inter-post-saccadic oscillation intervals: 𝑃𝑠𝑜𝐼𝑛𝑡𝑒𝑟𝑣! =
𝑃𝑠𝑜!!"#$"%&'( − 𝑃𝑠𝑜!!!!"#$!"# , 𝑖 = 2,… ,𝑃𝑠𝑜!"# , where 
𝑃𝑠𝑜!!"#$"%&'( ,𝑃𝑠𝑜!!!!"#$%&'  are the starting time of a post-saccadic oscil-
lation and the ending time of the previous post-saccadic oscillation 
𝑷𝟎𝟑:𝑷𝒔𝒐𝑷𝒓 
The percentage of saccades with a post-saccadic oscillation: 100% ∙
𝑃𝑠𝑜!"# 𝑆𝑎𝑐!"#  
𝑷𝟎𝟒:𝑷𝒔𝒐𝑺𝒍𝒐𝒘𝑷𝒓 
The percentage of slow post-saccadic oscillations: 
100% ∙ 𝑃𝑠𝑜𝑆𝑙𝑜𝑤!"# 𝑃𝑠𝑜!"# , with 𝑃𝑠𝑜𝑆𝑙𝑜𝑤!"#  the number of 
slow post-saccadic osc., i.e. 20°/s < peak post-saccadic oscillation 
velocity < 45°/s 
𝑷𝟎𝟓:𝑷𝒔𝒐𝑴𝒐𝒅𝒆𝒓𝒂𝒕𝒆𝑷𝒓 
The percentage of moderate post-saccadic oscillations	100% ∙
𝑃𝑠𝑜𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒!"# 𝑃𝑠𝑜!"# , with 𝑃𝑠𝑜𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒!"#  the number of 

moderate post-saccadic oscillations, i.e. 45°/s < peak post-saccadic 
oscillation velocity < 55°/s 
𝑷𝟎𝟔:𝑷𝒔𝒐𝑭𝒂𝒔𝒕𝑷𝒓 
The percentage of fast post-saccadic oscillations 
100% ∙ 𝑃𝑠𝑜𝐹𝑎𝑠𝑡!"# 𝑃𝑠𝑜!"# , with 𝑃𝑠𝑜𝐹𝑎𝑠𝑡!"#  the number of fast 
post-saccadic oscillations, i.e. peak post-saccadic oscillation velocity > 
55°/s 
 

List 14. Post-saccadic oscillation shape features 

𝑷𝟎𝟕:𝑷𝒔𝒐𝑴𝒂𝒙𝑨𝒃𝒔𝑫𝒆𝒗𝑫𝒊𝒔𝒕𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑖𝑠𝑡𝑟𝑆𝑡𝑎𝑡 ·  on maximum absolute deviation of position profiles of 
post-saccadic oscillations: 𝑃𝑠𝑜𝑀𝑎𝑥𝐴𝑏𝑠𝐷𝑒𝑣! = max! 𝑃𝑠𝑜𝑃𝑜𝑠! 𝑗 −
min! 𝑃𝑠𝑜𝑃𝑜𝑠! 𝑗 , 𝑖 = 1,… ,𝑃𝑠𝑜!"#  

𝑷𝟎𝟖:𝑷𝒔𝒐𝑵𝒖𝒎𝑷𝒐𝒔𝑽𝒍𝒍𝒔𝑫𝒊𝒔𝒕𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑖𝑠𝑡𝑟𝑆𝑡𝑎𝑡 ·  on number of valleys in position profile of post-saccadic 
oscillations: 𝑃𝑠𝑜𝑁𝑢𝑚𝑃𝑜𝑠𝑉𝑙𝑙𝑠!  is the number of sign changes from 
negative to positive in vector 𝑆𝑖𝑔𝑛𝑃𝑜𝑠 𝑗 = 𝑠𝑖𝑔𝑛 𝑃𝑠𝑜𝑃𝑜𝑠! 𝑗 −
𝑃𝑠𝑜𝑃𝑜𝑠! 𝑗 − 1 , 𝑗 = 2,… ,𝑁, 𝑖 = 1,… ,𝑃𝑠𝑜!!"  
𝑷𝟎𝟗:𝑷𝒔𝒐𝑵𝒖𝒎𝑷𝒐𝒔𝑷𝒌𝒔𝑫𝒊𝒔𝒕𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑖𝑠𝑡𝑟𝑆𝑡𝑎𝑡 ·  on number of peaks in position profile of post-saccadic 
oscillations: 𝑃𝑠𝑜𝑁𝑢𝑚𝑃𝑜𝑠𝑃𝑘𝑠!  is the number of sign changes from 
positive to negative in vector 𝑆𝑖𝑔𝑛𝑃𝑜𝑠 𝑗 = 𝑠𝑖𝑔𝑛 𝑃𝑠𝑜𝑃𝑜𝑠! 𝑗 −
𝑃𝑠𝑜𝑃𝑜𝑠! 𝑗 − 1 , 𝑗 = 2,… ,𝑁, 𝑖 = 1,… ,𝑃𝑠𝑜!"#  

 

List 15. Post-saccadic oscillation velocity features 

𝑷𝟏𝟎:𝑷𝒔𝒐𝑷𝒌𝑽𝒆𝒍𝑫𝒊𝒔𝒕𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑖𝑠𝑡𝑟𝑆𝑡𝑎𝑡 ·  on peak velocities of post-saccadic oscillations: 
𝑃𝑠𝑜𝑃𝑘𝑉𝑒𝑙! = max!!!,…,! 𝑃𝑠𝑜𝑉𝑒𝑙! 𝑗 , 𝑖 = 1,… ,𝑃𝑠𝑜!"#  

𝑷𝟏𝟏:𝑷𝒔𝒐𝑽𝒆𝒍𝑷𝒓𝒐𝒇𝑴𝒏𝑫𝒊𝒔𝒕𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑖𝑠𝑡𝑟𝑆𝑡𝑎𝑡 ·  on velocity profile-sample mean of post-saccadic oscilla-
tions: 𝑃𝑠𝑜𝑉𝑒𝑙𝑃𝑟𝑜𝑓𝑀𝑛! = 𝑃𝑠𝑜𝑉𝑒𝑙! 𝑗!

