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Introd uction 
Eye gaze estimation has been an active research area 

for a long time due to its numerous applications. Early sys-
tems used techniques like electrooculography, whereas re-
cent systems employed infrared imaging and computer 

vision techniques to obtain accurate gaze estimates. These 
infrared-based eye gaze trackers brought eye gaze tracking 
into the commercial realm and helped realize applications 
such as gaze-based human-computer interaction in auto-
motive (Poitschke et al., 2011; Prabhakar, Ramakrishnan, 
et al., 2020), aviation (Murthy et al., 2020) and assistive 
technology (Borgestig et al., 2017; Sharma et al., 2020) 
domains. Researchers also made progress to utilize gaze 
estimates for non-interactive purposes like visual scan path 
analysis (Eraslan et al., 2016), cognitive load estimation of 
drivers in automotive domain (Palinko et al., 2010; Prab-
hakar, Mukhopadhyay, et al., 2020). Recently, various ef-
forts were being made to achieve similar performance us-
ing commodity hardware like built-in cameras present in 
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ance-based gaze estimation systems perform well in within-dataset validation but fail to 
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on unseen users. This paper proposes I2DNet, a novel architecture aimed to improve sub-
ject-independent gaze estimation accuracy that achieved a state-of-the-art 4.3 and 8.4 degree 
mean angle error on the MPIIGaze and RT-Gene datasets respectively. We have evaluated 
the proposed system as a gaze-controlled interface in real-time for a 9-block pointing and 
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laptops and smartphones as this can expand the reach of 
this technology. With the help of large datasets and ad-
vancements in deep-learning techniques, recent appear-
ance-based approaches trumped model-based methods in 
terms of accuracy.  

However, it was observed that appearance-based sys-
tems which reported state-of-the-art accuracy on one da-
taset do not achieve the same degree of accuracy on a dif-
ferent dataset.  Spatial weights CNN model proposed by 
(Zhang et al., 2017b) reported 42 mm error on MPIIGaze 
dataset (Zhang et al., 2017a) whereas the same architecture 
reported 85.6 mm error on EYEDIAP dataset (Funes Mora 
et al., 2014). Further, models which performed well during 
with-in dataset validation reported a higher error on cross-
dataset validation. Diff-NN proposed in (Liu et al., 2019) 
used 9 reference samples and reported a 4.64° error on 
MPIIGaze during with-in dataset validation but reported 
an error of 9.8° mean angle error when trained on UT-Mul-
tiview (Sugano et al., 2014) dataset and tested on MPII-
Gaze. A similar trend can be observed for the MeNet pro-
posed by (Xiong et al., 2019) which achieved 4.9° during 
with-in dataset validation but reported 9.51° error during 
the above mentioned cross-dataset validation setting. Re-
searchers (Liu et al., 2019) believed that this is due to the 
discrepancies during pre-processing and variation in head 
pose and gaze data distributions. It may also be noted that 
both Diff-NN and MeNet utilized UT-Multiview dataset 
for training, which is collected in controlled lab conditions 
and tested on the MPIIGaze dataset, which is recorded in 
real-world conditions. Even though appearance variations 
across participants and inherent offset between visual axis 
and optical axis for each person do exist, high error during 
cross-dataset validation raises the question of how appear-
ance-based approaches perform on unseen users under 
real-world conditions.  

Appearance-based methods predict gaze angles in nor-
malized space and transforming this to millimeters is not 
trivial as this also depends on the head pose of the user. 
Hence, most appearance-based systems reported their per-
formance in terms of mean angle error, but not in pixels or 
millimeters. Thus, it is unclear how well the existing state-
of-the-art appearance-based systems perform in an inter-
active context like an eye gaze controlled interface. (Zhang 
et al., 2019) evaluated Spatial weights CNN in off-line 
mode under two lighting conditions for its accuracy and 
the evaluation presented in (Gudi et al., 2020) focused on 
accuracy and latency. Both these evaluation works did not 

evaluate appearance-based systems in the context of inter-
action and usability.  

Infra-red based commercial eye gaze trackers have 
much higher accuracy than current state-of-the-art appear-
ance-based approaches. Yet, appearance-based gaze esti-
mation systems have several use cases like webcam based 
gaze controlled interfaces as they do not require any addi-
tional hardware. Further, people with severe speech and 
motor impairment often use gaze controlled interface with 
limited number of screen elements (Jeevithashree et al., 
2019; Sharma et al., 2020). Appearance-based gaze esti-
mation systems can be used to build such gaze controlled 
interfaces on smartphones and tablet PCs using their front 
cameras. 

This paper proposes a novel architecture that focuses 
on overcoming appearance-related variations across users 
to improve accuracy. We propose I2DNet: I-gaze estima-
tion using dilated differential network which achieved a 
state-of-the-art 4.3 and 8.4 degree mean angle error during 
the evaluation on MPIIGaze and RT-Gene respectively. 
Further, to understand how the proposed system performs 
for unseen users in real-time, we conducted a user study. 
We compared its performance for a 9-block pointing and 
selection task with WebGazer.js (Papoutsaki et al., 2016) 
and OpenFace 2.0 (Baltrusaitis et al., 2018).  

This paper is structured as follows. The next section 
presents literature review of various gaze estimation meth-
ods and their evaluation methods. Section 3 and 4 present 
the methodology of our proposed model and experiments 
conducted on MPIIGaze and RT-Gene using our proposed 
architecture. Section 5 presents the design of our user 
study. Section 6 presents the results and analysis. Section 
7 presents the discussion and future work followed by con-
clusion in section 8. 

Related work 
In this section, we discussed various gaze estimation 

approaches followed by works which evaluated gaze 
tracking interfaces.  

