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Introduction 
Gaze tracking is a kind of human-computer interac-

tion technology that creates an easy and effective interac-
tion for serving the disabled, learning, entertainment, etc. 
Meanwhile, it is also a research tool, and it has been 
widely used in marketing studies (Lahey & Oxley, 2016), 
reading research (Huck, Thompson, Cruice, & Marshall, 
2017), and so forth. Gaze tracking techniques can be 

divided into electrooculography-based, coils-based, and 
video-based (infrared and natural light) techniques and so 
on (Holmqvist & Andersson, 2017). The third technique 
is less intrusive than the first two, which require physical 
contact sensors such as electrodes and scleral coils. 

Today, a variety of existing remote video-based gaze 
tracking systems under infrared (IR) light in academia 
and industry have achieved accurate results. For instance, 
the Dual-Purkinje-Image (DPI) gaze tracker (Crane & 
Steele, 1985) achieves an accuracy better than 0.1° (Deu-
bel & Schneider, 1996). The Eyelink 1000 system per-
forms at an accuracy below 0.5° with a white background 
(Drewes, Zhu, Hu, & Hu, 2014). However, infrared 
sources are sensitive to ambient light. IR gaze trackers 
also have reflection problems when people wear glasses. 
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Therefore, development of a gaze tracking system under 
natural light has become an increasingly important field 
of research.  

Recently, video-based gaze tracking system under 
natural light are capable of tracking the gaze. However, 
some of them rely on multiple cameras (Pan & Steed, 
2014), High-Definition (HD) cameras (El Hafi, Ding, 
Takamatsu, & Ogasawara, 2017) and RGB-D cameras 
(Ghiass & Arandjelovic, 2016; J.Li & S.Li, 2016), which 
limit their applications. With the popularity of cameras, 
gaze tracking with a single-camera under natural light 
becomes a research hot spot, but one of the major chal-
lenges is the requirement for an accurate gaze tracking 
algorithm. Therefore, we concentrate on a regression-
based gaze tracking system with a single-camera under 
natural light in this paper. 

The accuracy of regression-based gaze tracking is di-
rectly influenced by the eye vectors that are derived from 
the iris centers and the facial stable point (anchor point or 
reference point). However, the performance of various 
iris/pupil center localization methods significantly de-
grades in low resolution images because of interference 
such as glass/iris reflection, and eyelid. In addition, the 
anchor points of the eye corners vibrate with eye rotation 
(Sesma, Villanueva, & Cabeza, 2012) and can be blocked 
due to large head movements. Therefore, an accurate 
localization method in low resolution images (Xiao, 
Huang, Qiu, & Shen, 2018) is improved to detect the iris 
center. Then, a novel anchor point is proposed to over-
come the drawbacks mentioned above. Finally, the Points 
of Regard (POR) of the left and right eyes are combined 
to improve the accuracy of the system. Compared with 
other regression-based methods, the main contributions in 
this paper are listed in the following: 

(1) An accurate feature position localization method 
for the iris center is implemented in low resolution imag-
es by combining facial landmarks, the prior knowledge of 
eye anatomical dimensions, and the simple active contour 
snakuscule (Thevenaz & Unser, 2008). 

(2) A novel anchor point is computed by averaging 
the stable facial landmarks, which improves the accuracy 
of the gaze tracking system. 

(3) A weight coefficient is used on the POR of the left 
and right eyes to revise the final POR, which reduces the 
error of the gaze tracking. 

The rest of the paper is structured as follows: In the 
next section, the related work is presented. The details of 
the proposed method are covered in the Methods section. 
The evaluation of the proposed scheme and statistical 
results on public databases are shown in the Evaluation 
section. The discussion is presented in the final section. 

 
Related work 

This section overviews gaze tracking systems under 
natural light. The systems can be classified into feature-
based and appearance-based methods (Hansen & Ji, 
2010).  

Feature-based methods 
Feature-based methods extract features such as the 

iris/pupil center, eye corners and iris/pupil contours. 
Then, model-based and regression-based methods use the 
features to track the gaze. Model-based methods (Wood 
& Bulling, 2014; J.Li & S.Li, 2016) use a geometric eye 
model to compute the gaze direction from the features. 
Regression-based methods (Valenti, Staiano, Sebe, & 
Gevers, 2009; Skodras, Kanas, & Fakotakis, 2015) com-
pute a mapping function between the gaze direction and 
eye vectors. 