!!! 𝑁 , 𝑖 = 1,… ,𝑃𝑠𝑜!"#  

𝑷𝟏𝟐:𝑷𝒔𝒐𝑽𝒆𝒍𝑷𝒓𝒐𝒇𝑴𝒅𝑫𝒊𝒔𝒕𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑖𝑠𝑡𝑟𝑆𝑡𝑎𝑡 ·  on velocity profile-sample median of post-saccadic oscil-
lations: 𝑃𝑠𝑜𝑉𝑒𝑙𝑃𝑟𝑜𝑓𝑀𝑑! = 𝑚𝑒𝑑𝑖𝑎𝑛 𝑃𝑠𝑜𝑉𝑒𝑙! , 𝑖 = 1,… ,𝑃𝑠𝑜!"#  
𝑷𝟏𝟑:𝑷𝒔𝒐𝑽𝒆𝒍𝑷𝒓𝒐𝒇𝑺𝒅𝑫𝒊𝒔𝒕𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 

𝐷𝑖𝑠𝑡𝑟𝑆𝑡𝑎𝑡 ·  on velocity profile-sample standard deviation of post-
saccadic oscillations: 

𝑃𝑠𝑜𝑉𝑒𝑙𝑃𝑟𝑜𝑓𝑆𝑑! = 𝑃𝑠𝑜𝑉𝑒𝑙! 𝑗 − 𝑃𝑠𝑜𝑉𝑒𝑙𝑃𝑟𝑜𝑓𝑀𝑛! !!
!!! 𝑁 , 𝑖 =

1,… ,𝑃𝑠𝑜!"#  
𝑷𝟏𝟒:𝑷𝒔𝒐𝑽𝒆𝒍𝑷𝒓𝒐𝒇𝑺𝒌𝑫𝒊𝒔𝒕𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑖𝑠𝑡𝑟𝑆𝑡𝑎𝑡 ·  on velocity profile-sample skewness of post-saccadic 
oscillations: 

𝑃𝑠𝑜𝑉𝑒𝑙𝑃𝑟𝑜𝑓𝑆𝑘! =
!"#$%&! ! !!"#$%&!'#()*! !

!
!!! !

!"#$%&! ! !!"#$%&!!"#$%! !
!
!!! !

! , 𝑖 =

1,… ,𝑃𝑠𝑜!"#  
𝑷𝟏𝟓:𝑷𝒔𝒐𝑽𝒆𝒍𝑷𝒓𝒐𝒇𝑲𝒖𝑫𝒊𝒔𝒕𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑖𝑠𝑡𝑟𝑆𝑡𝑎𝑡 ·  on velocity profile-sample kurtosis of post-saccadic 

oscillations: 𝑃𝑠𝑜𝑉𝑒𝑙𝑃𝑟𝑜𝑓𝐾𝑢! =
!"#$%&! ! !!"#$%&!'#()*! !

!
!!! !

!"#$%&! ! !!"#$%&!'#()*! !!
!!! !

! , 𝑖 =

1,… ,𝑃𝑠𝑜!"#  
 

List 16. Post-saccadic oscillation acceleration features 

𝑷𝟏𝟔:𝑷𝒔𝒐𝑨𝒄𝒄𝑷𝒓𝒐𝒇𝑴𝒏𝑫𝒊𝒔𝒕𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑖𝑠𝑡𝑟𝑆𝑡𝑎𝑡 ·  on acceleration profile-sample mean of post-saccadic osc.: 
𝑃𝑠𝑜𝐴𝑐𝑐𝑃𝑟𝑜𝑓𝑀𝑛! = 𝑃𝑠𝑜𝐴𝑐𝑐! 𝑗!

!!! 𝑁 , 𝑖 = 1,… ,𝑃𝑠𝑜!"#  

𝑷𝟏𝟕:𝑷𝒔𝒐𝑨𝒄𝒄𝑷𝒓𝒐𝒇𝑴𝒅𝑫𝒊𝒔𝒕𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑖𝑠𝑡𝑟𝑆𝑡𝑎𝑡 ·  on acceleration profile-sample median of post-saccadic 
osc.: 𝑃𝑠𝑜𝐴𝑐𝑐𝑃𝑟𝑜𝑓𝑀𝑑! = 𝑚𝑒𝑑𝑖𝑎𝑛 𝑃𝑠𝑜𝐴𝑐𝑐! , 𝑖 = 1,… ,𝑃𝑠𝑜!"#  
𝑷𝟏𝟖:𝑷𝒔𝒐𝑨𝒄𝒄𝑷𝒓𝒐𝒇𝑺𝒅𝑫𝒊𝒔𝒕𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑖𝑠𝑡𝑟𝑆𝑡𝑎𝑡 ·  on acceleration profile-sample standard deviation of post-
saccadic oscillations: 

