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Second order polynomials are commonly used for estimating the point-of-gaze in head-
mounted eye trackers. Studies in remote (desktop) eye trackers show that although some non-
standard 3rd order polynomial models could provide better accuracy, high-order polynomials
do not necessarily provide better results. Different than remote setups though, where gaze is
estimated over a relatively narrow field-of-view surface (e.g. less than 30 × 20 degrees on
typical computer displays), head-mounted gaze trackers (HMGT) are often desired to cover a
relatively wider field-of-view to make sure that the gaze is detected in the scene image even
for extreme eye angles. In this paper we investigate the behavior of the gaze estimation error
distribution throughout the image of the scene camera when using polynomial functions. Us-
ing simulated scenarios, we describe effects of four different sources of error: interpolation,
extrapolation, parallax, and radial distortion. We show that the use of third order polynomials
result in more accurate gaze estimates in HMGT, and that the use of wide angle lenses might
be beneficial in terms of error reduction.

Keywords: eye tracking, gaze estimation, head-mounted eye tracking, polynomial map-
ping, error distribution

Introduction

Monocular video-based head mounted gaze trackers use
at least one camera to capture the eye image and another to
capture the field-of-view (FoV) of the user. Probably due to
the simplicity of regression-based methods when compared
to model-based methods (Hansen & Ji, 2010), regression-
based methods are commonly used in head-mounted gaze
trackers (HMGT) to estimate the user’s gaze as a point within
the scene image, despite the fact that such methods do not
achieve the same accuracy levels of model-based methods.

In this paper we define and investigate four different
sources of error to help us characterize the low performance
of regression-based methods in HMGT. The first source of
error is the inaccuracy of the gaze mapping function in in-
terpolating the gaze point (eint) within the calibration box,
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the second source is the limitation of the mapping function
to extrapolate the results outside the calibration box required
in HMGT (eext), the third is the misalignment between the
scene camera and the eye known as parallax error (epar), and
the fourth error source is the radial distortion in the scene
image when using a wide angle lens (edis).

Most of these sources of error have been investigated be-
fore independently. Cerrolaza et al. (Cerrolaza, Villanueva,
& Cabeza, 2012) have studied the performance, based on the
interpolation error, of different polynomial functions using
combinations of eye features in remote eye trackers. Mar-
danbegi and Hansen (Mardanbegi & Hansen, 2012) have de-
scribed the parallax error in HMGTs using epipolar geom-
etry in a stereo camera setup. They have investigated how
the pattern of the parallax error changes for different cam-
era configurations and calibration distances. However, no
experimental result was presented in their work showing the
actual error in a HMGT. Barz et al. (Barz, Daiber, & Bulling,
2016) have proposed a method for modeling and predicting
the gaze estimation error in HMGT. As part of their study,
they have empirically investigated the effect of extrapolation
and parallax error independently. In this paper, we describe
the nature of the four sources of error introduced above in
more details providing a better understanding of how these
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different components contribute to the gaze estimation error
in the scene image. The rest of the paper is organized as
follows: The simulation methodology used in this study is
described in the first section and the next section describes re-
lated work regarding the use of regression-based methods for
gaze estimation in HMGT. We then propose alternative poly-
nomial models and compare them with the existing models.
We also show how precision and accuracy of different poly-
nomial models change in different areas of the scene image.
Section Parallax Error describes the parallax error in HMGT
and its following section investigates the effect of radial dis-
tortion in the scene image on gaze estimation accuracy. The
combination of errors caused by different factors is discussed
in Section Combined Error and we conclude in Section Con-
clusion.

Simulation

All the results presented in the paper are based on sim-
ulation and the proposed methods are not tested on real se-
tups. The simulation code for head-mounted gaze tracking
that was used in this paper was developed based on the eye
tracking simulation framework proposed by (Böhme, Dorr,
Graw, Martinetz, & Barth, 2008).

The main four components of a head-mounted eye tracker
(eye globe, eye camera, scene camera and light source) are
modeled in the simulation. After defining the relationship
between these components, points can be projected from 3D
to the camera images, and vice versa. Positions of the rele-
vant features in the eye image are computed directly based
on the geometry between the components (eye, camera and
light) and no 3D rendering algorithms and image analysis are
used in the simulation. Pupil center in the eye image is ob-
tained by projecting the center of pupil into the image and no
ellipse fitting is used for the tests in this paper. The eyeball
can be oriented in 3D either by defining its rotation angles or
by defining a fixation point in space. Fovea displacement and
light refraction on the surface of the cornea are considered in
the eye model.

The details of the parameters used in the simulation are
described in each subsequent section.

