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Introduction 
The spatial precision of an eye-tracker can be measured 

by taking the SD of a distribution of points from either a 
horizontal or vertical position trace during stable fixation 
(Holmqvist, 2017).  Precision is important for several 
goals, for example: (1) to compare the performance of dif-
ferent eye-trackers  (Holmqvist, 2017; Macinnes, Iqbal, 
Pearson, & Johnson, 2018),  (2) to filter out low-precision 
fixations from analysis (Saez de Urabain, Johnson, & 

Smith, 2015), (3) to design filtering schemes for eye move-
ment signals (Blignaut, 2019),  (4) to test a variety of psy-
chological paradigms (Orquin & Holmqvist, 2018), and 
(6) to enhance the performance of eye movement-driven 
biometric system (Komogortsev, Rigas, & Abdulin, 2016).  

Generally, it is assumed that the underlying distribu-
tions are unimodal and normal.  But if the underlying dis-
tributions are multimodal, this measure of precision is 
somewhat less useful. In Figure 1 (top), we show a uni-
modal normal distribution, and in Figure 1 (bottom), we 
show a multimodal distribution. For the unimodal distribu-
tion, the SD is a reasonable measure of the spread of the 
distribution, and +/- 1 SD covers 68.5% of the distribution, 
which is very close to the theoretical 68.27%.  For the mul-
timodal distribution, the SD spans 3 distributions, and +/- 
1 SD covers 49.1%. 
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Figure 1. Comparing the SD of a synthetic normal versus a syn-
thetic multimodal distribution. 

We are not aware of any previous research team that 
has ever statistically tested for multimodality in these dis-
tributions. We present evidence that the underlying distri-
butions are, in a considerable majority of cases, not uni-
modal.  Two previous papers have noticed and discussed 
the issue of multimodality in fixation stability metrics 
(Castet & Crossland, 2012; Whittaker, Budd, & 
Cummings, 1988).  Both papers offer recommendations 
for ways to get precision estimates for multimodal fixation 
distributions.  

In the present study, we will formally test for the mul-
timodality of distributions of horizontal and vertical posi-
tion in approximately 14,000 distributions from 202 sub-
jects tested twice.  Since we do find overwhelming evi-
dence of multimodality, we suggest an alternative metric 

for precision in the face of multimodality.  We note the 
similarity between this finding and our finding of multi-
modality of angular offsets (Friedman et al., 2021) in the 
same EyeLink 1000 data. 

In this manuscript we refer to microsaccades. There is 
quite a range of amplitude criteria employed for the defi-
nition of microsaccades: 

“Microsaccades were distinguished from macro-
saccades using an amplitude threshold of 1° (Martinez-
Conde, Otero-Millan, & Macknik, 2013), and the me-
dian microsaccade amplitude was 0.65° (M1: 0.71°, 
M2: 0.65°, M3: 0.62°). This is larger than in most stud-
ies, although there is also considerable variability be-
tween the average microsaccade amplitudes described 
in past reports, which include 0.8° (Bair & O'Keefe, 
1998), 0.73° (Guerrasio, Quinet, Buttner, & Goffart, 
2010), 0.67° (Snodderly, Kagan, & Gur, 2001), 0.46° 
(Otero-Millan et al., 2011), 0.33° (Ko, Poletti, & Rucci, 
2010), and 0.23° (Hafed, Goffart, & Krauzlis, 2009).” 
(Arnstein, Junker, Smilgin, Dicke, & Thier, 2015). 

Some studies have even larger amplitude criteria [see 
(Poletti & Rucci, 2016)].  Other authors choose 30 min arc, 
(0.5 deg) as a threshold (Poletti & Rucci, 2016).  For pur-
poses of the present analysis, any saccade < 0.5 deg was 
considered a microsaccade. 

Methods 
The eye-tracking database and signal processing meth-

ods employed in this study are fully described in a recent 
publication in this journal (Friedman et al., 2021).  These 
steps will be only briefly discussed in this report. 