𝑃𝑠𝑜𝐴𝑐𝑐𝑃𝑟𝑜𝑓𝑆𝑑! = 𝑃𝑠𝑜𝐴𝑐𝑐! 𝑗 − 𝑃𝑠𝑜𝐴𝑐𝑐𝑃𝑟𝑜𝑓𝑀𝑛! !!
!!! 𝑁 , 𝑖 =

1,… ,𝑃𝑠𝑜!"#  
𝑷𝟏𝟗:𝑷𝒔𝒐𝑨𝒄𝒄𝑷𝒓𝒐𝒇𝑺𝒌𝑫𝒊𝒔𝒕𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑖𝑠𝑡𝑟𝑆𝑡𝑎𝑡 ·  on acceleration profile-sample skewness of post-saccadic 
oscillations: 

𝑃𝑠𝑜𝐴𝑐𝑐𝑃𝑟𝑜𝑓𝑆𝑘! =
!"#$%%! ! !!"#$%%!&#'()! !

!
!!! !

!"#$%%! ! !!"#$%%!&#'()! !
!
!!! !

! , 𝑖 =

1,… ,𝑃𝑠𝑜!"#  
𝑷𝟐𝟎:𝑷𝒔𝒐𝑨𝒄𝒄𝑷𝒓𝒐𝒇𝑲𝒖𝑫𝒊𝒔𝒕𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑖𝑠𝑡𝑟𝑆𝑡𝑎𝑡 ·  on acceleration profile-sample kurtosis of post-saccadic 
oscillations: 

𝑃𝑠𝑜𝐴𝑐𝑐𝑃𝑟𝑜𝑓𝐾𝑢! =
!"#$%%! ! !!"#$%%!&#'()! !

!
!!! !

!"#$%%! ! !!"#$%%!&#'()! !!
!!! !

! , 𝑖 =

1,… ,𝑃𝑠𝑜!"#  
 

List 17. Saccade-post-saccadic oscillation characteristic ratio features 

𝑷𝟐𝟏:𝑷𝒔𝒐𝑺𝒂𝒄𝑫𝒖𝒓𝑷𝒔𝒐𝑫𝒖𝒓𝑹𝒂𝒕𝒊𝒐𝑫𝒊𝒔𝒕𝒓𝑺𝒕𝒂𝒕 
𝐷𝑖𝑠𝑡𝑟𝑆𝑡𝑎𝑡 ·  on saccade-post-saccadic oscillation duration ratios: 
𝑆𝑎𝑐𝐷𝑢𝑟𝑃𝑠𝑜𝐷𝑢𝑟!"#$%! =

!"#$%&!
!"#$%&!

, 𝑖 = 1,… ,𝑃𝑠𝑜!"#  

𝑷𝟐𝟐:𝑷𝒔𝒐𝑺𝒂𝒄𝑨𝒎𝒑𝑷𝒔𝒐𝑫𝒖𝒓𝑹𝒂𝒕𝒊𝒐𝑫𝒊𝒔𝒕𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑖𝑠𝑡𝑟𝑆𝑡𝑎𝑡 ·  on saccade amplitude-post-saccadic oscillation duration 
ratios: 𝑆𝑎𝑐𝐴𝑚𝑝𝑃𝑠𝑜𝐷𝑢𝑟!"#$%! =

!"#$%&!
!"#$%&!

, 𝑖 = 1,… ,𝑃𝑠𝑜!"#  

𝑷𝟐𝟑:𝑷𝒔𝒐𝑺𝒂𝒄𝑨𝒎𝒑𝑷𝒔𝒐𝑴𝒂𝒙𝑨𝒃𝒔𝑫𝒆𝒗𝑹𝒂𝒕𝒊𝒐𝑫𝒊𝒔𝒕𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑖𝑠𝑡𝑟𝑆𝑡𝑎𝑡 ·  on saccade amplitude-post-saccadic oscillation maximum 
absolute deviation ratios: 
𝑆𝑎𝑐𝐴𝑚𝑝𝑃𝑠𝑜𝑀𝑎𝑥𝐴𝑏𝑠𝐷𝑒𝑣!"#$%! =

!"#$%&!
!"#$%&'(")*+!

, 𝑖 = 1,… ,𝑃𝑠𝑜!"#  

Lists of Post-saccadic oscillation Features 
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𝑷𝟐𝟒:𝑷𝒔𝒐𝑺𝒂𝒄𝑷𝒌𝑽𝒆𝒍𝑷𝒔𝒐𝑷𝒌𝑽𝒆𝒍𝑹𝒂𝒕𝒊𝒐𝑫𝒊𝒔𝒕𝒓𝑺𝒕𝒂𝒕!𝑯𝑽𝑹 
𝐷𝑖𝑠𝑡𝑟𝑆𝑡𝑎𝑡 ·  on saccade-post-saccadic oscillation peak velocity ratios: 
𝑆𝑎𝑐𝑃𝑘𝑉𝑒𝑙𝑃𝑠𝑜𝑃𝑘𝑉𝑒𝑙!"#$%! =

!"#$%&'(!
!"#!$%&'!

, 𝑖 = 1,… ,𝑃𝑠𝑜!!"  

 

Experimental Paradigm 

Figure 7. Examples of post-saccadic oscillation position profiles showing the differences in their ‘oscillatory’ shapes. 

Figure 8. Examples of post-saccadic oscillation velocity profiles showing the differences in their peak velocities and shapes. 