Regression-based methods in HMGT

The pupil center (PC) is a common eye feature used for
gaze estimation (Hansen & Ji, 2010). Geometry-based gaze
estimation methods (Guestrin & Eizenman, 2006; Model &
Eizenman, 2010) mostly rely on calculating the 3D position
of the pupil center as a point along the optical axis of the eye.
Feature-based gaze estimation methods, on the other hand,
directly use the image of the pupil center (its 2D location in
the eye image) as input for their mapping function.

Infrared light sources are frequently used to create corneal

Figure 1. Sagittal view of a HMGT

reflections, or glints, that are used as reference points. When
combined, the pupil-center and glint (first Purkinje image
(Merchant, Morrissette, & Porterfield, 1974)) forms a vec-
tor (in the eye image) that can be used for gaze estimation
instead of the pupil-center alone. In remote eye trackers,
the use of the pupil-glint vector (PCR) improves the perfor-
mance of the gaze tracker for small head motions (Morimoto
& Mimica, 2005). However, eye movements towards the pe-
riphery of the FoV are often not tolerated when using glints
as the reflections tend to fall off the corneal surface. For the
sake of simplicity, in the following, we use pupil center in-
stead of PCR as the eye feature used for gaze mapping.

Figure 1 illustrates the general setup for a pupil-based
HMGT consisting of 3 components: the eye, the eye camera,
and the scene camera. Gaze estimation essentially maps the
position of the pupil center in the eye image (px) to a point
in the scene image (x) when the eye is looking at a point (X)
in 3D.

Interpolation-based (regression-based) methods have been
widely used for gaze estimation in both commercial eye
trackers and research prototypes in remote (or desktop) sce-
narios (Cerrolaza, Villanueva, & Cabeza, 2008; Cerrolaza et
al., 2012; Ramanauskas, Daunys, & Dervinis, 2008). Com-
pared to geometry-based methods (Hansen & Ji, 2010), they
are in general more sensitive to head movements though they
present reasonable accuracy around the calibration position,
they do not require any calibrated hardware (e.g. camera cal-
ibration, and predefined geometry for the setup), and their
software is simpler to implement. Interpolation-based meth-
ods use linear or non-linear mapping functions (usually a first
or second order polynomial). The unknown coefficients of
the mapping function are fitted by regression based on cor-
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respondence data collected during a calibration procedure.
It is desirable to have a small number of calibration points
to simplify the calibration procedure, so a small number of
unknown coefficients is desirable for the mapping function.

In a remote gaze tracker (RGT) system, one may assume
that the useful range of gaze directions is limited to the
computer display. Performance of regression-based methods
that map eye features to a point in a computer display have
been well studied for RGT (Sesma-Sanchez, Villanueva, &
Cabeza, 2012; Cerrolaza et al., 2012; Blignaut & Wium,
2013). Cerrolaza et al. (Cerrolaza et al., 2012) present an
extensive study on how different polynomial functions per-
form on remote setups. The maximum range of eye rotation
used in their study was about (16◦ × 12◦) (looking at a 17
inches display at the distance 58 cm). Blignaut (Blignaut,
2014) showed that a third order polynomial model with 8
coefficients for S x and 7 coefficients for S y provides a good
accuracy (about 0.5◦) on a remote setup when using 14 or
more calibration points.

However, performance of interpolation-based methods for
HMGT have not yet been thoroughly studied. The mapping
function used in a HMGT maps the eye features extracted
from the eye image to a 2D point in the scene image that is
captured by a front view camera (scene camera) (Majaranta
& Bulling, 2014). For HMGT it is common to use a wide
FoV scene camera (FoV > 60◦) so gaze can be observed over
a considerably larger region than RGT. Nonetheless, HMGTs
are often calibrated for only a narrow range of gaze direc-
tions. Because gaze must be estimated over the whole region
covered by the scene camera, the polynomial function must
extrapolate the gaze estimate outside the bounding box that
contains the points used for calibration (called the calibration
box). To study the behavior of the error inside and outside the
calibration box, we will refer to the error inside the box as in-
terpolation error and outside as extrapolation error. The use
of wide FoV lenses also increases radial distortions which
affect the quality of the scene image.

On the other hand, if the gaze tracker is calibrated for a
wide FoV that spans over the whole scene image, it will in-
crease the risk of poor interpolation. This has to do with
the significant non-linearity that we get in the domain of the
regression function (due to the spherical shape of the eye)
for extreme viewing angles. Besides the interpolation and
extrapolation errors, we should take into account the polyno-
mial function is adjusted for a particular calibration distance
while in practice the distance might vary significantly during
the use of the HMGT.

Derivation of alternative polynomial models

To find a proper polynomial function for HMGTs and to
see whether the commonly used polynomial model is suit-
able for HMGTs, we will use a systematic approach similar

to the one proposed by Blignaut (Blignaut, 2014) for RGTs.
The systematic approach consists of considering each depen-
dent variable S x and S y (horizontal and vertical components
of the gaze position on the scene image) separately. We first
fix the value for the independent variable Py (vertical com-
ponent of the eye feature - in our case, pupil center or PCR -
on the eye image) and vary the value of Px (horizontal com-
ponent of the eye feature on the eye image) to find the re-
lationship between S x and Px. Then the process is repeated
fixing Px and varying Py to find the relationship between co-
efficients of the polynomial model and Py.