The Eye-Tracking Database 

The Eye-Tracking Database is fully described in 
(Griffith, Lohr, Abdulin, & Komogortsev, 2020) and is la-
belled "GazeBase." (GazeBase Data Repository) All de-
tails regarding the study's overall design, subject recruit-
ment, tasks and stimuli descriptions, calibration efforts, 
and eye-tracking equipment are presented.  Subjects com-
pleted two sessions of recording (median 19 min. apart) for 
each round of collection. Each session consisted of multi-
ple tasks. The only task employed in the present study was 
the random saccade task. During the random saccade task, 
subjects were to follow a white target on a dark screen as 
the target was displaced at random locations across the dis-
play monitor, ranging from ± 15° and ± 9° of visual angle 
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in the horizontal and vertical directions, respectively. The 
minimum amplitude between adjacent target displace-
ments was 2° of visual angle. At each target location, the 
target was stationary for 1 sec.  There were 100 fixations 
per task.  The target positions were randomized for each 
recording. The distribution of target locations was chosen 
to ensure uniform coverage across the display. Monocular 
(left) eye movements were captured at a 1,000 Hz sam-
pling rate using an EyeLink 1000 eye tracker (SR Re-
search, Ottawa, Ontario, Canada).  When the eye is closed, 
as in blinks, the EyeLink returns “Not a Number” (NaN). 

The Signal Processing Steps 
Our goal was to study the precision for each fixation 

trial.  As explained below, we chose fixations which, after 
signal processing, consisted of a single fixation segment 
500 msec long. Although the original database has 322 
subjects and more than 64,000 fixations, only 202 subjects 
and 14,087 fixations met our criteria. 

The full gaze position signal contained various eye 
movements, including fixations, saccades, post-saccadic 
events and oscillations (PSE), and blinks.  We wanted to 
measure data quality only when subjects were fixating. 
Therefore, we followed the preprocessing steps outlined in 
Table 1, which are fully explained in our recent article 
(Friedman et al., 2021) and summarized below. 

 
Table 1. Steps in the Preprocessing of Fixations 

Step 1 Remove saccade latency 

Step 2 Choose a portion of each fixation to 
analyze for precision 

Step 3 Remove blink saccades 

Step 4 Remove saccades – step 1 

Step 5 Remove saccades, etc. - step 2 

Step 6 Remove anticipatory saccades 

 

Removing Average Saccade Latency 

We first found the optimal temporal shift of the eye 
signal for each recording to align the eye and target move-
ments as much as possible. The shift with the lowest total 

difference between eye position and target position was 
determined.  The average shift was 237 msec (SD=17, 
min=192, max=316). 

Which Part of Fixation to Analyze 

We wanted to know which part of the fixation period 
was least likely to have a large error due to saccades.  To 
determine this, we created an average offset per sample by 
averaging the angular offset across all studies (N=644) on 
a per-sample basis. The lowest mean error period started 
at sample number 192 and ended at sample number 691.  
This is the section that we ultimately analyzed for preci-
sion. 

Removing “Blink saccades” 
Blink saccades are pieces of the horizontal and vertical 

position signals that occur before or after a blink.  Our 
blink saccade removal method required a threshold on ve-
locity noise during fixation.  A threshold was determined 
for each subject (“FixVelT”). To detect the start of a blink 
saccade, starting at the last good sample before the NaN 
block, we marched backward in time until three contigu-
ous samples were all below the FixVelT.  Of the 3 samples 
that were all less than FixVelT, the sample closest to the 
NaN block was taken as the start of the blink saccade (and 
the end of the prior fixation).  To determine the end of the 
blink saccade, we started at the first good sample after the 
NaN block and marched forward in time until 3 contiguous 
samples were below FixVelT.  Once again, the sample 
closest to the NaN block was taken as the end of the blink 
saccade. All of the signal portions related to blink saccades 
were set to NaN so that they would not be considered in 
our analysis of the fixations. 

Removing Saccades - Step 1 

To detect saccades, we found all blocks of data with a 
radial velocity above 55 deg/sec. These peak blocks were 
considered to potentially contain the peak velocity of sac-
cades. Each block began at a start sample and ended at an 
end sample.  To find the start of each saccade, we marched 
backward from the start sample until we found a local min-
imum in the radial velocity that was also less than 30 
deg/sec.  The end of each saccade was the sample after the 
end sample of the peak block that was both a local mini-
mum and less than 30 deg/sec.  Between the start of each 
saccade and the end of each saccade, sample values were 
set to NaN.   
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Removing Saccades - Step 2 
We found a novel method of removing other non-fixa-

tion events from the recordings. This method was found 
through trial and error.  It consisted of searching for strong 
evidence, based on 2nd order polynomial fits, of some sort 
of parabolic structure in the position recordings in a series 
of sliding 27-sample windows starting at sample 1 and 
ending at the final sample -27. 