Infrared imaging-based eye trackers used feature-based 
methods for gaze estimation which extract features from 
the eye images. Numerous approaches were proposed for 
Point of Gaze (PoG) estimation for desktop and mobile 
settings based on the well-established theory of gaze esti-
mation using the pupil centers and corneal reflections. 
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Guestrin and Eizenman (Guestrin & Eizenman, 2006) re-
ported to have obtained a PoG accuracy of 0.9° in a desk-
top setting based on an evaluation on 4 subjects. Further, 
Brousseau et al (Brousseau et al., 2018) proposed a system 
for gaze estimation for mobile devices compensating for 
the relative roll between the system and subject’s eyes. 
They evaluated their system on 4 subjects and reported 
around 1° of gaze estimation error. Even though these re-
sults were promising, it was unclear how these systems 
will perform on wider population under real-world usage 
conditions with wider gaze angles and head poses. Recent 
reports of the commercial IR-based gaze trackers claim to 
provide gaze accuracy of <1.9° error across 95% of popu-
lation under real-world usage conditions (https://www.to-
biidynavox.com/devices/eye-gaze-devices/pceye-mini-
access-windows-control/#Specifications).  

In addition to the desktop setting, head-mounted video-
based eye trackers are becoming increasingly more popu-
lar. Morimoto and Mimica (Morimoto & Mimica, 2005) 
stated that gaze estimation approaches based on pupil 
tracking techniques have better accuracy since they are not 
covered by eyelids. They reported that the pupil tracking 
based gaze estimation systems can achieve an accuracy of 
~1°, but they also commented that it is hard to detect the 
pupil. Since then, several approaches like (Fuhl et al., 
2015, 2016; Santini et al., 2018a, 2018b) were proposed 
for robust real-time pupil detection in challenging natural 
environments like driving and walking. Current state-of-
the-art approach (Eivazi et al., 2019) reported a pupil de-
tection rate of ~85% on PupilNet (Fuhl et al., 2017) and 
LPW (Tonsen et al., 2016) datasets and a detection rate of 
~74% on Swirski (Świrski et al., 2012) dataset. Yet, the 
performance of these approaches in terms of gaze estima-
tion in similar challenging environments with such pupil 
detection accuracies is still unknown.  

Researchers also approached the problem of gaze esti-
mation without using IR-illuminators. Such model-based 
approaches rely on the detection of visual features such as 
pupil, eyeball center and eye corners. These features are 
then used to fit a geometric model of the 3D eyeball to ob-
tain eye gaze estimates. Early model-based methods such 
as (Cristina & Camilleri, 2016), (Alberto Funes Mora & 
Odobez, 2014) and (Jianfeng & Shigang, 2014) relied on 
high-resolution cameras to detect such visual features with 
high accuracy, but these methods were not robust to vari-
ation in illumination conditions. Recent model-based 
methods like GazeML (Park et al., 2018) and OpenFace 

2.0 attempted to overcome these limitations by using only 
commodity web cameras and empowering their feature de-
tectors using machine learning techniques. OpenFace 2.0 
reported a state-of-the-art performance on the task of 
cross-dataset eye gaze estimation with an error of 9.1° on 
MPIIGaze. Webgazer.js proposed a feature-based method 
for gaze interaction for web-based platforms. The authors 
of Webgazer.js proposed to use left and right eye images 
to train a ridge-regression model and used cursor activity 
for fine-tuning of the predictions.  They conducted an 
online evaluation with 82 participants and reported a best 
mean error of around 175 pixels across various tasks, 
which equates to around 35mm as per present display con-
figurations. This error of 35mm is less than 42mm, which 
is achieved by Spatial weights CNN on MPIIGaze dataset. 
Even though we cannot make a direct comparison due to 
the different datasets used for evaluation, it may be noted 
that the WebGazer.js reported their performance across 82 
participants while MPIIGaze dataset contains 15 partici-
pants.  

In contrast to feature-based and model-based methods, 
appearance-based methods rely only on the images cap-
tured from off-the-shelf cameras and do not attempt to cre-
ate handcrafted features from eye images. Instead, these 
methods utilize machine learning techniques to directly 
obtain the gaze estimates from eyes or face images. These 
appearance-based methods are strongly supported by the 
creation of large datasets and advancements in deep learn-
ing techniques. In terms of model architecture, appear-
ance-based gaze estimation can be classified broadly into 
Multi-channel networks and Single-channel networks. We 
are aware of the gaze estimation datasets and approaches 
like Gaze 360 (Kellnhofer et al., 2019) which focused on 
3D gaze estimation across 360° but for this literature re-
view, we have focused on the approaches that worked on 
MPIIGaze, which is designed exclusively for laptop/desk-
top setting. 

One of the first attempts of appearance-based gaze es-
timation was GazeNet (Zhang et al., 2017a), which is a 
single channel approach where a single eye image is used 
as the input to an architecture based on 16-layer VGG deep 
CNN. Head pose information was concatenated to the first 
fully connected layer after convolutional layers. GazeNet 
reported a 5.4° mean angle error on the evaluation subset 
of MPIIGaze, termed as MPIIGaze+. This work was fol-
lowed by another single-channel approach, by (Zhang et 
al., 2017b) where full face images were provided as input 
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instead of eye crops. Authors of this work used the spatial 
weights approach to provide more weightage to the regions 
of face which were significant for gaze estimation. (Ranjan 
et al., 2018) proposed a branched architecture where a sin-
gle eye image and head pose were used with a switch con-
dition imposed on the head pose branch.  