Table 1
Default eye measures used in the simulation

r_cornea 7.98 mm
Horizontal fovea offset (α) 6◦

Vertical fovea offset (β) 2◦

Table 2
Default configuration for the cameras and the light source
used in the simulation. All measures are relative to the world
coordinate system with the origin at the center of the eyeball
(CE) (see Figure 1). The symbols R and Tr stands for rotation
and translation respectively.

Scene camera

FoV = H : 65◦ × V : 40◦

R = (pan, tilt, yaw) = (0, 0, 0)
Tr = (10 mm, 30 mm, 35 mm)
no radial distortion
res=(1280 × 768)

Eye camera

focal length: providing an eye image with
Weye

Wimg
= 90% where Weye is the horizontal

dimension of the eye area in the image and
Wimg is the image width

R: satisfying the assumption of camera being
towards eyeball center
Tr = (0 mm,−10 mm, 60 mm)
res=(1280 × 960)

Light source Tr = (0, 0, 60 mm)

We simulated a HMGT with a scene camera described in
Table 2. A grid of 25 × 25 points in the scene image (the
whole image covered) are back-projected to fixation points
on a plane at 1 m away from CE and the corresponding pupil
position is obtained for each point. We run the simulation
for 9 different eyes defined by combining 3 different values
for each of the parameters shown in Table 1 (3 parameters
and ±25% of their default values). We extract the samples
for two different conditions, one with pupil center and the
second condition with pupil-glint vector as our independent
variable.

Figure 2 shows a virtual eye socket and the pupil center
coordinates corresponding to 625 (grid of 25 × 25) target
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Figure 2. Virtual eye socket showing 625 pupil centers.
Each center corresponds to an eye orientation that points the
optical-axis of the eye towards a scene target on a plane 1
m from the eye, and each point on the plane corresponds to
an evenly distributed 25 × 25 grid point in the scene camera.
Samples were split into 7 groups based on their Py values
by discretizing the Y axis. Samples in the middle group are
shown in a different color.

points in the scene image for one eye model. Let X and Y
axis correspond to the horizontal and vertical axis of the eye
camera respectively. To express S x in terms of Px we need
to make sure the other variable Py is kept constant. However,
we have no control on the pupil center coordinates and even
taking a specific value for S y in the target space (as it was
suggested in (Blignaut, 2014)) will not result in a constant
Py value. Thus, we split the sample points along the Y axis
into 7 groups based on their Py values by discretizing the Y
axis. 7 groups give us enough samples in each group that are
distributed over the X axis. This grouping makes it possible
to select only the samples that have a (relatively) constant Py.

By keeping the independent variable Py within a specific
range (e.g., from pixel 153 to 170, which roughly corre-
sponds to the gaze points at middle of the scene image), we
can write about 88 relationships for S x in terms of Px.

Figure 3 shows this relationship which suggests the use of
a third order polynomial with the following general form:

X = a0 + a1x + a2x2 + a3x3 (1)

We then look at the effect of changing the independent
variable Py on coefficients ai. To keep the distribution of
samples across the X axis uniform when changing the Py

level, we skip the first level of Py (Figure 2). The changes
of ai against 6 levels of Py are shown in Figure 4. From
the figure we can see that relationship between coefficients
ai and the Y coordinate of the pupil center is best represented
by a second order polynomial:

ai = ai0 + ai1y + ai2y2 (2)

The general form of the polynomial function for S x is then
obtained by substituting these relationships into (Eq.1) which
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Figure 3. Relationship between the input Px (pupilx) and
output (S x). Different curves show the result for different
parameters in the eye models.

will be a third order polynomial with 12 terms:

1, x, y, xy, x2, y2, xy2, yx2, x2y2, x3, x3y, x3y2 (3)
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Figure 4. Relationship between the coefficients ai of the re-
gression function S x against Y coordinate of the pupil center.