Figure 9. Examples of acceleration profiles of the previously shown post-saccadic oscillations. 
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The data used in this study are from a text reading ex-
periment, where every subject performed two recordings 
in two sessions separated by an interval of 13 to 42 
minutes (M = 19.5, SD = 4.2). Between these two ses-
sions the subjects performed other eye movement tasks 
(non-text stimuli) and had brief periods of rest to mitigate 
eye fatigue. The visual stimulus of the text reading exper-
iment consisted of excerpts from the poem of Lewis Car-
roll “The Hunting of the Snark”. The first six stanzas 
were presented in first session and the next six stanzas in 
second session. The text excerpts were presented in white 
color on a black background using Times New Roman 
bold font of size 20pt, single-spaced, corresponding to 
line height of 0.92° on the presentation screen. Screen-
shots of the used visual stimulus are provided at: 
https://digital.library.txstate.edu/handle/10877/6904. The 
participants were asked to silently read the text, and the 
totally given time was 60 seconds. The recordings were 
post-processed to extract the parts that corresponded to 
the first full pass of the text by each subject. 

Analysis Methods and Results 
Methods for the Assessment of Central Ten-

dency, Variability, and Reliability 

In this section, we present the performed analysis for 
the exploration of the central tendency, variability, and 
test-retest reliability of the extracted features. For the 
calculation of summary statistics describing the central 
tendency and variability of features we employ the medi-
an and inter-quartile range over the feature values from 
the experimental population. We use these measures 
instead of the mean and standard deviation because these 
measures are expected to summarize the feature values 
more robustly both for normally and non-normally dis-
tributed features. We also employ two powerful measures 
for assessing reliability, the Intra-class Correlation Coef-
ficient (ICC) and Kendall’s coefficient of concordance 
(Kendall’s W), used for normally (the former) and non-
normally (the latter) distributed features (see next section 
for definitions). In our experimental paradigm, the as-
sessment of reliability is particularly important because it 
can serve two purposes: a) it reveals the stability of 
measurements taken on different occasions (sessions), 
and b) it can be used as a proxy of the relative variability 
of feature values between subjects (inter-subject) and 

sessions (intra-subject), thus indicating the relative dis-
criminatory power of each feature. 

Assessment of normality 

To assess the direct normality of features we employ 
the Pearson’s χ2 test and calculate the p values at 5% 
significance level. Features that are not directly normal 
are subjected to a number of classic normalization trans-
formations followed by reassessment of the test. The used 
transformations applied on each feature distribution X 
are: the logarithm → log 𝑋 + 1 , the square root 
→  𝑠𝑞𝑟𝑡 𝑋 + 0.5 , the cube root →  𝑠𝑖𝑔𝑛(𝑋) ∙ 𝑋! , the 
reciprocal → 1 𝑋, the arcsine →  2 ∙ sin!! 𝑋 (for pro-
portions), and the logit →  log 𝑎𝑑𝑗𝑋 1 − 𝑎𝑑𝑗𝑋  (for 
proportions and features in range [0, 1]) with 𝑎𝑑𝑗𝑋 repre-
senting X adjusted in range [0.025, 0.075] to avoid unde-
fined cases. The logarithm, square root, cube root, and 
reciprocal were complementary evaluated for the reflec-
tion transformation →  𝑚𝑎𝑥 𝑋 + 1 − 𝑋. Furthermore, in 
order to evaluate cases where the deviation from normali-
ty is due to outliers at the extremes, we perform Winso-
rization (Ruppert, 2004) with maximum-minimum limits 
at 5%-95% percentiles of distribution, and we reassess 
normality following the previous procedures. 

Assessment of reliability 

Intraclass Correlation Coefficient (ICC): The ICC is 
a measure that can be calculated for normally distributed 
data in order to evaluate either the absolute agreement 
(accounts for systematic differences) or the consistency 
(does not account for systematic differences) of quantita-
tive measurements, and thus, it can be used to assess the 
reliability among different occasions (in our case differ-
ent recording sessions). Six basic forms of ICC and their 
calculation procedures are described in (Shrout & Fleiss, 
1979). In the current work we use the ICC to assess abso-
lute agreement, and for this reason, we employ the third 
ICC form (denoted as ICC(2, 1) in (Shrout & Fleiss, 
1979)). The original approach for calculating the respec-
tive variance estimates is based on ANOVA tables. For 
cases involving two-way random effect models (like the 
current case) there is also a more robust approach for this 
calculation based on variance component maximum like-
lihood (VCML) analysis (Searle, Casella, & McCulloch, 
1992). We currently adopt this approach to calculate the 
ICC. The ICC takes values in range [0.00, 1.00] (1.00 
indicates complete agreement). The work of (Cicchetti, 
1994) suggested some rules of thumb for interpreting the 
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ICC values, in specific, [0.75, 1.00] indicates ‘excellent’ 
agreement, [0.60, 0.75) indicates ‘good’ agreement, 
[0.40, 0.60) indicates ‘fair’ agreement, and [0.00, 0.40) 
indicates ‘poor’ agreement. 

Kendall’s coefficient of concordance (Kendall’s W): 
The Kendall’s W (Kendall & Babington Smith, 1939) is a 
non-parametric measure that can be used to assess occa-
sion agreement without the requirement for normally 
distributed data. The Kendall’s W is calculated as a nor-
malization of the Friedman test statistic (Friedman, 1937) 
in range [0.00, 1.00], with 1.00 indicating complete 
agreement. The process of estimating Kendall’s W does 
not make any prior assumption for the nature of the data 
distribution but instead performs statistical calculations 
based on data rankings. Since Kendall’s W is calculated 
for non-normally distributed data and since there are no 
similar rules (ranges) for the interpretation of values as 
for the ICC (‘excellent’, ‘good’ etc.), it is not advised to 
directly compare values of ICC and Kendall’s W. 