The performance of model-based methods relies on 
the accurate detection of the iris center. In J.Li and S.Li 
(2016), the iris center was obtained by an ellipse fitting 
algorithm, where the ellipse of the iris in the image was 
described by the yaw and pitch angles. J.Li and S.Li 
(2016) achieved 7.6° and 6.7° in horizontal and vertical 
directions on the public EYEDIAP database (Mora, 
Monay, & Odobez, 2014) with an execution speed of 3 
frames per second (fps) on a 2.5-GHz Inter(R) Core(TM) 
i5-2400S processor. In Wood and Bulling (2014), the 
shape of the iris was estimated by ellipse fitting. Then, an 
accuracy of 7° of the gaze direction was inferred by the 
hypothesis that the shape of the iris appears to deform 
from circular to elliptical when the iris orientation chang-
es. Wood and Bulling (2014) achieved an execution 
speed of 12 fps on a commodity tablet computer with a 
quad-core 2 GHz processor. Ellipse fitting has a low 
consistency and reliability because iris edges or points 
cannot be accurately extracted in low resolution images. 

In addition to the iris center, the anchor point is one of 
the key features influencing the accuracy of the regres-
sion-based methods. In Valenti et al. (2009), the eye 
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corner was used as the anchor point. Instead of detecting 
the eye corners, the anchor point in Skodras et al. (2015) 
was set as the center coordinate of the patch which con-
tains the inner eye corners and eyebrow edges. The pro-
posed system yielded a mean accuracy of 2.33° and 1.8° 
in the horizontal and vertical directions on their self-built 
database and 7.53° on the public UulmHPG database 
(Weidenbacher, Layher, Strauss, & Neumann, 2007). 
However, eye corners or the center of the patch cannot be 
accurately detected in low resolution images with a large 
head rotation. 

Appearance-based methods 
Appearance-based methods do not extract specific 

features and usually learn a mapping function from eye 
images to gaze directions. In Sugano, Matsushita, & Sato 
(2014), gaze estimation was learned by random regres-
sion forests with a significantly larger dataset, which 
reduced the error by 50% from the work in Mora and 
Odobez (2012) with an error larger than 10°. In Ghiass 
and Arandjelovic (2016), k-nearest neighbor regression 
and adaptive linear regression were used to learn map-
ping functions between eye images and gaze directions, 
which achieved a mean accuracy of 7.2° (keeping the 
head still) and 8.9° (head movement) on the EYEDIAP 
database. With the development of deep learning, convo-
lutional neural networks (CNNs) have been used to esti-
mate the gaze with millions of eye images in Krafka, et 
al. (2016). They proved that a largescale dataset and a 
large variety of data could improve the accuracy of the 
appearance-based model for gaze tracking, which 
achieved errors of 1.71 cm and 2.53 cm without calibra-
tion on mobile phones and tablets, respectively. Krafka, 
et al. (2016) achieved a detection rate of 10–15 fps on a 
typical mobile device. One of the main drawbacks to 
appearance-based methods is that the appearance of the 
eyes is significantly affected by the head pose (Skodras et 
al., 2015). In addition, compared with feature-based 
methods, appearance-based methods generally require 
larger numbers of training images. 

Methods 
The flow chart of the gaze tracking system is depicted 

in Figure 1. The system includes calibration and testing 
phases. In the calibration phase, mapping functions are 
regressed by the head pose, eye vectors and gaze direc-

tions. Afterwards, the head pose, eye vectors and regres-
sive mapping functions are used to track the gaze in the 
testing phase. The feature extraction consists of three 
parts for the iris centers, anchor point and head pose 
calculations. 

 

Figure 1. Flow chart of the gaze tracking system 

First, the eye Region of Interests (ROIs) are extracted 
by twelve points around the eyes, which are tracked by 
the facial landmarks algorithm in Kazemi and Sullivan 
(2014). The eye ROIs are resized to twice the original 
sizes. Then, greyscale erosion is applied. After that, the 
snakuscule is used to locate the iris centers. 

Second, thirty-six stable facial landmarks are used to 
compute the anchor point. Thereafter, the left and right 
eye vectors are computed by the iris centers and the an-
chor point, respectively. 

Third, the head pose is estimated based on the six fa-
cial landmarks of eye corners, nose tip, mouth corners 
and chin by using the OpenCV (Kaehler & Bradski, 
2016) iterative algorithm. 
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Details of the overall system are discussed in the fol-
lowing subsections. 