We follow a similar approach to obtain the polynomial
function for S y. Figure 5a shows the relationship between
S y and the independent variable Py from which it can be in-
ferred that a straight line should fit the samples for 27 dif-
ferent eye conditions. Based on this assumption we look at
the relationship between the two coefficients of the quadratic
function and Px. The result is shown in Figure 5b& 5c which
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suggests that both coefficients could be approximated by sec-
ond order polynomials resulting that S y to be a function with
the following terms:

1, y, y2, x, xy, xy2 (4)

To determine the coefficients for S x at least 12 calibration
points are required, while S y only requires 6. In practice the
polynomial functions for S x and S y are determined from the
same data. As at least 12 calibration points will already be
collected for S x, a more complex function could be used for
S y. In the evaluation section we show results using the same
polynomial function (Eq.3) for both S x and S y. However, to
better characterize the simulation results we first introduce
the concept of interpolation and extrapolation regions in the
scene image.
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Figure 5. (5a) Relationship between the regression function
S y against the Y coordinate of the pupil center. (5b& 5c)
Relationship between the coefficients ai of S y against Px

Interpolation and extrapolation regions

Gaze mapping calibration is done by taking corresponding
sample points from the range and the domain. This is usually
done by asking the user to look at a set of co-planar points at
a fixed distance (a.k.a calibration plane). For each point, the
corresponding position in the scene image and the pupil po-
sition in the eye image are stored. Any gaze point inside the

Figure 6. Sagittal view of a HMGT

bounding box of the calibration pattern (the calibration box)
will be interpolated by the polynomial function. If a gaze
point is outside the calibration box it will be extrapolated.
This is illustrated in Figure 6, where TcBc is the area in the
calibration plane (πcal) that is visible in the scene image. Let
CL1 and CL2 be the edges of the calibration pattern. Any
gaze position in πcal within the range from Tc to CL1 or from
CL2 to Bc will be extrapolated by the polynomial function.
These two regions in the calibration plane are marked in red
in the figure. We can therefore divide the scene image into
two regions depending on whether the gaze point is interpo-
lated (calibration box) or extrapolated (out of the calibration
box).

In order to be able to express the relative coverage of these
two regions on the scene image, we use a measure similar to
the one suggested by (Barz et al., 2016). We define S int as
the ratio between the interpolation area and the total scene
image area:

S int =
Aint

Aimage
(5)

We also refer to S int as the interpolation ratio in the image.

Gaze estimation error when changing fixation depth

From now on, we refer to any fixation point in 3D by its
distance from the eye along the Z axis. Therefore, we define
fixation plane as the plane that includes the fixation point and
is parallel to the calibration plane. T f B f in Figure 6 shows
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Table 3
S int at different fixation distances for two different calibration
distances

dcal=0.6 m dcal=3 m
0.6 m 48.8% 47%
1 m 45.3% 48.8%
3 m 42% 49.9%
5 m 41% 49.3%

the part of the fixation plane that is visible in the image. We
can see that the interpolated (green) and extrapolated (red)
regions in the scene image would change when the fixation
plane π f ix diverges from the calibration plane. Projecting the
red segment on the fixation plane π f ix into the scene image
will define a larger extrapolated area in the image. Accord-
ingly, the interpolated region in the image gets smaller when
the fixation plane goes further away. Therefore, the inter-
polation ratio that we get for the calibration plane (S cal

int ) is
not necessarily equal to the interpolation ratio that we have
for different depths. Not only the size of the interpolation
area changes when changing the fixation depth, but also the
position of the interpolation region changes in the image.

Figure 6 illustrates a significant change in the value of S int

for a small variation of fixation distance which happens at
very close distances to the eye. We simulate a HMGT with
the simplified eye model (described in Table 1) and a typi-
cal scene camera configuration described in Table 2 to see
whether changes of S int are significant in practice. The result
is shown in Table 3 for different fixation distances on a gaze
tracker calibrated at distances 0.6 m and 3.0 m. We assume
that the calibration pattern covers about 50% of the image
(S cal

int = 0.5).
The amount of change in the expansion of the interpola-

tion region depends on the configuration of the camera and
the epipole location in the scene image which is described by
epipolar geometry (see Section Parallax Error). However, the
result shows that for an ordinary camera setup, these changes
are not significant.

Practical grid size and distance for calibration

There are different ways to carry out calibration in
HMGTs. The common way is to ask the user to look at
different targets located at a certain distance from the eye
(calibration distance) and recording sample points from the
eye and scene images while user is fixating on each target.
Target points in the scene image could be either marked and
picked manually by clicking on the image (direct pointing)
or it could be detected automatically (indirect pointing) us-
ing computer-vision-based methods. The targets are usually
markers printed out on papers and attached to a wall or are
displayed on a big screen (or projectors) in front of the user
during calibration.

Alternatively, targets could be projected by a laser diode
(Babcock & Pelz, 2004) allowing the calibration pattern to
cover a wider range of the field of view of the scene camera.
However, the practical size (angular expansion) for the cal-
ibration grid is limited to a certain range of the FoV of the
eye. The further the calibration plane is from the subject the
smaller the angular expansion of the calibration grid will be.
Calibration distance for HMGTs is usually less than 3 m in
practice, and the size is smaller than 50◦ horizontally and 30◦

vertically and it will not be convenient for the user to fixate
on targets that have larger viewing angles. The other thing
that affects the size is the hardware components that clut-
ter user’s view (e.g. eye camera and goggles’ frame). With
these considerations, it is very unlikely that a calibration pat-
tern covers the entire scene image, thus S cal

int is usually less
than 40% when using a lens with a field of view larger than
70◦ × 50◦ on the scene camera. Whereas, the calibration grid
usually covers more than 80% of the computer display in a
remote eye tracking setup.