We empirically determined that windows with an R2 
greater than 0.6 and a beta-weight greater than 0.00055 
typically contained either saccades or pieces of saccades 
that were not found during the previous saccade removal 
procedure.  Most were very small saccades, or else pieces 
of saccades, or other saccades with a somewhat unusual 
velocity profile. 

Examples of the results of these 2 saccade removal 
steps are at: 

 https://digital.library.txstate.edu/handle/10877/14220 
(See “IllustrateDetectionOfNonFixationEvents.pdf”)  

Removal of Anticipatory Saccades 
Our task was designed so that each fixation trial was 

exactly 1 second in duration.  In such a predictable situa-
tion, subjects often anticipate the target jump and make a 
saccade prior to the target jump.  Such saccades are re-
ferred to as “anticipatory saccades'' (AS).  These events did 
occur in our data.  The saccade portion of each AS was 
removed by our saccade removal methods. But after an 
AS, the eye position would be far from the target, not due 
to low precision, but because of the AS.  We developed a 
method to detect these elevated fixation levels due to AS 
and removed them. 

Evaluation of the Success of These Efforts to 
Remove Non-Fixation Samples 

As a result of our steps to remove non-fixation samples 
from our fixations, we hoped that only fixation samples 
were represented in the precision-related of these fixations.  
To check this, we examined 500 randomly chosen fixa-
tions. Of these, we rated 408 (82%) as containing only fix-
ation samples, 66 (13%) contained PSEs (typically only 1), 
20 (4%) contained microsaccades, 2 contained very slow 
and/or very noisy saccades, 2 contained a piece of a very 
slow saccade, 1 contained pieces of a blink saccade, and 1 

contained Rapid Irregular Oscillating Noise in the Eye Po-
sition Signal (“RIONEPS”) (Abdulin, Friedman, & 
Komogortsev, 2017).  We considered that these small 
and/or brief events would not challenge the statement that 
the overwhelming number of these fixation samples were 
indeed fixation only. 

  

Figure 2. The top panel presents the histogram of a multimodal 
distribution.  The green line is the density of the histogram (a 
smoothed version of the histogram).  The blue line is the fit of 
the multimodal mixture distribution found by the rjMCMC al-
gorithm.  The middle panel displays the three-component distri-
butions estimated by the algorithm.  The bottom panel displays 
the means (M), SDs (S) , and weights (W) of each component.  
Angular offsets are in degrees of visual angle. 
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Inclusion Criteria for Fixations 
There was a maximum of 500 samples for each fixa-

tion.  Any fixation that had fewer than 500 samples was 
excluded from further analysis.   

Assessing Unimodality 
To determine if the distributions of position signals in 

each fixation were unimodal or multimodal, we employed 
the Bayesian mixture model approach described in (Xu, 
Bedrick, Hanson, & Restrepo, 2014) (see Figure 2 for an 
illustration of this process).  The basic idea is that an algo-
rithm is employed to try to fit from 1 to kmax (5, in our 
case) weighted normal distributions to the histogram of the 
horizontal and vertical position signals for each fixation.  
Each normal component is represented by a mean, a stand-
ard deviation (SD), and a weight.  The sum of these 
weights is always 1.  This is done repetitively, 2000 times 
(iterations), and on each iteration, the most likely number 
(from 1 to 5) of modes in the distribution was determined. 
The ultimate goal is to determine the Bayes Factor (BF). If 
a is the prior odds of more than one mode (determined by 
simulation in our code), and b is the posterior odds of find-
ing more than one mode, then BF=b/a.  A log(BF) <=1 
means there is no evidence of multimodality (unimodal) 
(Kass & Raftery, 1995).  A log(BF) between 1 and 3 is 
considered as positive evidence for multimodality.  A 
log(BF) between 3 and 5 is considered as strong evidence 
for multimodality.  And, finally, a log(BF) > 5 is consid-
ered as very strong evidence for multimodality.  The algo-
rithm used to perform the mixture model is a reversible 
jump Markov chain Monte Carlo (rjMCMC) procedure.  
The R package that does the fitting is ``mixAK"(A. 
Komárek, 2009; Arnošt Komárek & Komárková, 2014).  R 
code for this computation is available at R Multimodality 
Code.  (R Development Core Team, 2010). 

Precision Metric Names 
Precision-related fixations consist of all fixations 

which met the inclusion criteria above (14,087).  For each 
precision-related fixation, to estimate precision, we calcu-
lated the SD (ClassicPrecision).  This is the SD of the pre-
cision-related distribution regardless of whether the distri-
bution is unimodal or multimodal.  We also determine the 
SD of the component distribution with the maximum 
weight (MaxCompSD).   