Iris center localization 
The eye ROI should be detected before locating the 

iris center. Facial landmarks can provide more precise 
positioning of the mouth, eyes, nose, etc. Therefore, an 
ensemble of regression trees algorithm (Kazemi & Sulli-
van, 2014) is used to detect 68 facial landmarks. This 
algorithm uses intensity differences between pixels to 
estimate the positions of 68 facial landmarks. The loca-
tions of 68 facial landmarks are shown in Figure 2. 

 
Figure 2. The locations of 68 facial landmarks 

The rectangular eye ROIs are next extracted by the 
twelve points around the eyes. The boundary coordinates 
of the eye ROIs are computed by the equations in Table 
1.  

Table 1. The boundary coordinates of eye ROIs.  

Left eye Right eye 
Xl = P43x Xl = P37x 
Xr = P46x Xr = P40x 

Yt = min{P44y ,P45y}-3 Yt = min{P38y ,P39y}-3 
Yb = max{P47y ,P48y}+3 Yb = max{P41y ,P42y}+3 

Note: Xl , Xr , Yt and Yb are the left, right, top and bottom 
coordinates of the eye ROIs. Pix and Piy are respectively the x 
and y coordinates of the ith facial landmark. max{,} and min{,} 
denote taking the maximum and minimum values respectively 
among the two values. The coordinate origin is in the top left 
corner of the image. 

Results in Figure 3 show that accurate eye ROIs can 
be extracted even when large head rotations occur. Then, 
the eye ROIs dimensions are magnified by a factor of 
two. Grayscale erosion with a 1-pixel disk structure ele-
ment is used in the eye ROIs to delete possible noise. 
Finally, the simple active contour snakuscule is used to 
locate the iris centers.  

Figure 3. Eye ROIs extraction on the EYEDIAP database 

As shown in Figure 4, snakuscule is an area-based 
circular snake that contains an outer annulus and an inner 
disk. It performs well in detecting circular regions with 
the maximum gray difference of the outer annulus and 
the inner disk. β (Figure 4) is defined as the ratio of outer 
to inner radius. 

 
Figure 4. Structure of a snakuscule 
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Based on the sclera and the iris having the maximum 
gray difference, snakuscule can expand or shrink to max-
imize the values of the outer annulus and the inner disk. 
However, uncontrolled expansion or shrinkage of the 
snakuscule needs numerous iterations before its final 
convergence. To overcome the shortcoming, the 
snakuscule’s inner radius is initialized by the eye anatom-
ical dimensions that the radius of the eyeball is in the 
range of 12-13 mm (Kim & Ramakrishna, 1999) and the 
radius of the iris is approximately equal to an anatomical 
constant (approximately 7 mm) (Newman, Matsumoto, 
Rougeaux, & Zelinsky, 2000) for most people. In addi-
tion, the method works well as the width of the eye ROI 
extracted by facial landmarks is close to the diameter of 
the eyeball in the image. Therefore, the snakuscule inner 
radius is initialized by 

                              (1) 

where N is the width of the eye ROI and α is a constant 
that involves the ratio of iris radius to the eye ROI width.  

Using the initialized snakuscule, the gray difference 
of the outer annulus and the inner disk is calculated by 
use of formula (2) is suggested in Xiao et al. (2018). 

	(2)	

where f(p) denotes the image gray value at the position p. 
Formula (2) is used to compute the gray difference of 
G(pi), where pi  = (xi, yi), xi ∈ [βr, N-βr], xi is an inte-
ger with a minimum interval of 1, yi = [M/2] and M is the 
height of the eye ROI. In other words, the snakuscule is 
used to compute gray differences from left to right along 
the horizontal centerline in the eye ROI. The location 
prc(xrc, yrc) with the maximum G(pi) is the rough iris cen-
ter. 

As shown in Figure 5, (2δ+1)×(2δ+1) iris center can-
didate points are determined by the rough iris center (xrc, 
yrc) in the eye ROI. The unit of δ is the pixel. The iris 
center candidate points are used to accurately locate the 
iris center. In other words, in the range of [xrc±δ, yrc±δ], 
(2δ+1)×(2δ+1) gray differences of G were calculated by 
formula (2). The location pc(xc, yc) with the maximum G 
of the (2δ+1)×(2δ+1) iris center candidate points was 
considered as the final iris center. 