The number of calibration points is another important fac-
tor to consider. Manually selecting the calibration targets in
the image slows down the calibration procedure and it could
also affect the calibration result due to the possible head (and
therefore camera) movements during the calibration. There-
fore, to minimize the calibration time and accuracy, HMGTs
with manual calibration often use no more than 9 calibration
points. However, detecting the targets automatically allows
for collecting more points in an equivalent amount of time
when the user looks at a set of target points in the calibration
plane or by following a moving target. Thus the practical
number of points for calibration really depends on the cali-
bration method. It might for example be worth to collect 12
or 16 points instead of 9 points if this improves the accuracy
significantly.

Evaluation of different polynomial functions

The performance of the polynomial functions derived ear-
lier are compared to an extention of the second order poly-
nomial model suggested by(Mitsugami, Ukita, & Kidode,
2003) and with two models suggested by (Blignaut, 2013)
and (Blignaut, 2014). These models are summarized in Table
4.

Model 5 is similar to model 4 except that it uses Eq. 3
for both S x and S y. The scene camera was configured with
the properties from Table 2. The 4×4 calibration grid was
positioned 1 m from the eye and 16×16 points uniformly dis-
tributed on the scene image were used for testing.

We tested the five polynomial models using 2 interpola-
tion ratios (20% and 50%). Besides the 4×4 calibration grid,
we used a 3×3 calibration grid for polynomial model 1.

The gaze estimation result for these configurations are
shown in Figure 7 for the interpolation and extrapolation re-

6



Journal of Eye Movement Research
11(3):5, 1-14

Mardanbegi, D., Kurauchi, A.T.N., & Morimoto, C.H. (2018)
distribution of gaze estimation errors in head mounted gaze trackers

Table 4
Summary of models tested in the simulation. Functions are shown with only their terms without coefficients.

No. reference S x S y

1 Blignaut, 2014 1, x, y, xy, x2, y2, x2y2 1, x, y, xy, x2, y2, x2y2

2 Blignaut, 2013 1, x, y, xy, x2, x2y2, x3, x3y 1, x, y, xy, x2, y2, x2y
3 Blignaut, 2014 1, x, y, xy, x2, y2, x2y, x3, y3, x3y 1, x, y, xy, x2, x2y

4 Derived above
1, x, y, xy, x2, y2, x2y,
xy2, x2y2, x3, x3y, x3y2 1, x, y, xy, y2, xy2

5 Derived above
1, x, y, xy, x2, y2, x2y,
xy2, x2y2, x3, x3y, x3y2

1, x, y, xy, x2, y2, x2y,
xy2, x2y2, x3, x3y, x3y2
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(d) Extrap (pupil, 50%)
Figure 7. Gaze estimation error obtained from different regression models for interpolation and extrapolation regions of the
scene image. Gaze estimation was based on the Pupil center and no measurement noise was applied to the eye image. Errors
are measured in degrees.

gions. Each boxplot shows the gaze error in a particular re-
gion measured in degrees. These figures are only meant to
give an idea of how different gaze estimation functions per-
form. The result shows that there is no significant difference
between models 3 and 4 in the interpolation area. Increasing
the calibration ratio increases the error in the interpolation re-
gion but overall gives a better accuracy for the whole image.
For this test, no significant difference was observed between
the models 3, 4 and 5.

Similar test was performed with pupil-corneal-reflection
(PCR) instead of pupil. The result for PCR condition is
shown in Figure 8. The result shows that model 5 with PCR
overperforms other models when calibration ratio is greater
than 20% even though the model was derived based on pupil
position only.

To have a more realistic comparison between different
models, in Section Combined Error we look at the effect of
noise in the gaze estimation result by applying a measure-
ment error on the eye image.

Parallax Error

Assuming that the mapping function returns a precise gaze
point all over the scene image, the estimated gaze point will
still not correspond to the actual gaze point when it is not on
the calibration plane. We refer to this error as parallax error
which is due to the misalignment between the eye and the
scene camera.

Figure 9, illustrates a head-mounted gaze tracking setup
in 2D (sagittal view). It shows the offset between the actual
gaze point in the image x2 and the estimated gaze point x1
when the gaze tracker is calibrated for plane πcal and eye is
fixating on the point X2cal. The figure is not to scale and for
the sake of clarity the calibration and fixation planes (respec-
tively πcal and π f ix) are placed very close to the eye. Here,
the eye and scene cameras can both be considered as pinhole
cameras forming a stereo-vision setup.