Results and Discussion for Central Tenden-
cy, Variability, and Reliability 

The tables of results presented below are structured in 
two-levels: the top part presents results for single-value 
features. The bottom part presents results for multi-value 
features (six feature subtypes are presented in corre-
sponding columns). As already described, these multiple 
values are extracted by calculating descriptive statistics 
(columns Mn, Md, Sd, Iq, Sk, Ku) on values from multi-
ple feature instances in a recording. The tables present 
values only for the independent components of eye 
movement (horizontal H, and vertical V), except for the 
features extracted only from the radial component or 
from trajectory in 2-D plane. In Tables 1, 3, and 5 (fixa-
tions, saccades, and post-saccadic oscillations respective-
ly) we present the values of central tendency (median, 
denoted MD) and overall variability (inter-quartile range, 
denoted IQ) for features values across subject population. 
In Tables 2, 4, and 6 we present the respective measures 
from the assessment of normality and reliability of fea-
tures. In this case, for each feature there is one column 
indicating the maximum p value (p) calculated following 
the described procedures for normality assessment, and 
the adjacent column presents the value of either the ICC 
when p value denotes a normally distributed feature (p ≥ 
0.05), or Kendall’s W when p value denotes a non-
normally distributed feature (p < 0.05). To further facili-

tate the overview of results, the cells that correspond to 
non-normal features have been highlighted using light-
grey shading. Although the two reliability measures 
(ICC/W) are presented interchangeably in the same col-
umn for simplicity, we should once more emphasize that 
it is not advised to directly compare their values. 

In Table 1, we can overview the typical values of 
fixation features calculated over the experimental popula-
tion. We can observe that the median fixation duration 
was calculated to be about 200 ms (F02) and corresponds 
on an average rate of about 3-4 fixations per second 
(F01). This duration is within the expected range for 
fixations during reading, and similar values have been 
reported in previous research studies (Nyström & 
Holmqvist, 2010; Rayner, 1998). Since the fixation cen-
troid (F03) is a direct measure of position, the extracted 
values for this feature are heavily affected by the posi-
tioning and centering of the stimulus.  However, when a 
common stimulus is used for all subjects (as in our exper-
iments) the median and inter-quartile range can provide 
clues about the existence of systematic error and its vari-
ability, either system-related or subject-related (unique 
error signature) (Hornof & Halverson, 2002). As revealed 
from the values of F05-F06, the drift during fixation 
affects in a similar way both components of eye move-
ment. Furthermore, the drift speeds of the two compo-
nents (F06) seem to be very close to previously reported 
values of 0.5°/s (Poletti et al., 2010). The values of the 
drift linear-fit slope feature (F07) reveal a positive ten-
dency for the horizontal component and negative tenden-
cy for the vertical. Another important observation is that 
the values of the quadratic-fit R2 feature (F09) are larger 
than these of the linear-fit R2 feature (F08), which seems 
to indicate the occasional appearance of non-linearity 
(curvature) in fixation drifts (see Figure 1), a phenome-
non previously reported in (Cherici, Kuang, Poletti, & 
Rucci, 2012). Finally, the calculated values for velocity 
and acceleration (F14 to F25) demonstrate the relatively 
low levels of eye mobility during fixations, compared to 
the corresponding levels for saccades and post-saccadic 
oscillations (see corresponding tables). 

The examination of Table 2 allows for an assessment 
of the normality and reliability of fixation features. In 
overall, 50.7% of fixation features (feature subtypes) are 
found to be normally distributed and the rest are distrib-
uted non-normally. An examination of the shaded parts of 
the table (non-normal features) reveals that there is a 
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general tendency for non-normality from the acceleration 
feature categories, and when using the kurtosis (Ku) de-
scriptive statistic irrespectively of feature category. For 
the case of fixations, the calculated ICC values for as-
sessing reliability are in range of 0.06 to 0.92. Following 
the categorization suggested in (Cicchetti, 1994) we can 
see that 32.5% of them are in the region of ‘excellent’  
reliability, 20.5% in the region of ‘good’ reliability, 
23.9% in the region of ‘fair’ reliability, and 23.1% in the 
region of ‘poor’ reliability. The top performing fixation 

features in terms of reliability are F14, F15, F16 (model-
ing of fixation velocity profile with mean, median, and 
standard deviation), F09 (R2 when modeling fixation drift 
with quadratic-fit), and F02 (fixation duration). For the 
case of non-normal features, the calculated W values are 
in range of 0.52 to 0.98. The difference in ranges of ICC 
and W (values of W seem to be compressed in the upper 
half of range [0.00, 1.00]) portrays the risk of attempting 
to directly compare the values of the two measures.  

Table 1. Statistics of central tendency and variability for fixation features over the experimental population. 

* Skewness and kurtosis are unit-less measures, so, the feature units do not apply on them 
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From the respective values we can see that the top per-
forming fixation feature categories based on Kendall’s W 
measure are F21, F22, F23 (modeling of fixation acceler-
ation profile with mean, median, and standard deviation), 
and F05 (travelled distance during fixation drift). It is 
interesting to observe that although the eye mobility is 
relatively limited during fixations, the dynamic features 
(based on velocity and acceleration) seem to provide the 
best test-retest measurement agreement both for the case 
of normal and for non-normal features. 