As an alternative to single-channel approaches, numer-
ous multi-channel approaches were proposed. (Krafka et 
al., 2016)  proposed one such multi-channel convolutional 
neural network called iTracker. They used left eye image, 
right eye image, face crop image and face grid information 
as inputs. The face grid contained the location of face in 
the captured image. Subsequent multi-channel approaches 
did not use face grid as input. Our work is closely related 
to Multi-Region Dilated-Net proposed in (Chen & Shi, 
2018) which used dilated convolutions instead of several 
maxpooling layers in their CNN architecture. This ap-
proach also reported the same result of 4.8° mean angle 
error as (Zhang et al., 2017b) did on MPIIGaze+. As an 
extension of this work, they utilized gaze decomposition 
(Chen & Shi, 2020) in addition to dilated convolutions and 
achieved 4.5° error on MPIIGaze. Further, most recent 
work by (Cheng et al., 2020) proposed face-based asym-
metric regression-evaluation network which utilized the 
asymmetry between two eyes of same person to obtain 
gaze estimates. In this work, they evaluated the confidence 
score for gaze estimate obtained from each eye image and 
relied on the stronger prediction. This work presented two 
versions of the method: FARE Net and FAR-Net* which 
reported state-of-the-art performance of 4.41 and 4.3° er-
ror on MPIIGaze dataset, respectively.  

As mentioned in the Introduction section, several of 
these approaches with high accuracy during within-dataset 
validation did not report same degree of accuracy under 
cross-dataset validation. Most of these cross-dataset vali-
dation experiments were conducted with UT-Multiview as 
training set and MPIIGaze as test set. It may be noted that 
the former was collected in controlled laboratory setting 
whereas the latter was recorded in real-world condition 
with variations in appearance, illumination, and inter-eye 
illumination difference. Due to the unavailability of such 
large datasets collected in real-world conditions apart from 
MPIIGaze, it is unclear how these models would perform 
under real world conditions when trained on MPIIGaze. 
Further, most of these works had little focus on the usabil-
ity of these networks for real-time gaze interaction. 

(Zhang et al., 2019) attempted to evaluate the net-
work’s performance proposed in (Zhang et al., 2017b) 
against another model based method GazeML and com-
mercial Tobii EyeX eye tracker. They evaluated these 
three systems in off-line mode on 20 participants under 
two illumination conditions and at 8 different distances be-
tween user and the camera. They recorded 80 samples un-
der each of these 16 conditions and used 60 of these as 
calibration samples for fine tuning the gaze predictions and 
reported accuracy on remaining 20 samples. They used 
third-order polynomial fitting to map 2D gaze predictions 
to actual screen coordinates. Even though this study at-
tempted to study the accuracy of various gaze estimation 
approaches, no emphasis was made on the usability aspect. 
Further, fine tuning of network for each distance may not 
be applicable for practical applications.  

Summarizing our literature review, we believe that 
there is still a lack of clarity regarding the performance of 
existing appearance-based gaze estimation models for day-
to-day gaze interaction for unseen users and little evidence 
is available on their usability. We also believe that an ar-
chitecture that is robust to appearance-related variations is 
imperative. In this direction, we propose a novel architec-
ture that attempts to overcome appearance-based varia-
tions. Further, we have conducted one of the first real-time 
user study to evaluate the usability of an appearance-based 
gaze estimation system. 

I2DNet – Methodology 
Dilated Convolutions 
Our proposed architecture contains mainly two compo-

nents. The first part, inspired from (Chen & Shi, 2018) 
uses dilated convolutions to obtain larger receptive field 
instead of relying on several maxpooling layers. Appear-
ance variations at eye regions when a person is gazing at 
two different screen locations might be subtle and the dif-
ference between these two eye images can be over tens of 
pixels as illustrated in the above mentioned work. Most 
current architectures use several downsampling layers like 
convolutional layer with large stride and pooling layers as 
we go deeper into the network. The use of maxpooling lay-
ers is common in tasks like object detection where max-
pooling aims to achieve shift-invariance by reducing the 
resolution of feature maps (Gu et al., 2015). It also helps 
in increasing the effective receptive field, the region in the 
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input space that each CNN feature is looking at. However 
progressively using maxpooling layers reduces the spatial 
resolution of feature maps. In other words, the subtle 
changes captured over the range of fewer pixels might be 
lost if we use maxpooling layers successively as these pre-
vents passing of finer spatial information to deeper layers 
of the network.  

Dilated convolutions achieve large receptive field 
without resorting to maxpooling layers. In simple terms, 
dilated convolution is a convolutional operation applied to 
an input with defined gaps in the kernel. For a 2D image, 
a dilated convolution with a dilation rate of 1 produces 
same output as a normal convolutional operation. Stacking 
convolutional layers increases receptive field linearly, 
whereas stacking dilated convolutions with varied dilation 
rate can increase receptive field exponentially. (Chen & 
Shi, 2018) showed that the use of dilated convolutions in 
place of normal convolutions improves gaze estimation us-
ing a multi-channel architecture.  

We have not only used dilated convolutions for eye re-
gions as Dilated-Net did, but also for the face channel since 
changes in facial expression brings appearance-related 
changes in eye region. We have also changed the number 
of filters in each layer of the network. Intuitively, deeper 
layers of network capture high level features and  

 
Figure 1: Architecture of I2DNet network. (a) Main network 
represents our architecture. (b) Dilated CNN represents the 
generic CNN block that we used across face and both eyes 
channels 

it is a common paradigm in most of the computer vision 
tasks to gradually increase the number of filters as we go 
deeper into the network. We have followed the same par-
adigm and have increased the number of filters across all 
three channels.  

Differential Layer 
Our novel contribution to the multi-channel architec-

ture of Dilated-Net is in terms of employing a differential 
layer that obtains the difference between features obtained 
from left and right eye channels. (Zeiler & Fergus, 2014) 
demonstrated hierarchical nature of features learnt by the 
network with respect to layers in the network. They 
showed that shallow layers encode low level features like 
edge and color conjunctions whereas deeper layers repre-
sent entire objects with significant pose variation. From 
this understanding, we proposed the following approach.  