 
Figure 5. (2δ+1)×(2δ+1) iris center candidate points 
determined by the rough iris center (xrc, yrc) 

Anchor point 
Anchor point is used as a reference point to compute 

the eye vector. The use of the inner or outer eye corners 
as the anchor points is the common approach (Valenti et 
al., 2009; Sesma et al., 2012) among regression-based 
methods for gaze tracking under natural light. However, 
Sesma et al. (2012) showed that the eye corners vibrate 
with eye rotations, which introduces errors in the gaze 
tracking. In Skodras et al. (2015), the anchor point was 
set as the center of the image patch tracked by the Lucas–
Kanade inverse affine transform. However, sometimes 
eye corners or the center of the patch cannot be accurate-
ly tracked because they may be blocked or deformed in 
an image with a large head rotation. Therefore, a novel 
anchor point is designed as the reference point in this 
paper. The anchor point pa(xa, ya) is computed by 
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                          (3) 

where n is the number of facial landmarks and (xi, yi) is 
the coordinate of the ith facial landmark. 

There are two advantages to the anchor point. (1) The 
anchor point computed by stable facial landmarks does 
not vibrate with eye rotations and is not blocked with 
large head movements. (2) The mean of the facial land-
marks can reduce the error compared with the single 
feature point near the eye area. 

Head pose  
The action of looking at objects usually involves head 

movement towards the object, and eye rotation focusing 
on the object. Fridman, Langhans, Lee, & Reimer (2016) 
used the head pose to track the gaze. However, Kennedy, 
Baxter, & Belpaeme (2015) found that gaze tracking 
merely based on the head pose is neither accurate nor 
consistent in human-robot interactions. Therefore, gaze 
tracking should synchronize eye rotation and head 
movement. 

For the past several years, different methods for head 
pose estimation have been developed. The 2D-3D point 
correspondence methods achieve robust performance and 
can address large head movements. Therefore, the 
OpenCV iterative (Levenberg-Marquardt optimization) 
algorithm is used to estimate the head pose. 

Mapping functions 
After the eye vectors, head pose and screen coordi-

nates have been obtained, the regression strategy is used 
to establish the mapping function between them. The 
linear terms, squared terms, cubic terms and interactions 
summarized in Blignaut (2016) are widely used for map-
ping eye vectors to screen coordinates. Unlike the head 
pose that was used to improve the eye vectors in Cheung 
and Peng (2015), it is directly introduced in the mapping 
functions. The mapping functions of n points with a pol-
ynomial of n or fewer terms can be expressed by 

        (4) 

where gh and gv are the POR of the horizontal and vertical 
directions, the coefficients ak and bk are determined by 
the calibration phase, eh and ev are the eye vectors of the 
horizontal and vertical directions, and hp, hy and hr are the 
head pose angles of the pitch, yaw and roll, respectively. 
In this paper, six mapping functions derived by formula 
(4) are used to estimate the gaze. As shown in Table 2, 
the mapping functions of No.1 and No.2 use the linear 
and squared terms of eye vectors. No.3, No.4, No.5 and 
No.6 mix the linear and squared terms of eye vectors and 
head pose. 

Table 2. Six mapping functions derived by formula (4), where 
the subscript “i” denotes “h” or “v”. 

No. Mapping functions 
1  
2  
3  
4  

5  

6  

Ocular dominance theory is common and long-
standing (Miles, 1930). In Nyström, Andersson, 
Holmqvist, & Van De Weijer (2013), a dominant eye is 
shown to be more accurate on SMI HiSpeed 500-Hz eye 
tracker systems. In addition, Quartley and Firth (2004) 
found that observers favor the left eye for leftward targets 
and the right eye for rightward targets. Furthermore, for 
relatively small eye-in-head rotations, Cui and Hon-
dzinski (2006) proved that taking the average POR of the 
two eyes for gaze tracking is more accurate than using 
only one eye on remote eye tracker. In addition, one of 
the eyes may be blocked due to a large head movement. 
To unify these situations, a weight coefficient is used on 
the POR of the left and right eyes to revise the final POR 
of the horizontal gfh and vertical gfv directions. 

          (5) 

where w is the weight coefficient and glh, grh, glv and grv 
are POR of the horizontal and vertical directions of the 
left and right eyes, respectively.  
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Evaluation 
Databases 
The GI4E database (Villanueva et al., 2013) consists 

of 1236 images (800×600) from 103 different partici-
pants. Each participant has 12 images in which the partic-
ipant gazed at different points on the screen. A large 
number of participants with low resolution images make 
it suitable for evaluating the performance of the proposed 
iris center localization method.  