In Table 3, we present the values for the features ex-
tracted from saccades. The median duration (S02) over 

the experimental population was calculated to be about 
28 ms. This duration seems to be justified given the rela-
tively small amplitude of the saccades performed during 
reading, and it is within the range reported in other stud-
ies that employed the reading paradigm (Abrams, Meyer, 
& Kornblum, 1989; Nyström & Holmqvist, 2010). The 
median rate of saccades (S01) is similar but slightly lower 
than the rate of fixations, possibly due to the post-
filtering of large saccadic events. A very interesting 
group of features are those that model the curvature of 
saccadic trajectory. As explained, the feature of saccade 
efficiency (S05) models the difference between the am-
plitude and the actual travelled distance during a saccade. 

Table 2. Statistics of normality and reliability for fixation features over the experimental population. 
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The smaller values of saccade tail efficiency (S06) (effi-
ciency at the ending part of saccade) when compared to 
overall saccade efficiency (S05) indicates the appearance 
of ‘hooks’ in saccade trajectory towards the ending part 
(when the post-saccadic oscillation phase begins). Quali-
tative observations of such phenomena have been report-
ed in previous studies (Bahill & Stark, 1975a). The calcu-
lated value for the point of maximum raw deviation (S11) 
shows that in general the maximum raw deviation can be 
expected to occur around the middle (54%) of saccadic 
trajectory. Since the horizontal component of eye move-
ment is typically more active during the reading task, the 
values for the dynamic features are much larger than for 
the vertical component. The median horizontal peak ve-
locity (S21) was calculated to be about 170°/s, and the 
relatively large values of the Sd and Iq feature subtypes 
reveal a considerable variability of the peak velocity 
during the duration of a recording. The values of peak 
acceleration and deceleration (S27, S28) are both close to 
13000°/s2. Similar values but for much smaller popula-
tion are reported in (Abrams et al., 1989). The median 
peak acceleration appears to be in overall slightly larger 
than the peak deceleration, however, the reported varia-
bility does not allow to support the generality of this 
phenomenon. The calculated values for the features of 
acceleration-deceleration duration ratio (S39) and peak 
acceleration-peak deceleration ratio (S40) also suggest 
the volatility of this difference. The median acceleration-
deceleration duration ratio seems to be slightly over one 
although it is expected that the larger values of peak ac-
celeration (compared to peak deceleration) should corre-
spond to smaller values of duration. An explanation for 
this discrepancy is that, in general, there is greater diffi-
culty to accurately estimate the exact durations of the 
acceleration-deceleration phases (atypical profiles, multi-
ple zero-crossings etc.) compared to the estimation of 
peak values. The overview of the features of saccadic 
reading behavior further clarifies the previously discussed 
difference in fixation and saccade rates (features F01, 
S01). In specific, by adding the rates of ‘large’ saccades 
(S49, S50) and ‘small’ saccades (S47, S48) we get a value 
that is much closer to the fixation rate. The rate of left-
ward large saccades (S50) is 0.4 (about one such saccade 
per two seconds), and seems to be consistent with the 
expected rate of line changes during normal reading. The 
calculated value for the rate of leftward small saccades 
(S48) is 0.8 (about one such saccade per second), a value 
that seems to be quite large to represent only word re-

gressions. This value can be attributed to small corrective 
saccades performed during reading, e.g., for correcting 
undershoots during line changes (Rayner, 1998). 

The overview of the results from assessing the nor-
mality and reliability of saccade features is provided in 
Table 4. An initial observation is that the percentage of 
saccade features that are normal (or can be normalized) is 
much larger (74%) than previously. A prominent cluster-
ing of non-normal features seems to occur for some of the 
skewness (Sk) and kurtosis (Ku) feature subtypes. Also, a 
considerable clustering of non-normal features can be 
observed in feature categories S05, S06, S07 (saccade 
efficiency, tail efficiency, tail inconsistency). For the case 
of saccade features, the calculated ICC values range from 
0.00 to 0.96, with relatively larger percentage (42.1%) of 
them being highly reliable (‘excellent’ reliability), 19.9% 
are considered of ‘good’ reliability, 16.9% present ‘fair’ 
reliability, and 21.1% present ‘poor’ reliability. The sac-
cade feature categories with the top values of ICC are S36 
(the ratio of saccade peak velocity to saccade duration), 
S29, S30, S31 (modeling of saccade acceleration profile 
with mean, median, and standard deviation), and S06 
(saccade tail efficiency). Top values refer to horizontal 
(or radial) components since they are more reliable than 
vertical components. There are also several other feature 
categories with exceptional reliability (ICC > 0.9), as for 
example S02 (saccade duration) and S27-S28 (peak ac-
celeration and peak deceleration). As previously, the 
calculated Kendall’s W values for the non-normal fea-
tures seem to be compressed at the upper half of range, 
varying from 0.44 to 0.98. The excellent reliability of 
feature S36 (ratio of saccade peak velocity to saccade 
duration) is further solidified by the higher Kendall’s W 
measure calculated for the Mn subtype of this feature, 
which was designated as non-normal (the rest subtypes 
were designated as normal). The same holds for features 
S06 (saccade tail efficiency) and S02 (saccade duration) 
for subtype Md. These and other similar cases (where 
some feature subtypes are designated as normal and some 
as non-normal) seem to imply that although the values of 
ICC and Kendall’s W cannot be directly compared, there 
is a certain degree of correspondence in their relative 
assessments about which feature categories are more 
reliable than others. Finally, another saccade feature 
category with non-normal members with very high W 
values is S20 (number of local minima in velocity pro-
file). 
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Table 3. Statistics of central tendency and variability for saccade features over the experimental population. 
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Table 4. Statistics of normality and reliability for saccade features over the experimental population. 
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 In Table 5, we show the values for the post-saccadic 
oscillation features. The median duration (P01) was cal-
culated to be about 14 ms, and the median interval be-
tween post-saccadic oscillations (P02) was found to be 
about 400 ms (though, with high variability). In overall, 
post-saccadic oscillations seem to occur at more than half 
of the saccades (P03). This finding agrees with previous 
observations (Nyström & Holmqvist, 2010) and further 
justifies the necessity for modeling the characteristics of 
post-saccadic oscillations. The vast majority of post-
saccadic oscillations (76.5%) are ‘slow’ (P04) (peak 
velocities between 20°/s and 45°/s), whereas the percent-
ages of ‘moderate’ (P05) (peak velocities between 45°/s 
and 55°/s) and ‘fast’ (P06) (peak velocities larger than 