We define the parallax error as the vector between the
actual gaze point and the estimated gaze point in the scene
image (epar(x2) =

−−−→
x2x1) when the mapping function works

precisely.
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(d) Extrap (pcr, 50%)
Figure 8. Gaze estimation error obtained from different regression models for interpolation and extrapolation regions of the
scene image. Gaze estimation was based on the PCR feature and no measurement noise was applied to the eye image. Errors
are measured in degrees.

Figure 9. Sagittal view of a HMGT illustrating the epipolar
geometry of the eye and the scene camera.

When the eye fixates at points along the same gaze direc-
tion, there will be no change in the eye image and conse-
quently the estimated gaze point in the scene image remains
the same. As a result, when the point of gaze (X2 f ix) moves
along the same gaze direction the origin of the error vector
epar moves in the image, while the endpoint of the vector
remains fixed.

The parallax error epar for any point x in the scene im-

age can be geometrically derived by first back-projecting the
desired point onto the fixation plane (point X f ix):

X f ix =

Xx

Xy

d f

 = P+x (6)

Where P+ is the pseudo-inverse of the projection matrix P
of the scene camera.

And then, intersecting the gaze vector for X f ix with πcal:

Xcal =
dc
d f

X f ix (7)

Where dc is the distance from the center of the eyeball
to the calibration plane and d f is the distance to the fixation
plane along the Z axis. Finally, projecting the point Xcal onto
the scene camera gives us the end-point of the vector epar

while the initial point x in the image is actually the start-point
of the vector.

By ignoring the visual axis deviation and taking the op-
tical axis of the eye as the gaze direction, the epipole e in
the scene image can be defined by projecting the center of
eyeball CE onto the scene image. According to epipolar ge-
ometry this can be described as:

e = Kt = K3×3

[
−E

CRT ·EC Tr
]
3×1

(8)

Where K is the eye camera matrix and E
CRT and E

CTr
are respectively rotation and translation of the scene cam-
era related to center of the eyeball. Mardanbegi and
Hansen (Mardanbegi & Hansen, 2012) have shown that tak-
ing the visual axis deviation into account does not make a
significant difference in the location of epipole in the scene
image.
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Figure 10. parallax error in the scene image for fixation dis-
tance at 3 m when dcal = 1 m on the setup described in Ta-
ble2. This figure assumes an ideal mapping function with
zero interpolation and extrapolation error in the entire image
for the calibration distance dcal.

Figure 10 shows an example distribution of the parallax
error in the scene image for dcal = 1 m and d f ix = 3m on
the setup described in Table 2 when having an ideal mapping
function with zero error for the calibration distance in the
entire image.

Effect of radial lens distortion

In this section we show how radial distortion in the scene
image, that is more noticeable when using wide-angle lenses,
affects the gaze estimation accuracy in HMGT.

Figure 2 shows the location of pupil centers in the eye
image when the eye fixates at points that are uniformly dis-
tributed in the scene image. These pupil-centers are obtained
by back projecting the corresponding target point in the scene
image onto the calibration plane, and rotating the eye opti-
cal axis towards that fixation point in the scene. When the
scene image has no radial distortion, the back-projection of
the scene image onto the calibration plane is shaped as a
quadrilateral (dotted line in Figure 11).

However, when the scene image is strongly affected by
radial distortion, the back-projection of the scene image onto
the calibration plane is shaped as a quadrilateral with a pin-
cushion distortion effect (dashed line in Figure 11). Figure
13 shows the corresponding pupil positions for these fixation
points. By comparing Figure 13 with Figure 2, we can see
that the positive radial distortion in the pattern of fixation
targets caused by lens distortion, to some extent will com-
pensate for the non-linearity of the pupil positions and adds
a positive radial distortion to the normal eye samples.

To see whether this could potentially improve the result of
the regression we compared 2 different conditions one with
and the other without lens distortion. We want to compare

Figure 11. Calibration grid (small circles) and working area
(red rectangle) marked in the calibration plane and borders of
the scene image when it is back-projected onto the calibra-
tion plane with (dashed line) and without (dotted line) lens
distortion. This figure was drawn according to the settings
described in Table 5.

Figure 12. A sample image with radial distortion showing the
calibration region (gray) and the working area (red curve).

0 200 400 600 800 1000 1200

200

300
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pupil center

eye corners

Figure 13. A sample eye image with pupil centers corre-
sponding to 625 target points in the scene image when having
a lens distortion.
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Table 5
Parameters used in the simulation for testing the effect of lens
distortion

wide-angle lens

FoV = H : 90◦ × V : 60◦

R = (pan, tilt, yaw) = (0, 0, 0)
Tr = (10 mm, 30 mm, 35 mm)
focal length=965 pixels
distortion coefficients=
[−0.42, 0.17,−0.00124, 0.0015,−0.034]
res=(1280 × 768)