First, we obtained feature maps for left and right eye 
images from the shared convolutional layers. These feature 
maps contained higher level features that encode infor-
mation about various portions in both the eye images. 
These portions may include eyeball, sclera region or brow 
region and these vary from person to person. Since left and 
right eye images contain common features which may be 
redundant for gaze estimation, we investigated whether 
omitting these person-dependent common features im-
proved gaze estimation accuracy. Hence, in order to retain 
features pertinent to gaze estimation and to remove redun-
dant and person-specific features from learning process, 
we proposed to obtain difference of the left eye and right 
eye features. We trained our gaze estimator on the absolute 
difference of eye features along with the features obtained 
from face channel. Even though the face channel brings in 
person-specific features into the learning process, we pre-
ferred to retain it as it encodes head pose information 
which is important for gaze estimation. We posit that the 
resultant difference vector acts as a better feature transfor-
mation than the case where the features from both eyes 
were just concatenated for subsequent fully connected lay-
ers.  

We hypothesize that the use of differential layer along 
with dilated convolutions improves gaze estimation per-
formance than the results reported in (Chen & Shi, 2018). 
Note that our approach is fundamentally different from the 
Diff-NN proposed by (Liu et al., 2019). Their work con-
siders two input images belonging to the same eye (left or 
right) and attempts to learn the gaze differences. Their ap-
proach focuses on person-specific gaze estimation whereas 
we rely on a total person-independent approach. Further 
their idea relies on the ability of the network to learn gaze 
differences given two eye images whereas we incorporated 
a differential layer into our network architecture which 
aims at circumventing the redundant, subject-specific 
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features by leveraging left and right eye features to im-
prove the person-independent gaze estimation. In the next 
section, we present experiments on MPIIGaze and RT-
Gene datasets using our proposed approach. 

I2DNet – Experiments 

Datasets and Pre-processing 
MPIIGaze 
We used the evaluation subset of the MPIIGaze dataset 

from (Zhang et al., 2017b) where 45,000 images with full 
faces were provided along with ground truth gaze points. 
MPIIGaze dataset was collected in real-world conditions 
with wide illumination and head pose variations and it is 
considered as a challenging dataset. It was collected with 
15 people from diverse ethnic backgrounds and includes 
appearance-variations like wearing spectacles. We used 
the facial landmark annotations provided along with the 
dataset and applied image normalization based on the 
method proposed in (Zhang et al., 2018). In simple terms, 
this method assumes a virtual camera with a focal length 
fv and applies translation and rotational transformations on 
the image so that it faces the reference point from a dis-
tance dv and cancels out the roll angle of the head. To ob-
tain the normalized face images for our multi-channel net-
work, we assumed the center of the face as the reference 
point. Similarly, for normalized eye images, respective eye 
center was considered as the reference point. Our normal-
ization process performs grayscale conversion, perspec-
tive warping and histogram equalization in the same order. 
Similar process with different parameters was applied to 
obtain normalized left eye and right eye images. We ob-
tained face crops of size 120x120 and eye crops of size 
36x60 which are fed into the network. We performed pre-
liminary experiments on MPIIGaze to determine optimal 
value of dv. We performed experiments for the values 400, 
500 and 600 and found 600 to provide lower mean angle 
error when two subjects in the MPIIGaze dataset were 
used as test set. Hence, we used dv as 600 for eye images 
and 1000 for face images. We used fv as 960 for both face 
and eye images as prescribed in (Zhang et al., 2018). 

RT-Gene 
RT-Gene dataset contains 122,531 images of 15 partici-
pants using wearable eye tracking glasses. Unlike MPII-
Gaze dataset where participants sat near to their 

computers, participants here were located at 0.5 to 2.9 me-
ters from the camera during this dataset creation. Com-
pared to MPIIGaze, this dataset has wider variation in 
terms of head pose and gaze angles. Since this dataset uses 
wearable eye tracking glasses while capturing the images, 
they used semantic inpainting to paint the area covered by 
eye tracking glasses with appropriate skin texture. Hence, 
the authors provided both original and in-painted version 
of the images after normalizing them. The resolution of the 
normalized eye and face images provided is 36x60 and 
224x224 respectively. We did not do any further pro-
cessing of these images apart from resizing of face images 
to 120x120. We observed noises in the in-painted set as 
(Cheng et al., 2020) reported and hence used only the orig-
inal dataset for our experiments. We used grayscale im-
ages for all our experiments on both datasets.  

Testing Procedure and Results 
We used the architecture detailed in figure 1 and con-

ducted experiments on the normalized dataset. The param-
eters r1, r2, r3 and r4 in figure 1 represents the dilation rate 
for each layer where as u1, u2, u3 and u4 represents the 
number of filters in each layer. We undertook a series of 
experiments to fine tune the hyper-parameters of the net-
work like dilation rates, number of feature maps, dropout 
values and kernel regularizers. We also undertook a series 
of experiments on MPIIGaze dataset similar to the studies 
to obtain the optimal dv value for hyper-parameter tuning. 
We presented the optimum hyper-parameter values ob-
tained from our experiments in figure 1. We followed sim-
ilar procedure as (Chen & Shi, 2018; Liu et al., 2019; 
Zhang et al., 2017b) for cross-subject validation on MPII-
Gaze dataset. We conducted leave-one-out cross-valida-
tion on MPIIGaze. During each fold, we randomly chose 
15% of the training data as validation set. g_x and g_y ob-
tained at the end of the network in figure 1 represents the 
predicted pitch and yaw gaze angles in normalized space. 
Since the ground truth gaze angles are in radians and many 
of the values are less than 1, we used a scaling factor of 
100 and we used mean squared error as the loss function. 
We used Adam optimizer (Kingma & Ba, 2015) with a 
batch-size of 32. We computed cosine similarity between 
all predicted and ground truth gaze points using their 3D 
normal vector representations to obtain angle error.  
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Table 1: Mean Angular Errors for Gaze Estimation 