The EYEDIAP database contains RGB (640×480), 
RGB-D and HD (1920×1080) video clips from 16 partic-
ipants. Continuous Screen (CS), Discrete Screen (DS) 
and 3D Floating Target (FT) are the stimuli that were 
used for the participants to gaze at. As shown in Figure 6, 
on the computer screen, DS target was drawn every 1.1 
seconds on random locations and CS target was pro-
grammed to move along a random trajectory for 2s. The 
participants were asked to keep an approximately Static 
(S) or perform head Movements (M) when they gazed at 
the visual target. Each participant was recorded for 2 to 3 
minutes. The proposed method was implemented on the 
RGB video clips that contains Discrete Screen with Static 
(DSS) and Discrete Screen with head Movements (DSM), 
and Continuous Screen with Static (CSS) and Continuous 
Screen with head Movements (CSM).  

On the EYEDIAP database, the frame-by-frame 
screen target coordinates, head pose tracking states and 
eyes tracking states including the eyeballs’ 3D coordi-
nates have been provided in the files of 
"screen_coordinates.txt", "head_pose.txt" and "eyes 

tracking.txt", respectively. It is noted that, a total of 52 
RGB video clips of 13 participants were used to estimate 
the gaze in this paper because the 12th and 13th partici-
pants only recorded the video clips for 3D FT and the 7th 
participant’s facial landmarks can be tracked on a small 
fraction of the entire RGB video clips due to the poor 
contrast. 

Evaluation of iris center localization 
The computation of the estimated eye center normal-

ized error by use of formula (6) is suggested in Jesorsky, 
Kirchberg, & Frischholz (2001). 

																						(6) 

where dleft and dright are the distances between the estimat-
ed and labelled iris centers of the left and right eyes, and 
d is the distance between the labeled left and right iris 
centers. The estimated eye centers in the range of the 
normalized error e ≤ 0.05 that are equivalent to locate in 
the pupil can be used for gaze tracking applications 
(Timm & Barth, 2011). Therefore, e ≤ 0.05 is used as the 
benchmark to evaluate the optimal parameters of the iris 
center localization method in this paper. 

For iris center localization, α, β and δ with different 
values were used on the GI4E database. The optimal 
values can be obtained when the number of eyes with a 
normalized error e ≤ 0.05 reaches the maximum value. 
Therefore, values for α from 0.21 to 0.25 with the mini-
mum interval of 0.05, β from 1.32 to 1.52 with the mini-
mum interval of 0.04 and δ from 1 to 4 with the minimum 
interval of 1 were assessed in this paper

Figure 6. Example of screen coordinates for a video clips using (a) Discrete Screen target, (b) Continuous Screen tar-
get on the EYEDIAP database. 

max( , )
= left rightd d
e

d

(a) (b)
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Figure 7. The number of images from the GI4E database with a normalized error e ≤ 0.05 for different values ofα, 
β and δ, where (a)δ= 1 (b)δ= 2 (c)δ= 3 and (d)δ= 4. 

As shown in Figure 7, the maximum number of imag-
es with a normalized error e ≤ 0.05 is 1222 when α = 
0.25, β = 1.4 and δ = 1 or 2.  

Evaluation of different mapping functions 
The performance of different mapping functions was 

compared on the DSS, CSS, DSM and CSM RGB video 
clips. Iris centers were detected by the optimal parame-
ters of α = 0.25, β = 1.4 and δ = 1 or 2. The anchor point 
was computed by formula (3), where the unstable facial 
landmarks around the mouth and eye areas were re-
moved. Therefore, the parameter n equals 36. Then, the 
eye vectors for the horizontal and vertical directions were 
computed by the iris centers and the anchor point. Head 
pose was estimated by the iterative with six points (9, 31, 
37, 46, 49 and 55 in Figure 2). Finally, the six mapping 
functions listed in Table 2 were used to estimate the gaze 
from the eye vectors and the head pose. 

For each RGB video clip on the EYEDIAP database, 
the first 1000 frames that the faces could be detected 
were used as calibration frames, and the remaining 
frames were used as testing frames. The gaze tracking 
errors for the 13 participants were computed by averaging 
the results of the participants’ testing frames. The gaze 
tracking error of each frame is computed by the POR of 
the left eye, the original 3D coordinate of the eye gaze 
screen point and the original 3D coordinate of the left 
eyeball.  