55°/s) post-saccadic oscillations are about 11-12% each. 
The velocity and acceleration profile-modeling features 
(P10 to P20) demonstrate the intermediate levels of eye 
mobility compared to saccades and fixations. Also, the 
examination of the ratio features shows that the post-
saccadic oscillations have about 2-3 times smaller dura-
tion (P21) compared to the preceding saccades, whereas 
their peak velocities are about 5-6 times smaller (P24) 
than saccades (for horizontal component). 

An overview of Table 6 can reveal the characteristics 
of normality and reliability of post-saccadic oscillation 
features. The percentage of normal (or normalized) post-
saccadic oscillation features is slightly higher than the 
percentage for fixations, lying at 54.9%.  

Table 5. Statistics of central tendency and variability for post-saccadic oscillation features over the experimental population. 
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 The ICC values for the case of post-saccadic oscillations 
range from 0.00 to 0.92, and the corresponding levels of 
reliability for the post-saccadic oscillation features are 
35.5% ‘excellent’, 23.4% ‘good’, 12.1% ‘fair’, and ‘poor’ 
29.0%. Among the most reliable categories of post-
saccadic oscillation features are P03 (percentage of sac-
cades followed by a glissade), and P16 and P18 (model-
ing of post-saccadic oscillation acceleration profile with 
mean and standard deviation). The values of Kendall’s W 
vary from 0.14 to 0.94 with the most reliable features 
appearing in categories P02 (interval between post-
saccadic oscillations), P10 (peak velocity of post-
saccadic oscillations), P13 (modeling of post-saccadic 
oscillation velocity profile with standard deviation), P21 

(ratio of durations of saccades and adjacent post-saccadic 
oscillations), and P22 (ratio of amplitudes of saccades 
and durations of adjacent post-saccadic oscillations). 

Factor Analysis Methods and Results 
Preparation of feature subset for factor analysis  

We extracted 101 general categories of features from 
fixations, saccades, and post-saccadic oscillations. From 
these categories, the single-value features contribute x 1 
feature values, and the multi-value features contribute x 5 
feature values. Also, the features that are extracted from 
horizontal, vertical, and radial components contribute x 3 
feature values, the features extracted from horizontal and 

Table 6. Statistics of normality and reliability for post-saccadic oscillation features over the experimental population. 
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vertical only components contribute x 2 feature values, 
and the features extracted from radial-only component or 
from 2D-trajectory contribute x 1 feature values. Thus, by 
combining the contributions from all feature categories 
we finally result with 1112 unique feature values that are 
extracted from each recording of every subject. Not all of 
these features are suitable for factor analysis, and for this 
reason, we followed a procedure for the preparation of a 
subset of features. Our first step was to remove any fea-
tures that had undefined values or missing data for any 
subject. On this basis, 3 features were removed. Our 
second step was to drop any features that were not nor-
mally distributed and could not be transformed into nor-
mal (following the procedures described in previous 
section). This left 687 features. The remaining features 
contained redundant features. For example, some features 
were based on either the mean (Mn) or the median (Md) 
of the same distribution, or the standard deviation (Sd) or 
the interquartile range (Iq) of the same distribution. We 
did not need two estimates of the central tendency of eye-
movement feature distributions (mean, and median) so 
the less reliable (lowest ICC) measure was dropped from 
further analysis. Similarly, we did not need two measures 
of variance (interquartile range, and standard deviation) 
so the less reliable was dropped. After this step, there 
were 582 features left. We also intercorrelated every 
feature with every other feature, and found those pairs of 
features that were intercorrelated (Pearson’s r) greater 
than 0.90 (absolute value). We considered such pairs of 
features effectively redundant. The lower reliability fea-
ture from each pair was dropped from further analysis. 
This removal of redundant features was done for all sub-
jects for session 1 data. This left 323 features. At this 
stage, the correlation matrix of the features was not posi-
tive definite, and could not, in this condition, be submit-
ted to a factor analysis. As few highly intercorrelated 
features as possible were removed to ensure that the fea-
ture correlation matrix was positive definite. This left 274 
features. In the final step, we removed all remaining 
features with an ICC less than, or equal to 0.7. This left 
our final dataset, ready for submission to factor analysis, 
with 95 features. 