Models	
MPII-
Gaze	

RT-Gene	 #	Parame-
ters	

iTracker	 6.2°	 -	 ~8M	
Spatial	

Weights	CNN	
4.8°	

10.0°	 ~196M	

RT-GENE	
(Fischer	et	al.,	

2018)	
4.8°	

	 ~30M	

Dilated-
Net	

4.8°	
-	 ~5	M	

GEDDnet	 4.5°	 -	 ~107	M	
FAR*	Net	 4.3°	 8.4°	 ~848	M	
RT-GENE	

(4	ensemble)	
4.3°	

8.6°	 ~122M	

I2DNet	
(Proposed)	

4.3°	 8.4°	 ~87	M	

 

We conducted experiments on RT-Gene dataset as per 
the evaluation protocol provided by the dataset. We di-
vided the original dataset into 3 folds and we performed a 
3-fold cross validation. We presented mean angle error of 
our experiments using the proposed model and compared 
it against various other approaches in Table 1. We 
achieved a state-of-the-art mean angle error of 4.3 ± 0.97 
and 8.44 ± 1.08 degrees on MPIIGaze and RT-Gene da-
tasets respectively, lower than both Spatial weights CNN 
and GEDDnet (Chen & Shi, 2020). We achieved on-par 
performance with FAR* Net. Note that the proposed 
model employs smaller number of parameters (~87M) 
than GEDDnet (~107M), Spatial weights CNN (~196M) 
and FAR* Net (~848M). We utilized around 10% of the 
trainable parameters compared to FAR* Net and yet 
achieved same degree of performance. We reported the re-
sults of iTracker as reported in (Zhang et al., 2017b) to 
make it comparable with other approaches as the results 
reported in original paper were in centimeters.  

Ablation Study 
Further, to illustrate the effect of our differential layer 

on the gaze estimation accuracy, we performed ablation 
study on the same CNN-backbone without the differential 
layer using MPIIGaze dataset. We removed the differential 
layer illustrated in Figure 1 and concatenated the left and 
right eye feature vector along with face feature vector for 
gaze estimation. We obtained a mean angle error of 4.54° 
on MPIIGaze. It may be noted that we achieved this result 
using only dilated convolutions and it is on par with 

GEDDnet, which relied on both dilated convolutions and 
gaze decomposition. Hence, using our ablation study, we 
demonstrated that the presence of differential layer indeed 
improves gaze estimation accuracy from 4.54° to 4.3°. 
Further, we noted that the presence of difference layer re-
duces the number of parameters by ~32K and yet improved 
the gaze estimation accuracy.  

In figure 2, we plot mean angle error for each partici-
pant from MPIIGaze dataset in cross-validation setting and 
the corresponding yaw and pitch error components. We 
computed difference between predicted and ground truth 
gaze points in their 2D normalized angular representations 
to obtain yaw and pitch errors. We observed that even 
though there is no clear pattern among pitch and yaw error 
components across participants, 8 out of 15 participants 
displayed higher pitch error than yaw error.   

Hence with our proposed approach, we showed a 10% 
improvement in terms of gaze estimation error over our 
baseline (Chen & Shi, 2018) (4.3° vs 4.8°). We undertook 
a paired t-test which revealed that our proposed approach 
performed statistically significantly better (t[14] = 2.17, 
p=0.047, Cohen’s d=0.5) than the baseline (Chen & Shi, 
2018). We further evaluated our model in real-time inter-
active setting. Our user study design is explained in the 
next section.  

 
Figure 2. Mean Angle Errors for all participants in MPIIGaze 
using I2DNet. 

Design of user study for gaze 
controlled interface 

We investigated and analyzed the performance of our 
proposed I2DNet in terms of angle error on MPIIGaze and 
RT-Gene datasets. Since we wanted to study its perfor-
mance in an interactive setting like a gaze controlled inter-
face, we evaluated the proposed system on a 9-block 
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selection task (Sharma et al., 2020). From our literature re-
view, OpenFace, a model-based approach, reported least 
cross-dataset validation error of 9.1° on MPIIGaze, lower 
than other appearance-based approaches like Diff-NN or 
MeNet. Further, as we mentioned earlier, WebGazer.js re-
ported an average error of 175 pixels i.e., ~35 mm in a user 
study which involved 82 participants. Hence, we com-
pared the proposed system’s performance with OpenFace 
and WebGazer.js. 

 

 
Figure 3. (a) Task screen with blue stimuli (b) When user makes 
selection, the blue block turns green. 

Task 
We divided the entire screen into 9 blocks of equal 

area. At first, we displayed these nine blocks on screen in 
gray color. We mapped the above mentioned three gaze 
prediction systems’ outputs to a marker on screen. As il-
lustrated in figure 3a, we provided a stimulus to the user 
by randomly changing one of these nine blocks to blue 
color. The user was instructed to fixate attention at the 
block whichever turns blue and press space bar on key-
board. The blue block turned green when the user pressed 
spacebar while the marker was present inside its boundary 
as illustrated in figure 3b. We defined “selection time” as 
the time between the instance a block turned blue and the 
instance the block turned green. If the user could not make 
selection with in 10000 milliseconds, we counted it as 
“miss click” and stimulus was moved on to a different 
block. Figure 4 represents the annotations for the 9 blocks 
which we shall use for the rest of our paper. 