The average gaze tracking errors of 52 RGB video 
clips that were used to evaluate the optimal mapping 
functions are shown in Table 3. Overall, the mapping 
functions of No.4 and No.2 achieved the best results in 
the horizontal and vertical directions, respectively. In 
addition, the gaze tracking errors show that δ = 2 per-
forms better than δ = 1. Therefore, the following experi-
mental results that involve the iris centers localization are 
conducted with δ = 2. Meanwhile, the horizontal and 
vertical gaze tracking errors in the following experiments 
are regressed by the mapping functions of No.4 and No.2, 
respectively. 

Table 3. The average gaze tracking errors (degrees) of 52 RGB 
video clips on the EYEDIAP database computed by six mapping 
functions. 

No. 
δ = 1 δ = 2 

H V C H V C 
1 6.4  4.0  7.5  6.3  3.9  7.4  
2 6.4  3.9  7.5  6.2  3.8  7.3  
3 6.0  4.1  7.3  5.8  4.1  7.1  
4 5.8  4.0  7.0  5.7  4.0  7.0  
5 6.2  4.6  7.7  6.1  4.6  7.6  
6 6.1  4.5  7.6  5.9  4.4  7.4  

Note: No. denotes the mapping functions in Table 2. H, V and C 
are the horizontal, vertical and combined gaze tracking errors, 
respectively. C is the sum of the squares of the H and V. The 
minimum errors are marked as bold. 

(a)

(c) (d)

(b)
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Evaluation of the weight coefficient w 

In this paper, the weight coefficient w ∈ [0,1] with a 
minimum value of 0.1 was used to compute the gaze 
tracking errors on the EYEDIAP database. As shown in 
Figure 8, w = 0.5, 0.6 and 0.5 achieve the best horizontal, 
vertical and combined gaze tracking errors, respectively. 
For simplicity, w = 0.5 was used in this paper.  

Figure 8. The H, V and C gaze tracking errors computed 
by different w on the EYEDIAP database. 

To provide more comprehensive improved results by 
w for the 13 participants on the EYEDIAP database, the 
horizontal, vertical and combined gaze tracking errors on 
the DSS and CSS RGB video clips are shown in Figure 9. 

The results on the DSM and CSM RGB video clips are 
shown in Table 4. L (w = 1), R (w = 0) and L+R (w = 
0.5) are the gaze tracking error computed by the POR of 
the left, right eyes and improved, the original 3D coordi-
nate of the eye gaze screen point and the original 3D 
coordinate of the left and right eyeball. Meanwhile, the 
Total Frames (TF) and the Detected Frames (DF) are 
presented in the table. DF is a frame in which the face 
can be detected. Compared with the average face detec-
tion rate (DF/TF) of 86.9% in J.Li and S.Li (2016) on the 
CSM RGB video clips, an average of 97.2% was ob-
tained in this paper. Considering the low quality frames 
and large head pose variations in the video clips, we 
believe the face detection rate is robust. As shown in 
Figure 9 and Table 4, most of the single eye gaze tracking 
errors are improved by averaging the POR of both eyes. 
The method achieved the average combined gaze track-
ing errors 5.5°, 4.6°, 7.2° and 7.6° on the DSS, CSS, 
DSM and CSM RGB video clips. Compared with the 
gaze tracking error of 2.9° under natural light in Skodras 
et al. (2015) on their self-built database, the errors are 
high. The reason the errors are high is because that the 
EYEDIAP database has the lower quality eye image (the 
iris radius ≈4.5 pixels) compared to Skodras et al. (2015) 
self-built database (the iris radius ≈9 pixels). 

 
Figure 9. The H, V and C gaze tracking errors on the EYEDIAP (a) DSS and (b) CSS RGB video clips. 

(b)

(a)



Journal of Eye Movement Research Xiao, F., Zheng, D., Huang, K., Qiu, Y., & Shen, H. (2018) 
11(4):5 A single-camera gaze tracking system under natural light 
 

  10 

Table 4. The gaze tracking errors (degrees) on the EYEDIAP CSM and DSM RGB video clips, where No. is the participant of the 
EYEDIAP database. 