calibration
FoV = H : 30◦ × V : 25◦

calibration distance=1 m
working area FoV = H : 50◦ × V : 30◦

different conditions independently of the camera FoV and
focal length. Since adding lens distortion to the projection
algorithm of the simulation may change the FoV of the cam-
era we define a “working area” which corresponds to the re-
gion where we want to have gaze estimated on. Also, a fixed
calibration grid in the center of the working area is used for
all conditions. Two different polynomial functions are used
for gaze mapping in both conditions using the pupil center:
Model 1 with a calibration grid of 3 × 3 points, and model
5 with 4 × 4 calibration points. The test is done with the
parameters described in Table 5. Also, lens distortion in the
simulation is modeled with a 6th order polynomial (Weng,
Cohen, & Herniou, 1992):{

xdistorted = x(1 + k1r2 + k2r4 + k3r6)
ydistorted = y(1 + k1r2 + k2r4 + k3r6) (9)

Figure 12 shows a sample scene image showing the cali-
bration and the working areas conveying the amount of dis-
tortion in the image that we get from the lens defined in Table
5.

Figure 14 shows a significant improvement in accuracy
when having lens distortion with a second order polynomial.
However, lens distortion does not have a huge impact on
the performance of the model 5 (Figure 15) because this
3rd order polynomial has already compensated for the non-
linearity of the pupil movements.

Besides affecting gaze mapping result, lens distortion also
distorts the pattern of error vectors in the image. For exam-
ple, in a condition where we have parallax error, and no error
from the polynomial function, the assumption of having one
epipole in the image at which all epipolar lines intersect does
not hold when we have lens distortion.

Combined Error

In the previous sections we discussed different factors that
contribute to the final vector field of gaze estimation error
in the scene image. These four factors do not affect the

gaze estimation independently and we cannot combine their
errors by simply adding the resultant vector field of errors
obtained from each. For instance, when we have epar and
eint vector fields, the final error at point x2 in the scene
image is not the sum of two epar(x2) and eint(x2) vectors.
According to Figure 9, the estimated gaze point is actually
Map(px1cal ) = x1 + eint(x1) which is the mapping result of
pupil center px1cal that corresponds to the point x1cal on πcal.
Thus, the final error at point x2 will be:

e(x2) = epar(x2) + eint(x1) (10)

An example error pattern in Figure 16 illustrates how
much the parallax error could be deformed when it is com-
bined with interpolation and extrapolation errors.

The impact of lens distortion factor is even more com-
plicated as it both affects the calibration and causes a non-
linear distortion in the error field. Although mathematically
expressing the error vector field might be a complex task, we
could still use the simulation software to generate the error
vector field. This could in practice be useful if direction of
the vectors in the vector field is fully defined by the geome-
try of the setup in HMGT. This could help manufacturers to
know about the error distribution for a specific configuration
which could later be used in the analysis software by weight-
ing different areas of the image in terms of gaze estimation
validity. Therefore, it will be valuable to investigate whether
the error vector field is consistent and could be defined only
by knowing the geometry of the HMGT.

The four main factors described in the paper are those
that resulting from the geometry of different components of
a HMGT system. There are other sources of error that we
have not discussed such as: image resolution of both cam-
eras, having noise (measurement error) in pupil tracking,
pupil detection method itself, and the position of the light
source when using pupil and corneal reflection. We have ob-
served that noise and inaccuracy in detecting eye features in
the eye image has the most impact in the accuracy of gaze
estimation. Applying noise in the eye tracking algorithm in
the simulation allows us to have a more realistic comparison
between different gaze estimation functions and also shows
us how much the error vectors in the scene image are affected
by inaccuracy in the measurement both in terms of magni-
tude and direction. We did the same comparison between
different models that was done in the evaluation section, but
this time with two levels of noise with a Gaussian distribution
(mean=0, standard deviation=0.5 and 1.0 pixel).

Figure 18 shows how much the pupil detection in the im-
age (1280 × 960) gets affected by noise level 0.5 in the mea-
surement. Pupil centers in the eye image corresponding to a
grid of 16 × 16 fixation points on the calibration plane, are
shown in red for the condition with noise, and blue for the
condition without noise.

Figure 17 shows the gaze estimation result for noise level
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Figure 14. Gaze estimation error in the scene image showing the effect of radial distortion on polynomial function 1 (3 × 3
calibration points) (a) with and (b) without lens distortion. The error in the working area for both conditions is shown in (c).
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(c)
Figure 15. Gaze estimation error in the scene image showing the effect of radial distortion on polynomial function 5 (4 × 4
calibration points) (a) with and (b) without lens distortion. The error in the working area for both conditions is shown in (c).

Figure 16. An example of error pattern in the image when
having mapping error and parallax error combined

0.5 with PCR method. No radial distortion was included and
the noise was added both during and after the calibration.
The result shows how the overall error gets lower when in-
creasing the calibration ratio from 20% to 50%.

