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Introduction 
Studying dynamics of eye movements plays an im-

portant role in the development of various eye therapies 
(Alvarez, 2015) and provides useful information about un-
derstanding of neurological processes and the human brain 
function, (Kennard & Leigh, 2008; Leigh & Zee, 2006). 
Modeling of the disparity convergence has been studied in 
several papers (Alvarez, Bhavsar, Semmlow, Bergen, & 
Pedrono, 2005; Alvarez, Semmlow, & Pedrono, 2005; 
Alvarez, Semmlow, & Yuan, 1998; Alvarez, Semmlow, 
Yuan, & Munoz, 1999; Horng, Semmlow, Hung, & 
Ciuffreda, 1998; Hung, 1998; Hung, Semmlow, & 
Ciufferda, 1986; Jiang, Hung, & Ciuffreda, 2002; 
Khosroyani & Hung, 2002). In some studies (Alvarez, 

Jaswal, Gohel, & Biswal, 2014; Kim, Vicci, Granger-
Donetti, & Alvarez, 2011; Lee, Semmlow, & Alvarez, 
2012; Radisavljevic-Gajic, 2006) different problem for-
mulations are used. Some of the papers have observed ex-
perimentally and analytically the presence of the slow and 
fast eye movement dynamics, (Alvarez et al., 1998; Hung 
et al., 1986; Jiang et al., 2002; Khosroyani & Hung, 2002; 
Lee et al., 2012; Radisavljevic-Gajic, 2006) . The analyti-
cal observation was made using the corresponding second-
order mathematical model (Alvarez et al., 1999; Horng et 
al., 1998). 

This paper is a continuation of our previous paper 
(Radisavljevic-Gajic, 2006), originally done for the con-
stant eye stimuli using the second-order dynamic mathe-
matical model derived in Alvarez et al. (1999). For the 
model of Alvarez et al. (1999), we perform exact mathe-
matical analysis with the goal to isolate the slow and fast 
components, and present simulation results for the case of 
time varying eye stimuli since they produce some interest-
ing phenomena not previously observed for the case of 
constant eye stimuli (Radisavljevic-Gajic, 2006). The im-
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portance of presented results is in their mathematical sim-
plicity and exactness. The results obtained and conclusions 
drawn are specific for the considered linear second-order 
mathematical model. By no means, in this study, we make 
an attempt to compete with more complex nonlinear mod-
els that might be of higher dimensions and include satura-
tion and time-delay elements. Those models can produce 
results that more closely match the experimental results, 
but they have great difficulty in isolating slow and fast mo-
tions. In the study performed, isolation of slow and fast 
dynamic components is done analytically using exact (not 
approximative) mathematics. 

Disparity convergence eye movement 
and its slow and fast dynamics 

     In this section, we review the main results of 
Radisavljevic-Gajic (2006) that will be used in this paper 
to study the disparity convergence eye movements under 
time varying eye stimuli. The linear dynamic mathemati-
cal model was derived for the disparity convergence eye 
dynamics in Alvarez et al. (1999), page 384, formula (1), 
(see also Hung (1998), page 252 for justification of the use 
of the second-order model) 

  (1) 

 represents the eye position in degrees,  is the 
eye stimulus in degrees with respect to reference eye posi-
tion, eye target position. The time constants in (1) are   

 and . They define respectively 

the slow  and fast  eye time constants 

(Alvarez et al., 1999), which motivated research of 
Radisavljevic-Gajic (2006) to separate the coupled slow 
and fast dynamics into isolated pure-slow and pure-fast de-
coupled (independent) dynamics using theory of two-time 
scale dynamic systems (also known in differential equa-
tions and control engineering as theory of singular pertur-
bations (Kokotović, Khali, & O'Reilly, 1986)). It is inter-
esting to observe that the use of the second-order model is 
justified in Horng et al. (1998), where a first-order model 
is used to represents the vergence oculomotor plant, see 
Figure 2 of that paper. In the follow-up of this paper (see 
Comment 1), we will show that the first-order model of 

Horng et al. (1998) approximately represents the slow var-
iable of the second-order model considered in this paper 
and defined in (1). 

The second-order differential equation (1) is first con-
verted into the state space form (Gajic, 2003), by using the 
following change of variables  and

, producing 

  (2) 

Since  represents the eye position, the variable 

 represents the eye angular velocity. The 

small parameter  that multiplies the first deriva-

tive of  is known as the singular perturbation param-
eter (Kokotović et al., 1986). Its very small value of 

 indicates that the fast and slow dy-
namics are very well separated having the fast state varia-
ble   to be much faster than the slow state variable

. However, due to coupling in (2), the slow variable 

 contains some portion of the fast variable and the 
other way around. Our goal is to exactly separate state var-
iables and obtain pure-slow and pure-fast subsystems that 
are dynamically decoupled, from which we will be able to 
obtain information about the time evolution of pure-slow 
and pure-fast variables. 