No. 
DSM 

   H V C 
TF DF DF/TF L R L+R L R L+R L R L+R 

1 4465 3893 87.2%  7.9  8.0  7.7  4.5  4.5  4.5  9.1  9.2  8.9  
2 4464 4335 97.1%  7.6  6.5  6.8  3.7  3.8  3.7  8.4  7.6  7.7  
3 4433 4322 97.5%  5.9  6.9  5.9  5.7  5.5  5.3  8.2  8.8  7.9  
4 4464 4402 98.6%  7.7  7.2  5.7  5.0  4.8  4.5  9.2  8.7  7.3  
5 4465 4465 100%  5.9  5.2  4.5  4.5  4.1  4.0  7.4  6.7  6.0  
6 4464 4464 100%  5.3  5.5  5.1  4.6  4.6  4.5  7.0  7.2  6.8  
8 4465 4020 90.0%  9.2  10.1  8.7  4.8  4.5  4.4  10.4  11.0  9.8  
9 4464 4362 97.7%  10.1  6.8  7.5  3.7  3.7  3.6  10.8  7.8  8.3  
10 4464 4450 99.7%  9.1  9.5  9.2  4.5  4.8  4.6  10.2  10.7  10.3  
11 4465 4465 100%  4.7  3.7  3.5  4.5  6.4  3.5  6.5  7.4  4.9  
14 4465 4464 100%  4.7  4.3  3.6  3.7  3.6  3.3  6.0  5.5  4.9  
15 4465 4465 100%  3.8  3.4  3.2  4.1  4.2  4.2  5.6  5.4  5.3  
16 4465 4286 96.0%  6.1  6.6  4.9  4.0  4.1  3.9  7.3  7.8  6.2  

Avg. 4462 4338 97.2%  6.8  6.5  5.9  4.4  4.5  4.2  8.1  7.9  7.2  
 CSM 
1 4457 3370 75.6%  9.7  11.2  10.3  4.0  4.1  4.0  10.5  12.0  11.0  
2 4457 4360 97.8%  7.9  7.6  7.6  3.2  3.2  3.1  8.5  8.2  8.2  
3 4458 3962 88.9%  6.0  7.0  5.9  4.1  3.8  4.0  7.3  8.0  7.1  
4 4494 4333 96.4%  8.1  7.0  6.7  3.7  3.8  3.7  8.9  8.0  7.7  
5 4458 4394 98.6%  5.3  6.1  5.1  3.8  3.6  3.7  6.5  7.1  6.3  
6 4458 4458 100%  7.7  8.4  7.6  4.4  4.5  4.1  8.8  9.6  8.6  
8 4458 3510 78.7%  10.6  9.3  9.6  4.1  4.5  4.3  11.4  10.3  10.5  
9 4457 4199 94.2% 7.4  7.2  7.2  4.0  3.8  3.8  8.4  8.1  8.1  
10 4492 4492 100% 6.5  7.3  6.6  5.0  4.9  4.9  8.2  8.8  8.3  
11 4458 4360 97.8% 6.0  6.5  6.2  3.6  3.6  3.6  7.0  7.4  7.1  
14 4458 4439 99.6%  4.1  3.3  3.4  3.1  4.1  3.4  5.2  5.2  4.9  
15 4458 4458 100% 3.6  3.5  2.9  3.2  3.2  3.1  4.8  4.8  4.2  
16 4458 4293 96.3%  5.5  9.7  5.5  4.2  5.8  3.8  6.9  11.3  6.6  

Avg. 4463 4202 94.2%  6.8  7.2  6.5  3.9  4.1  3.8  7.9  8.4  7.6  

Computational cost 
The method was realized by using the C++ language 

with Microsoft Visual Studio 2017, OpenCV and the dlib 
(King, 2009) library on a laptop with a 2.7-GHz Intel(R) 
Core(TM) i7-7500 processor and 8-GB RAM. Data from 
the EYEDIAP database and the laptop camera were used 
to measure the execution time, which was computed by 
averaging the processing time of all testing frames. The 
execution times of the proposed method are shown in 
Table 5. It is noted that facial landmarks detection in-
cludes face detection and landmarks detection. Experi-
ment results show that face detection consumes most of 

the processing time. Therefore, the original resolution 
(640×480) was resized to improve the efficiency of face 
detection. Facial landmarks are tracked on the faces from 
the raw frames, in which the faces are obtained by use of 
the rectangular face ROI detected in the resized frames. 
Unfortunately, the face detection rate of the EYEDIAP 
database decreased when the resolution is lower than 
512×380 because the RGB video clips have small faces. 
Therefore, the execution speed is 22 fps for the 
EYEDIAP database. The mode of data from the laptop 
camera is closer to the practical system, which had an 
execution speed of 35 fps. Compared to the IR tracker 
with an execution speed in excess of 100 fps, natural light 
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trackers still have a long way to go to be usable in prac-
tice. 