To see the impact of noise on the direction of vectors in

the image, a cosine similarity measure is used for compar-
ing the two vector fields (each containing 16 × 16 vectors).
We compare the vector fields obtained from 2 different noise
levels (0.5 and 1.5) with the vector field obtained from the
condition with no noise. For this test, the calibration and
the fixation distances are respectively set to 0.7m and 3m.
Adding parallax error makes the vector field more meaning-
ful in the no-noise condition. In this comparison we ignore
the differences in magnitude of the error and only compare
the direction of vectors in the image. Figure 19 shows how
much, direction of vectors deviates when having measure-
ment noise in practice with model 1 and 5.

Based on the results shown in Figure 17 we can conclude
that we get almost the same gaze estimation error in the in-
terpolation region for all the polynomial functions. Having
too much noise, has a great impact on the magnitude of the
error vectors in the extrapolation region and the effect is even
greater in the 3rd order polynomial models. Figure 19 indi-
cates that despite the changes in the magnitude of the vectors,
when having noise, direction of the vectors does not change
significantly. This means that the vector field obtained based
on the geometry could be used as a reference for predicting
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(d) Extrap (pcr, 50%)
Figure 17. Gaze estimation error obtained from different polynomial models. Gaze estimation was based on the PCR feature.
Resolution of the eye image is set to 1280 × 960 and a noise level of 0.5 is applied. Errors are measured in degrees of visual
angle.

Figure 18. Pupil centers in the eye image corresponding to
a grid of 16 × 16 fixation points on the calibration plane, are
shown by red for noisy condition, and blue for without noise.
Image resolution is 1280 × 960.

at which parts of the scene image the error is larger (relative
to the other parts) and how the overall pattern of error would
be. However this needs to be validated empirically on real
HMGT.

Another test was conducted to check the performance of
higher order polynomial models. The test was done with cal-
ibration ratio of 20% and noise level 0.5 using a pupil-only
method. A 4 × 4 calibration grid was used for models 1, 2
and 5 and a 5 × 5 grid for 4th and 5th order standard poly-
nomial models. The gaze estimation result of this compari-
son is shown in Figure 20 confirming that performance does
not improve with higher order polynomial models even with
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Figure 19. This figure shows how much different levels of
measurement noise (in model 1 and 5) affects the direction
of error vectors when having parallax error. The vertical axis
represents the angular deviation.

more calibration points.

Conclusion

In this paper we have investigated the error distribution
of polynomial functions used for gaze estimation in head-
mounted gaze trackers (HMGT). To describe the perfor-
mance of the functions we have characterized four different
sources of error. The interpolation error is measured within
the bounding box defined by the calibration points as seen by
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(b) Extrap (pupil, 20%)
Figure 20. Comparing the performance of higher order polynomials (4th and 5th order) with 25 calibration points with 3rd
order polynomial models using 16 points for calibration

the scene camera. The extrapolation error is measured in the
remaining area of the scene camera outside the calibration
bounding box. The other two types of error are due to the
parallax between the scene camera and the eye, and the radial
distortion of the lens used in the scene camera. Our results
from simulations show that third order polynomials provide
better overall performance than second order and even higher
order polynomial models.

We didn’t find any significant improvement of model 5
over model 4, specially when the noise is present in the in-
put (comparing figures 17 and 8). This means that it’s not
necessary to use higher order polynomials for S y.

Furthermore, we have shown that using wide angle lens
scene cameras actually reduces the error caused by non-
linearity of the eye features used for gaze estimation in
HMGT. This could improve the results of the second order
polynomial models significantly as these models suffer more
from the non-linearity of the input. Although the 3rd order
polynomials provide more robust results with and without
lens distortion, the 2nd order models have the advantage of
requiring fewer calibration points. We replicated the same
analysis we did for deriving model 4 but with the effect of
radial distortion in the scene image. We found linear rela-
tionships between S x and Px and also between S y and Py.
The relationship between S and the coefficients were also
linear suggesting the following model for both S x and S y:

1, x, y, xy (11)

As a future work we would like compare the performance
of the models discussed in this paper on a real head-mounted
eye tracking setup and see if the results obtained from the
simulation could be verified. It would also be interesting to
compare the performance of a model based on Eq.11 on a
wide angle lens with model 4 on a non-distorted image. The
simulation shows that the gaze estimation accuracy obtained
from a model based on Eq.11 with 4 calibration points on
a distorted image is as good as the accuracy obtained from
model 4 with 16 points on a non-distorted image. This, how-
ever, needs to be verified on a real eye tracker.

Though an analytical model describing the behavior of the
errors might be feasible, the simulation software developed
for this investigation might help other researchers and manu-
facturers to have a better understanding of how the accuracy
and precision of the gaze estimates vary over the scene image
for different configuration scenarios and help them to define
configurations (e.g. different cameras, lenses, mapping func-
tions, etc) that will be more suitable for their purposes.
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