WebGazer.js 
We setup WebGazer.js software using the provided li-

brary at this hyperlink. We enabled Kalman filter provided 
along with the library to filter noise present in gaze predic-
tions and to make the trajectory of predicted points 
smooth. This system required user to calibrate before they 
can start interacting. The calibration step required user to 
click on 9 dots, 5 times on each placed at different 

locations on screen. WebGazer.js reported that their sys-
tem self-calibrates using the clicks and cursor movement. 
At the end of calibration process, WebGazer.js asked users 
to stare at a point and reported calibration accuracy. Par-
ticipants who obtained low calibration accuracy had to re-
peat the calibration process. We set the minimum value of 
calibration accuracy as 80% for the participant to proceed 
to the task. We mapped gaze predictions to a red marker as 
discussed in previous section. For clear visibility of the 
marker, we set its size same as the mouse cursor. We en-
sured that the participants’ head lies in the pre-defined 
bounding box prescribed by WebGazer for proper tracking 
throughout the experiment. 

 
Figure 4. Region annotations for 9 blocks on screen 

OpenFace 
During our preliminary studies, 3 participants used 

OpenFace 2.0 and reported off-set between actual gaze and 
cursor position with noticeable noise. They also said that 
they could not reach certain portions of the screen. Hence, 
we designed a custom calibration routine based on smooth 
pursuit principle. We asked users to follow a circle which 
traverses across the screen. We recorded gaze predictions 
from OpenFace during the smooth pursuit. We trained a 
classifier network which took gaze angles as inputs and 
block prediction the user is gazing at as the output. 

The circle moved from top-left block (Region 1) to left 
bottom block (Region 7) through right top block (Region 
3) and right bottom block (Region 9). From left bottom 
block, the circle reached the center block of screen (Region 
5). We represented this trajectory in figure 4 in yellow 
lines. Throughout its trajectory, the circle moved at con-
stant pace and halted at the center of each of these nine 
blocks for 2 seconds. Our calibration routine received 
these gaze angle predictions from OpenFace through UDP 
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socket. We accounted for latency caused by both system 
and user and prepared our training data accordingly.  

			

Figure 5. Profile of yaw predictions by OpenFace while users 
performing our calibration routine.  

Figure 5 illustrates the raw yaw predictions obtained from 
OpenFace when three of our participants undertook the 
above explained calibration routine during the pilot study. 
The scatter plot indicated that the raw yaw predictions con-
tained noise. We observed difference in minimum and 
maximum yaw values among participants for the same 
gaze positions on screen. Hence our calibration routine not 
only maps gaze predictions to respective blocks, but it also 
smoothens the noise present in the predictions. We used a 
3-layer fully connected neural network which takes gaze 

yaw and pitch as inputs and predicts one of the 9 blocks as 
output. Similar to WebGazer.js, we monitored the classifi-
cation accuracy during training. Participants were allowed 
to proceed for the task only if the classification accuracy 
on test set exceeded 75%. We observed that the classifica-
tion accuracy for participants who used only eye move-
ments with their head fixed was poor. Hence, we suggested 
our users to use head movement along with eye movement 
while using this interface. The mouse cursor is placed at 
the center of the predicted block. We named this interface 
which uses OpenFace 2.0 and our calibration procedure as 
OpenFace_NN and used the same for the rest of the paper. 

I2DNet - Tracker 
We used the same architecture presented in section 4. 

For real-time evaluation, we trained the network using the 
entire MPIIGaze dataset. To ensure proper training and to 
prevent overfitting, we utilized 15% of the dataset as vali-
dation set and observed training and validation losses over 
the training process of 25 epochs.  

For each frame from webcam, we obtained 3D facial 
landmarks and head pose using OpenFace 2.0. We used 
these 3D landmarks of two corners of both eyes and two 
mouth corner points to obtain face center. In the same fash-
ion, we used 3D landmarks of two corners of each eye to 
obtain corresponding eye center. We used these centers, ds 
and fv and the process explained in previous section to ob-
tain normalized face and eye images. These images were 
fed to the trained I2DNet to obtain gaze predictions. We 
computed the screen dimensions, camera intrinsic param-
eters and performed extrinsic camera calibration to obtain 
screen-camera pose using the method described in 
(Takahashi et al., 2012). For this purpose, we captured the 
images of checkerboard pattern displayed on screen by the 
webcam using a planar mirror. Using these images, we 
performed the screen-camera pose estimation. We ob-
tained gaze vector from I2DNet and face center, face rota-
tion matrix from OpenFace for each frame captured 
through webcam. We then used these metrics to obtain 
gaze point on screen using the method described in (Zhang 
et al., 2019). For our proposed system, we did not utilize 
any calibration or filtering techniques, rather we directly 
map the predicted gaze points on screen to mouse cursor. 
We named our real-time gaze interface built using I2DNet 
predictions as I2DNet-tracker.  
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Experiment Design 
We used repeated measures approach and enrolled 16 

users to participate in our user study (Age range from 19 
to 51 years). Out of 16, 4 were female and 7 users wore 
spectacles while performing the task. We conducted our 
experiment in a closed room under artificial illumination. 
We used MSI GE75 Raider 9SG laptop with intel-i7 pro-
cessor, GeForce RTX 2080 graphics card and a webcam of 
1280x720 resolution. We used the same resolution for all 
the three systems. No user had any exposure to eye track-
ing technology prior to our experiment. Users performed 
the task elaborated in section 5.1 using three systems. Un-
der each trial, each user got 25 stimuli and hence we rec-
orded 1200 (25x3x16) selections in total and 400 selec-
tions using each system. We randomized the order of three 
systems for each participant to minimize the learning ef-
fect. We instructed users to perform the selection as soon 
as they can. In this experiment, we recorded selection time 
for each click and block locations for miss clicks. We did 
not pose any limitations on the head pose user can have 
during the task. Each of these systems may have various 
degrees of error for different users. Hence, we instructed 
users that systems may contain offset, and they can look 
anywhere inside the blue-colored block. After each ses-
sion, we instructed users to answer the NASA TLX and 
SUS questionnaires for qualitative estimation of perceived 
cognitive load and system usability. We also recorded sub-
jective feedback apart from these questionnaires. 