The slow and fast variables can be dynamically sepa-
rated by using the very well-known Chang transformation 
(Chang, 1972), given by 

    (3) 

Constants and  are obtained by solving the alge-
braic equations 

           (4) 

Applying (3) to (2) produces the decoupled pure-slow 
and pure-fast subsystems with a common input, that is 
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                        (5) 

          (6) 

The quadratic algebraic equation for   has two solu-
tions. It can be shown that the acceptable solution 
(Radisavljevic-Gajic, 2006) is,  

                                (7) 

Having obtained the value for L, the solution for the M-
equation is given by 

               (8) 

Using (7) and (8)  in (5) and (6), produces two first-
order differential equations for pure-slow and pure-fast 
variables, whose coefficients are given in terms of the cor-
responding slow and fast  time constants 

                 (9) 

       (10)  

It should be observed that the pure-slow dynamics if 
determined only by the slow time constant, which is natu-
rally expected. However, the pure-fast dynamics is deter-
mined by both the fast and slow time constants. Having 
obtained separated pure-slow and pure-fast mathematical 
models (9)-(10), the eye slow and fast dynamics can be in-
dependently studied and better understood since the cou-
pling between slow and fast subsystems is eliminated.  

The inverse Chang transformation relates the original 
state variables and the pure-slow and pure-fast variables 
obtained from (9)-(10) via the inverse Chang transfor-
mation (Chang, 1972), given by  

  (11) 

which leads to 

       (12) 

             (13) 

In the next section we perform simulation study of the 
pure-slow and pure-fast first-order models (9) and (10), 
and corresponding state variables (12) and (13) (eye posi-
tion and eye angular velocity) given in terms of solutions 
of (9) and (10).  In the future studies, one might consider 
using saturation and time-delay elements in either (9) 
and/or (10) to match better experimental results, and going 
backwards to the original coordinates (or using 
MATLAB/Simulink block diagrams) develop new nonlin-
ear and higher dimensional mathematical models that have 
better agreements with experimental results. 

Pure-slow pure-fast subsystems under 
time varying stimuli 

The constant input responses for the pure-slow and 
pure-fast dynamics with zero initial conditions) were con-
sidered in Radisavljevic-Gajic (2006). In this section, we 
consider the eye stimuli force as a time varying function. 
We assume that the force changes periodically from 30 to 
10 degrees every two seconds during the time interval of 
10 seconds, that is 

        (14) 

Using the given numerical data for the time constants 
the pure-slow and pure-fast mathematical models are 
given by 

                 (15) 

              (16) 

The transfer function (Gajic, 2003), of the pure-slow 
(15) and pure-fast (16) subsystems are respectively given 
by 
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           (17) 

          (18) 

where are the Laplace transforms of 

the corresponding signals.  

Comment 1: It is interesting to observe that in Horng et 
al. (1998), a first-order model is used to represents the ver-
gence oculomotor plant, with the transfer function defined 
by 

                     (18a) 

This approximate first-order model completely ignores 
the presence of the fast dynamics in the system. The ap-
proximate slow dynamics that partially includes infor-
mation about the fast dynamics can be obtained from (2) 
by simply setting  in the second equation, which 
leads to the more accurate approximate slow subsystem 
than the one considered in Horng et al. (1998), represented 
by one differential and one algebraic equation     

  (18b) 

Eliminating , the approximate slow subsystem 
and its transfer function are given by 

       (18c) 

Comparing  and , it appears that 

 is closer to the exact  from (17) than

. 

Note that if one intends to use Simulink, the transfer 
functions (17) and (18) should be placed in parallel. This 

parallel structure is convenient for introduction of different 
saturation elements or time-delay elements along the lines 
of Horng et al. (1998), which in this case can be done in-
dependently for pure-slow or pure-fast dynamics. It should 
be emphasized that introduction of saturation elements 
leads to nonlinear models, and that the time-delay ele-
ments produce in general infinite dimensional models 
(models described by partial differential equations) and as 
such they have much more complex dynamics than the 
model considered in this paper – the dynamics that can dis-
play limit cycles (oscillations caused by saturation ele-
ments) and even chaotic behavior. 

From the slow and fast transfer functions we can get 
information about how much are the pure slow-slow and 
pure-fast signals amplified at steady state by finding the 
corresponding gains. The steady state gains (Gajic, 2003), 
are given by 

                               (19) 

         (20) 

An interesting observation from (20) is that the pure-
fast subsystem steady state gain is reciprocal to the slow 
time constant. Results in (19) and (20) indicate that pure-
slow signals will have no amplification at steady state and 
that pure-fast signals will be considerably (4.4645 times) 
amplified at steady state. 