Table 5. The execution time of the gaze tracking system. 

Data Resolution 
Execution time (milliseconds) 

fps Facial landmarks 
detection 

Gaze 
tracking 

EYEDIAP 512×380 44.5 0.7 22 
Camera 320×240 27.4 1.2 35 

Discussion 
This paper aims to provide a gaze tracking system 

with a single-camera under natural light to extend its 
generality. The accuracies of the iris centers and the usa-
bility of the anchor point result in more applicable eye 
vectors. Using the eye vectors and the estimated head 
pose, second-order polynomial mapping functions are 
used to compute the POR of the horizontal and vertical 
directions on the screen. By implementing a weight coef-
ficient on the POR of the left and right eyes, the final 
gaze errors improved. The iris center localization method 
has been shown to be accurate on the GI4E database, 
which consists of low resolution images under realistic 
conditions of 103 participants. With a normalized error e 
≤ 0.05, the feature position of the iris center has achieved 
an error as low as 1.13%.  

Compared with the accuracy of 93.92% in Villanueva 
et al. (2013), the proposed iris center localization method 
presents a more accurate result of 98.87% for the feature 
position of the iris center. Moreover, it also outperforms 
all previous iris center localization methods in the same 
database. Compared with the average combined gaze 
tracking errors of 7.2° and 8.9° on the EYEDIAP CSS 
and CSM RGB video clips in Ghiass and Arandjelovic 
(2016), the proposed gaze tracking method reduced the 
errors by 36% and 14.6%, respectively. Compared with 
the average gaze tracking errors of 7.6° and 6.7° in hori-
zontal and vertical directions on the EYEDIAP CSM 
RGB video clips in J.Li and S.Li (2016), 1.1° and 2.9°, 
respectively were reduced by the proposed method. Fur-
thermore, the RGB and RGB-D video clips both were 
used as inputs in (Ghiass & Arandjelovic, 2016; J.Li & 
S.Li, 2016). 

The gaze tracking errors are significantly better than 
the appearance-based and the model-based methods, 
indicating the effectiveness of the regression-based gaze 

tracking method in low quality images. However, limited 
by the random gaze trajectories/points on the screen of 
which the EYEDIAP database is built, 1000 detected 
frames from the RGB video clips are used in the calibra-
tion phase. It is equivalent to the use of approximately 34 
seconds from the 2 or 3 minutes of RGB video clips. In a 
practical application system, the calibration time could be 
reduced by calibration strategies summarized in Skodras 
et al. (2015) and the gaze tracking errors could be re-
duced by post-calibration regression in Blignaut, 
Holmqvist, Nyström, & Dewhurst (2014). In addition, 
considering the average gaze tracking errors shown in 
Table 3, the introduction of head pose in the mapping 
functions does not improve the accuracy of the vertical 
direction, but reduces the errors of the horizontal direc-
tion. The reason is that the eye vectors derived by the iris 
centers and the anchor point already contain some infor-
mation of the head pose. 

Although the algorithm in Kazemi and Sullivan 
(2014) presents robustness and accuracy, facial land-
marks still cannot be tracked in some images especially 
on the CSM and DSM RGB video clips. Hence, in future 
work, the facial landmarks’ algorithm should be im-
proved in low quality images with large head movements. 
From the results in Figure 9 and Table 4, most of the 
single eye gaze tracking errors are improved by averaging 
the POR of both eyes. However, when one eye is blocked 
due to a large head movement, the w of the blocked eye 
should be decreased or set to 0. Meanwhile, w may be 
affected by the dominant eye that changes with the direc-
tion of the gaze (Quartley & Firth, 2004). Therefore, in 
the future, a dedicated database with large head pose 
variations, and various directions of gaze can be built to 
study choosing a better value of w. In addition, the map-
ping functions are regressed by person-special eye vec-
tors, which results in a person-dependent gaze tracking 
system. A person-independent gaze tracking system can 
be researched by normalizing different people’s eye vec-
tors in a feature space. 

A gaze tracking method with a non-intrusive sensor 
under natural light renders the system suitable for univer-
sal use on smartphones, laptops or tablets with a camera. 
The system, with an accuracy of approximately 6°, can be 
used in secure authentication of biometrics (Boehm et al., 
2013) and gaze-based password entry fields for reducing 
shoulder-surfing (Kumar, Garfinkel, Boneh, & Winograd, 
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2007). The proposed gaze tracking method further bridg-
es the interaction gap between humans and machines. 
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