Results and analysis 

Summary of Quantitative and Qualitative 
Results  

In this section, we presented the quantitative and qual-
itative results of our user study. Figure 6 showed the mean 
selection time averaged over all participants for three in-
terfaces. We undertook one-way ANOVA for selection 
times but did not find any significant effect. We conducted 
three pairwise t-tests and found that participants can per-
form the task significantly faster (p<0.05) using I2DNet-
Tracker (2.6 sec) than WebGazer.js (3.1 sec).  

 
Figure 6. Mean Selection time using three gaze prediction 
systems. 

The other two pairwise t-tests did not show any signif-
icant effect. Figure 7 represents the number of miss clicks 
for each participant while using three interfaces. We un-
dertook one-way ANOVA for number of miss clicks as 
well and found significant difference among three inter-
faces F (2,45) = 5.16, p<0.05, η2 = 0.186.  

Three pairwise t-tests found that participants missed 
significantly lesser number (p<0.05) of stimuli using 
I2DNet-tracker (33 miss clicks) than both WebGazer.js 
(113 miss clicks) and OpenFace_NN (75 miss clicks) sys-
tems. The other pairwise t-test between OpenFace_NN and 
WebGazer.js did not show any significant effect. Extend-
ing these results, we observed that the success rate of users 
to perform the designed task using I2DNet-tracker, Open-
Face_NN and WebGazer.js was  

 
Figure 7. Number of miss clicks for all participants in our user 
study. 

91.75%, 81.25% and 71.75% respectively. Further, we 
noted that three participants recorded 21 miss clicks 
(63.6% of the total) using I2DNet-tracker. Further, eight 
participants did not record any miss clicks while using 
I2DNet-tracker. 

0

1000

2000

3000

4000

WebGazer.js OpenFace_NN I2DNet-Tracker

M
ea
n	
Se
le
ct
io
n	
Ti
m
e	
(m
s)

Mean	Selection	Time	

0

5

10

15

20

s0
1

s0
2

s0
3

s0
4

s0
5

s0
6

s0
7

s0
8

s0
9

s1
0

s1
1

s1
2

s1
3

s1
4

s1
5

s1
6

Av
era
ge

N
um

be
r	o
f	m

is
s	c
lic
ks

Number	of	Miss	Clicks	across	participants

WebGazer.js OpenFace_NN I2DNet-Tracker



Journal of Eye Movement Research Murthy, et al. (2021) 
14(4):2 I2DNet: Design and real-time evaluation 

  11 

We also analyzed qualitative metrics collected during 
our user study. In Table 2, we summarized the mean 
NASA TLX score and SUS score for all the three inter-
faces. A one-way ANOVA test did not find significant ef-
fect for both TLX and SUS scores. On summarizing three 
pair-wise t-tests performed on TLX scores, we inferred 
that the participants perceived significantly lesser cogni-
tive load while using I2DNet-tracker compared to 
WebGazer.js. Further, three pair-wise t-tests on SUS 
scores showed that the subjective preference to I2DNet-
Tracker was significantly higher than to the WebGazer in-
terface. Even though TLX score and SUS score was favor-
able to OpenFace_NN compared to WebGazer.js, a pair-
wise t-test did not show the statistical significance. 

Table 2: Qualitative metrics of our user study 

Interface	 TLX	Score	 SUS	Score	
WebGazer.js	 37.4	 72.6	

OpenFace_NN	 32.0	 75.5	
I2DNet-Tracker	 26.5	 81.8	

 

Comparison between participants with and 
without spectacles 

To understand how usage of spectacles impact the per-
formance of the three eye gaze tracking systems under 
consideration, we divided our 16 users into two groups 
based on their use of spectacles. As mentioned earlier, s02, 
s05, s06, s08, s13, s14 and s16 were our 7 participants who 
used spectacles. The diopter rating for these participants 
ranged from -1 to -5. As a result, the 9 participants who 
did not use spectacles were classified as “Group A” and 
the rest were classified as “Group B”. In Table 3, we sum-
marized the average selection time and miss clicks for 
these two groups. 

Across the interfaces, participants with spectacles 
missed higher number of stimuli than the participants with-
out spectacles. WebGazer.js did not show significant dif-
ference between these two groups in terms of mis clicks, 
but interestingly participants without spectacles (Group A) 
took more time to select the stimulus block. Participants in 
both groups took similar time while using OpenFace_NN 
interface, but participants with spectacles missed more 
stimuli. In case of I2DNet-tracker, the effect of presence 
of spectacles was evident since both average 

Table 3: Selection Time and Miss clicks comparison between 
participants with and without spectacles  

Interface 
Group A 	 Group	B 

Selection 
Time (ms) 

Miss 
Clicks 

Selection 
Time (ms) 

Miss 
Clicks 

WebGazer.js 3271 6.8 2893 7.3 
Open-

Face_NN 
3083 3.2 3035 6.5 

I2DNet-
Tracker 

2373 1.1 2988 3.2 

selection time and average missed clicks were higher in 
Group B. It may be noted that the I2DNet-tracker interface 
does not use any calibration prior to the task whereas both 
other methods used calibration procedures either for map-
ping or to fine-tune the gaze predictions specific to user. 
These results are in-line with the results reported on simi-
lar analysis presented in (Zhang et al., 2019), where ap-
pearance-based systems outperformed model-based sys-
tem in overall accuracy, but a significant difference among 
these two groups while using appearance-based systems 
persists. 