 

Results 

Characteristics of Accepted Fixations 
A total of 14,087 fixations from 202 subjects and both 

recording sessions were included in these results.  Only 
fixations with a single fixation segment occupying the full 
500 msec window were included in this analysis. 

Bayes Factor Distribution 
Figure 3 is the frequency histogram of log(Bayes Fac-

tors) (logBF) for the horizontal position distributions in all 
fixations in this study.  BF values equal to 0.0 were set to 
0.003.  Log(BF) values that were infinite were set to the 
maximum numerical value found (> 18,000).  As noted 
above, a log(BF) <=1 means there is no evidence of mul-
timodality (unimodal). A log(BF) between 1 and 3 is con-
sidered as positive evidence for multimodality.  A log(BF) 
between 3 and 5 is considered as strong evidence for mul-
timodality.  And, finally, a log(BF) > 5 is considered as 
very strong evidence for multimodality.  We do not show 
the same sort of figure for vertical position signals since it 
looked very much like that for the horizontal position sig-
nals (Figure 3).  See Table 2 for a breakdown of log(BF) 
values for fixation trials from horizontal and vertical posi-
tion signals. 

Table 2. Percent Multimodal for Horizontal and Vertical Position 
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Horiz. 14,087 20.8 4.4 5.1 69.7 

Vert. 14,087 23.2 4.6 4.6 67.5 

*-No evidence of multimodality [log(BF) <= 1] 

†-Positive evidence of multimodality [log(BF) > 1 & log(BF)<=3] 

‡-Strong evidence of multimodality [log(BF) > 3 & log(BF)<=5] 

$-Very strong evidence of multimodality [log(BF) > 5] 
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Figure 3. On the top, the frequency distribution of Bayes Factors 
(log(BF)) across all fixations that met our criteria (N = 14,087). 
These Bayes Factors are for the horizontal position signal only. 
The distributions for the vertical position signals looked very 
similar and are not shown.  All BF values that were positive infi-
nite were set to the highest numerical value obtained. All BF val-
ues that were negative infinite (log(0)) were set to log(0.003). 
The lines are the log(BF) thresholds for a value of 1, 3, and 5, 
corresponding to positive evidence (1 to 3), strong evidence (3 to 
5), or very strong evidence (>5) of multimodality. The bottom 
histogram is the top histogram with the y-scale in log units. 

 

Histogram of Number of Components 
Figure 4 is the frequency histogram of the number of 

component distributions found by the multimodality test-
ing algorithm for horizontal position only. Two compo-
nents were the most frequent result and occurred 49.25% 
of the time. Two or more components were found in 81.5% 
of fixations. The histogram for vertical position signals 
(not shown) looked very similar (two components oc-
curred 49.3%, two or more, 79.3%). Evidence of more than 
1 component needed to fit a distribution is also evidence 
of multimodality. 

 

 
Distributions of Measures of Precision  
Distributions of both of our measures of precision 

(ClassicPrecision and MaxCompSD) for both horizontal 
position and vertical position signals are presented in Fig-
ure 5. The ClassicPrecision distributions for horizontal po-
sition signals and vertical position signals look very simi-
lar and have a similar median (0.063,0.064). The Max-
CompSD distributions for horizontal position signals and 
vertical position signals also look very similar and have an 
identical median (0.035). The MaxCompSD precision es-
timates are approximately 55% smaller than the Classic 
Precision estimates. 
 

 

 

 

 

 

Figure 4. The mixture distribution analysis was allowed to fit 
from 1 to 5 component distributions. In this figure, we present a 
frequency histogram of the number of component distributions 
found for the horizontal fixation signals. The most frequent num-
ber of component distributions is 2. The histogram for vertical 
position looked very similar and is not shown. 



Journal of Eye Movement Research Friedman, L. Hanson, T. & Komogortsev, O. V. (2021) 
14(3):4 Multimodality of precision-related distributions-part 2 
 

  7 

 

 

 

Oculomotor Basis for Multimodality 
Our results raise questions about the oculomotor or in-

strumental basis for the multimodality we see.  We do not 
have a formal analysis of this at this time. However, we do 
have statements we can make based on our familiarity with 
these distributions.  Multimodality is related to the linear 
or very low-frequency movements during fixation that is 
commonly referred to as drift (we mean a drift that occurs 
throughout a fixation).  And in many cases, microsaccades 
seem to be the cause of multimodality.  We present Ap-
pendix Figures 1 - 12 to provide examples and counter-
examples to these general impressions.  We do this be-
cause we think it will assist the reader in assessing the dif-
ficulty that is likely to be involved in fully resolving the 
oculomotor or instrumental basis for multimodality.  