       The original variables   and  

  are obtained from (12) and (13) as fol-
lows 

            (21) 

           (22) 
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The simulation results of (15)-(16) and (21)-(22), as-
suming zero initial conditions, that is,  and

, are presented in Figs. 1-4. 

 
Figure 1. The responses of the pure-slow  and pure-fast 

 variables in the interval of 10 seconds assuming zero 

initial conditions. It can be observed from this picture that the eye 
stimuli in the range of  to  generate the pure-fast 

component in the range from  to . The figure shows 
also that the pure-slow component remains in the same range as 

the input signal, that is, from  to . 

 
Figure 2. The variables  and  as functions of time.  It 

can be observed that the first peak of  is around  

and that the follow up peaks are around . This is caused 
due to different initial conditions at  and . It was 
shown in the paper that  and . Due to 

the input signal decrease from  to , the fast variable takes 

a large negative value of . During the half period of 
two seconds  changes very drastically, from positive 

 to negative , producing the absolute change of
. 

                                                             

Figure 3. Eye position  and its pure-slow and pure-fast 
components. Due to the fact that the slow variable is dominated 
by its pure-slow components and that it has a negligible 
contribution of the pure-fast component, the figure shows that 
practically , which was also verified analytically in 
formula (21). 

Discussion of the obtained simulation 
results 

The dynamic responses of the pure-slow  and 

pure-fast  variables in the time interval of 10 sec-

onds are presented in Figure 1. It can be observed from this 
picture that the eye stimuli in the range of  to , due 
to amplification at steady state as given by (20) generate 
the pure-fast component in the range from 

 to . The 
same figure shows that the pure-slow component remains 
in the same range as the input signal, that is, from  to

, due to the fact that the pure-slow subsystem steady 
state gain is . 

The eye position in the original coordinates , and 
the eye original coordinates angular velocity (the time rate 
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of the position change)  are plotted in Figure 2.  It 

should be observed that the first peak of  is around 

 and that the follow up peaks are around . 
This is caused due to different initial conditions at  
and . We started simulation with zero initial condi-
tions, that is, for the first period the initial conditions are 

 and . For the second period, the ini-
tial conditions obtained from formulas (21) and (22) are 
non-zero and given by 

 
Figure 4. Eye angular velocity   as a function of time. It can 

be seen that its pure-fast component  very quickly, in 
several milliseconds, reaches steady state with a very high value 
of around . When the stimuli changes instantly 

from  to ,  drops within several milliseconds to a 

little bit below . The pure-slow component 

 goes in the opposite direction and reaches in less than a 

second . These two components form 

and together produce at steady state

.  Without the pure-slow/pure-fast decomposition, one 
would not be able to see these violent components of the eye 
movement dynamics. 

     (23)           

 

In addition, due to the input signal decrease from  

to , the fast component takes a large negative value of

. Hence, during the half period of two seconds, 
the eye angular velocity changes very drastically, from 
positive  to negative , producing the ab-

solute angular velocity change of . 

The slow variable (eye position)  and its pure-
slow and pure-fast components are presented in Figure 3. 
Due to the fact that the slow variable is dominated by its 
pure-slow component and that it has a negligible contribu-
tion of the pure-fast component, the figure shows that prac-
tically , could have been also verified analyt-
ically using formula (21). 

Much more interesting situation is with the fast varia-
ble  that represents the eye angular velocity, see Fig-
ure 4. It can be seen from this figure that its pure-fast com-
ponent  very quickly, in several milliseconds, 
reaches steady state with a maximum value of around

. When the stimuli changes instantly from 

 to  , the variable  drops within several mil-

liseconds to a little bit below . On the 

other hand, the pure-slow component  goes in the 
opposite direction and reaches in less than a second

. These two components form  

 and together produce at steady 

state  for the eye angular velocity.  Without the 
pure-slow/pure-fast decomposition, one would not be able 
to see these violent component in the disparity conver-
gence of the eye movement dynamics. 

Conclusions 
It was shown that the fast component of the eye dy-

namics displays very fast and abrupt changes due to con-
sidered time varying stimuli as demonstrated in Figures 2 
and 4. The angular velocity, due to the change of the stim-
uli force of 20 degrees (from  to ), displays large 

variations of more than , as shown in Figure 4.  
This large change could have been restricted by introduc-
tion of a saturation element. However, that will lead to a 
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new nonlinear mathematical model different than the lin-
ear second-order mathematical model considered in this 
paper. Such nonlinear models are not the subject of this 
paper, and they will be interesting for future research. 
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