Factor analysis methodology 

We used SPSS (IBM SPSS Statistics for Windows, 
Version 24.0. Armonk, NY: IBM Corp.) to conduct our 
factor analysis. To determine the number of factors we 
conducted a scree plot analysis in R, using the package 

“nFactors” (Raiche, 2010), as shown in Figure 10. The 
factor analysis was based on the correlation matrix of the 
95 features in the final data set. We searched for 16 fac-
tors, based on the scree plot analysis. In our analysis, we 
employed maximum likelihood extraction, which is well 
suited to multivariate normal distributions (Osborne, 
2014). Also, we employed the most widely used varimax 
rotation to enhance the interpretability of the resulting 
factors. 

 
Figure 10. Scree plot to determine the number of factors to look 
for in the final data set. The three more commonly used analysis 
(mean eigenvalue, parallel analysis and optimal coordinates) 
all indicate that there are 16 factors. 

Factor analysis results 

The factor analysis results are presented in Table 7. 
We employed the rotation factor matrix to extract the 
most important features. For each factor we created a 
description-name, based on our best interpretation of the 
meaning of the 4 most heavily weighted features (abso-
lute value). Table 7 also contains the percent of variance 
accounted for by each factor. It also lists the 4 most heav-
ily weighted features contributing to that factor as well as 
the feature weight (absolute value). The “Saccade Speed” 
factor accounted for 21.3% of the variance in the analy-
sis, approximately more than twice as much as any other 
factor. Two other factors, “Fixation Drift Speed” and “2-
D Saccade Distance Travelled” accounted each for more 
than 10 % of the variance. Factors 11 to 16 each account-
ed for less than 2 % of the variance. It should be noted 
that in some cases the most heavily weighted feature was 
difficult to be interpreted, and thus, we performed addi-
tional analysis and investigated intercorrelations with 
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other features to derive more easily interpretable descrip-
tion-names for the respective factors. For example, for 
factor 14, the most heavily weighted feature is S25 (mod-
eling of saccade velocity profile with skewness), horizon-
tal (H) component, mean (Mn) descriptive statistic. This 
was found to be very highly correlated with the much 
more interpretable feature S37 (ratio of saccade peak 
velocity to saccade mean velocity), horizontal (H) com-
ponent, median (Md) descriptive statistic. So, for this 
factor we finally selected the description-name “Ratio of 
Horizontal Saccade Peak Velocity to Mean Velocity”. 
For factor 15, the most heavily weighted feature is S25 

(modeling of saccade velocity profile with skewness), 
radial (R) component, standard deviation (Sd) descriptive 
statistic. In this case, we investigated cases with high and 
low values for this feature and observed that the cases 
with high values corresponded to velocity profiles with 
several minima and maxima. We verified that there is a 
strong relationship between this feature and feature S20 
(number of local minima in velocity profile), mean (Mn) 
descriptive statistic, which was initially excluded from 
factor analysis because it could not be normalized. Thus, 
we finally selected the description-name “Tendency for 
Multipeaked Saccade Velocity Profiles” for this factor. 

Table 7. Results from factor analysis showing the most heavily weighted features and the percent of accounted variance 
for each factor, along with the interpretation of factors via respective Post Hoc, Ad Hoc assigned description-names. 
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Limitations and Further Extensions 
The current research should be considered within the 

scope of certain limitations. First of all, the recordings of 
eye movements were conducted using a specific model of 
a high-grade eye-tracker (EyeLink 1000). It would be 
very interesting to investigate the stability of feature 
values and the results from reliability assessment for eye 
movement recordings captured with eye-tracker models 
of different specifications. Since most of the highly relia-
ble features were found to be dynamic and related to 
velocity/acceleration traces, which are usually the most 
prone to error, it would be useful to assess the effects of 
different error sources (eye-tracker dependent etc.) on the 
features. Second, the current test-retest interval can be 
considered relatively small (30 min.). Although such an 
interval justifies a preliminary test-retest analysis for 
assessing the reliability of features coming from different 
subjects, the examination of eye movement feature values 
for larger time intervals is expected to shed light on their 
long-term stability. 

A further extension of the current study involves the 
combination of the extracted features into more complex 
entities that can be interpreted within the context of cog-
nitive and visual behavior models. Examples of such 
models specifically for the task of reading have been 
presented in various previous studies, e.g., see (Reichle, 
Pollatsek, Fisher, & Rayner, 1998), (Engbert, Nuthmann, 
Richter, & Kliegl, 2005), (McDonald, Carpenter, & 
Shillcock, 2005), (Reilly & Radach, 2006), and (Kliegl, 
Nuthmann, & Engbert, 2006). In order to implement such 
more complex entities (complex features) one needs to 
take into consideration the influences not only of fixated 
word properties but also of previous and upcoming words 
(lag- and successor-word effects), or it is even possible to 
code the features based on larger clusters of words, e.g., 
word quintets (Heister, Würzner, & Kliegl, 2012). 

Conclusion 
In this work, we presented an overview of an exten-

sive collection of features that can be extracted from eye 
movements. The described features can be used for mod-
eling the characteristics of fixations, saccades, and post-
saccadic oscillations, and allow for examining the physi-
cal and behavioral properties of eye movements. Along 
with the presented methods for the extraction of features, 

we examined their variability and test-retest reliability, 
and performed factor analysis using data from a large 
population of subjects. The presented methods and analy-
sis can provide further insights on the temporal, position-
al, and dynamic properties of eye movements, and can 
serve as a useful tool for studies and applications involv-
ing the exploration and selection of eye movement fea-
tures. 
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