Discussion 
The main findings of the present study are that distri-

butions of horizontal and vertical position during fixation 
are, more often than not, multimodal in our EyeLink 1000 
recordings (and in our types of subjects: young healthy 
adults).  This is analogous to our earlier finding about the 
distributions of angular offset (degrees) often used to esti-
mate accuracy.  We cannot generalize to other devices at 
this time.  Given this multimodality, the SD does not con-
form to the usual rules for normal distributions and thus 
loses some interpretability. We present and suggest alter-
native measures of precision that might be more useful.   

The SD of the maximum-weighted Gaussian compo-
nent found to fit the data (“MaxCompSD”) is interpretable 
and is found for every fixation.  The MaxCompSD is, on 
average, 55% lower than the SD of the entire distribution, 
so this alternative measure will produce estimates of pre-
cision that are markedly lower than typical.  

On the other hand, it is not clear to us why researchers 
have chosen the SD in the first place.  Why chose a metric 
from statistical theory that involves taking the square root 
of the average of a set of squared deviations?  The mean 
(or median) absolute deviation is simpler and more inter-
pretable and does not assume a unimodal, normal distribu-
tion.  Similarly, the RMS-S2S (rms, sample to sample), a 
frequently used measure of precision in eye-tracking 
(Holmqvist, 2017), also emerges from statistical theory.  It 
involves taking the square root of the average of a series 
of squared sample-to-sample differences. It produces a 

Figure 5. (A) Histogram of ClassicPrecision for Hori-
zontal Position. The first author estimated the mode in 
all plots. Values are in SD units. (B) Histogram of Max-
CompSD for Horizontal Position.  (C) Histogram of 
Classic Precision for Vertical Position. (D) Histogram 
of Max-CompSD for Vertical Position. 
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quadratic mean. Why do this when a simple mean or me-
dian sample-to-sample average absolute deviation would 
also more interpretable?  We quote from an online statis-
tics textbook: 

“If histograms and probability plots indicate that your 
data are in fact reasonably approximated by a normal 
distribution, then it makes sense to use the standard de-
viation as the estimate of scale. However, if your data 
are not normal, and in particular if there are long tails, 
then using an alternative measure such as the median 
absolute deviation, average absolute deviation, or in-
terquartile range makes sense.”  Link to Textbook Page 
(NIST/SEMATECH, 2012) 

We conceive of eye position signals as consisting of 
eye movements (including physiological oculomotor 
noise) and machine noise. We know of no way to separate 
these. Machine noise is often assessed with an artificial 
eye. It is our view that machine noise is unlikely to play an 
important role in our multimodality finding but it is an em-
pirical question. 

Bivariate contour ellipse area (BCEA) is another pre-
cision-related metric (Blignaut & Beelders, 2012).  Its in-
put is a bivariate histogram of horizontal and vertical po-
sition samples.   It assumes that the shape of the histogram 
is elliptical and attempts to find a boundary that encom-
passes some percent of all samples in the ellipse.  The area 
included within this boundary is taken as a measure of pre-
cision.  It assumes that the joint histogram is unimodal and 
Gaussian.  Given that only approximately 20% of all hori-
zontal or vertical position distributions are unimodal, the 
BCEA appears to be a poor choice as a measure of preci-
sion. 

It would be valuable to track down the oculomotor or 
instrumental basis for this multimodality.  Our observation 
and our judgment are that either a linear trend across each 
fixation or evidence of a very low-frequency trend in the 
position signals will be more likely in multimodal distri-
butions.   Also, it is clear that microsaccades caused mul-
timodality in some cases.  In other cases, it is just as clear 
that a microsaccade did not cause multimodality.  We pre-
sent 12 example analyses that illustrate some of these ef-
fects along with counter-examples.  We do this to support 
our estimation that tracking down the oculomotor basis for 
multimodality is likely to be a time-consuming and diffi-
cult task.   An obvious future direction is to begin to track 
down these relationships. 

Our results may be influenced by the duration of the 
fixation periods.  For example, with very long fixation du-
ration we might see more unimodality as much more data 
enters the distributions. On the other hand, very short fix-
ations might also be more unimodal because there is less 
time to sample multiple modes.  This could be an area of 
future research.  
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