Miss Clicks – Region-wise Analysis 
Next, we analyzed the regions of miss clicks occurred 

on screen across the interfaces. Figure 8 contains 9 regions 
representing our 9 blocks on screen. The bar graphs indi-
cate the number of miss clicks occurred in each region 
while using three interfaces. The scale on x-axis is main-
tained the same across all 9 regions. It can be inferred that 
participants recorded miss clicks across all regions of 
screen while using WebGazer.js. While using Open-
Face_NN, significant miss clicks were observed from Re-
gion 6 onwards. A significant portion (~69%) of miss 
clicks using I2DNet-tracker occurred in Region 6 and Re-
gion 9, the right and bottom extremes of the screen. This 
can be partially explained using figure 2, where higher 
pitch error was observed in higher number of participants 
in MPIIGaze experiments.  

 

Pointing and Selection Task Results on 4x4 
Grid 

We further conducted evaluation for finer level of 16-
block selection task on our system. We recruited 5 partic-
ipants, one with spectacles and the rest without wearing 
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Figure 8. Region-wise miss clicks using three interfaces across 
the screen. 

spectacles. Each participant performed 30 selections using 
our system and hence in total, 150 selections were rec-
orded on the 4x4 grid. We observed similar results as that 
of 9-block task for these participants with mean selection 
time of 1.5 seconds. The only participant with spectacles 
recorded one miss click while the rest of them recorded 
none. 

Discussion and Future work 
We aimed to achieve similar degree of gaze estimation 

accuracy during both with-in dataset validations and real-
world usage conditions. In this regard, we proposed 
I2DNet that aimed to circumvent any appearance-related 
artifacts in appearance-based gaze estimation task which 
hinders the generalization ability of the network. 

Our I2DNet achieved 4.3° and 8.4° mean angle error 
on MPIIGaze and RT-Gene datasets respectively. We re-
tained face channel which brings in significant appear-
ance-related artifacts into the learning process. We did not 
feed head pose information into the network separately as 
the head pose information obtained during real-time using 
OpenFace 2.0 reported a mean error of 3° for head orien-
tation. We shall investigate whether the present error ob-
tained is due to the inherent offset between visual axis and 
optical axis of the individual or due to any other appear-
ance-related or illumination-related factors. Further, we 
shall carry investigation on the effect of accuracy and la-
tency with reduced size of face images.  

We conducted our evaluation in a single illumination 
condition. We believed that such real-time evaluations of 

state-of-the-art models needs to be performed in various 
illumination conditions to comprehensively understand the 
usability of such systems in real-time. Even though Open-
Face 2.0 reported state-of-the-art cross validation accuracy 
on MPIIGaze dataset, its precision is poor as illustrated in 
figure 5. As demonstrated in (Feit et al., 2017), precision 
of gaze estimates also need to be studied along with accu-
racy since poor precision significantly affects the usability. 
(Zhang et al., 2019) used third-order polynomial fitting to 
adapt the gaze predictions for each participant. Studies on 
efficacy of such calibration and filtering techniques ap-
plied on gaze-predictions in the context of appearance-
based estimation during real-time is also imperative. 

We observed that more stimuli could not be selected 
during our study when they appeared in Region 6 and Re-
gion 9. We inferred that this might be due to the occlusion 
of eye region with brows while gazing bottom portions of 
the screen. Further work needs to be done to overcome this 
ubiquitous challenge as most of the commercially availa-
ble laptops contain web cameras above the display. We 
plan to conduct evaluation for finer level of tasks like 25-
block selection task to understand the breaking point of 
such systems. Further investigations are yet to be per-
formed under various illumination conditions for 16 and 
25-block selection task. We believe that such evaluations 
are not only critical to understand the limitations of these 
systems but also to understand the bounds of usability. 

Even though our evaluation indicated superiority of our 
approach both quantitatively and qualitatively over other 
two methods, we noted that the other two methods can run 
on CPU alone while our method requires a GPU. We eval-
uated our method on a laptop with i5 CPU alone and found 
that the prediction rate is around 3 fps which is lower than 
other two systems. This requirement of GPU is an inherent 
requirement for all appearance-based gaze estimation sys-
tems, yet it is a limitation when compared to feature-based 
methods. We intend to overcome this by applying princi-
ples of dark knowledge (Hinton et al., 2015) to train a 
smaller and faster network with a minimal loss in accuracy 
as (Krafka et al., 2016) did to achieve real-time perfor-
mance on a mobile device. 

Conclusion 

In this paper, we presented I2DNet, an appearance-
based eye gaze estimation system which used dilated 
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convolutions and a differential layer to remove common 
redundant features present in left and right eye images to 
improve accuracy of gaze predictions. We conducted ex-
periments on MPIIGaze and RT-Gene datasets and ob-
tained a state-of-the-art mean angular error of 4.3° and 8.4° 
respectively, which is on par with FAR* Net, but with 
lesser parameters. We conducted one of the first real-time 
user study on an appearance-based gaze estimation system 
and evaluated the proposed system on an eye gaze con-
trolled interface with 9-block selection task and compared 
its performance with WebGazer.js and OpenFace 2.0. De-
spite not performing subject-specific calibration, the pro-
posed system outperformed other two systems in terms of 
both selection times and number of miss clicks. We ana-
lyzed our user study results and we noted that I2DNet-
tracker system performed better for participants without 
spectacles than participants who used spectacles. We ob-
served that participants missed stimuli in more regions of 
the screen and fewer number of participants recorded no 
miss clicks while using other two interfaces compared to 
the proposed system. Since the proposed system does not 
depend on any calibration routine, we foresee to deploy the 
proposed system to develop gaze controlled interface for 
the use of physically challenged persons. 
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