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Introduction 
Neoclassical or rational models of decision-making 

suggest that humans make decisions based on full and rel-
evant information (Gigerenzer & Gaissmaier, 2011). How-
ever, as Herbert Simon (1979, p. 500) stressed, the classi-
cal model of rationality requires, “knowledge of all the 

relevant alternatives, their consequences and probabilities, 
and a predictable world without surprises”. Many profes-
sionals on the other hand, face an operating environment 
characterized by volatility, uncertainty, complexity, and 
ambiguity (Williams, 2010). In such environments, intui-
tive decision making often necessitates the use of mental 
heuristics – or ‘rules of thumb’ - to quickly reduce com-
plexity. The price to pay for the speed and efficiency asso-
ciated with heuristics, is that they require generalization 
and the neglect of some potentially important information. 
As such, heuristics allow people to make “good enough” 
choices - a trade-off between effort and potential accuracy 
- in a sensory-rich and complex environment (Ehrlinger et 
al., 2016; Raab & Gigerenzer, 2015). 

Four interesting issues become pertinent when consid-
ering how heuristics might be used to guide decision-
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making in complex environments: (1) How might cogni-
tive biases influence the information that is selected for 
processing; (2) How might we objectively detect how this 
information is attended to and processed; (3) Can we cate-
gorise individuals based on information selection tenden-
cies; and (4) Can we provide support to overcome potential 
errors in decision-making due to biases. The aim of this 
study was to initiate enquiry into the first three of these 
issues and specifically, to show potential for quantifying 
an individual’s propensity for rational thinking using a 
novel augmented reality platform. Existing tools for as-
sessment of rational thinking have form of rather lengthy 
and abstract questionnaires (Stanovich, 2016). Identifying 
objective markers of important elements of rational think-
ing that potentially could be measured in real-time would 
greatly expand this area of research (Berthet, 2021). 

While heuristics can be useful (see Gigerenzer & 
Gaissmaier, 2011; Raab & Gigerenzer, 2015), they can 
lead to the injection of cognitive bias - unconscious errors 
generated by our mental simplification methods 
(Williams, 2010). Discussion of heuristics and biases often 
leads to a conceptualization within a dual-process frame-
work because most of the tasks in the heuristics and biases 
literature have been deliberately designed to pit an auto-
matically triggered response (Type [System] 1) against a 
normative response generated by more controlled types of 
processing (Type [System] 2) (Kahneman, 2013). In these 
tasks, the subject must detect the inadequacy of the Type 
1 response and then must use Type 2 processing to both 
suppress the Type 1 response and to simulate a better al-
ternative (Stanovich, 2016). 

The dominance of Type 1 versus Type 2 processing in 
determining a final decision, tends to be assessed via spe-
cific cognitive tasks (e.g., the Comprehensive Assessment 
of Rational Thinking, CART; (Stanovich, 2016)). How-
ever, there is increasing interest in capturing objective pro-
cess measures of intuitive (non-rational) decision-making. 
One such process measure is eye movements, which pro-
vide “a window into our mind and a rich source of infor-
mation on who we are, how we feel, and what we do” 
(Hoppe et al., 2018, p1). As such, eye movement metrics 
may provide insights as to how someone will make deci-
sions under certain circumstances (see Orquin & Mueller 
Loose, 2013, for a review). 

Most of the work examining eye movements as bio-
metric markers has been directed to the early detection of 
neurological and clinical disorders such as autism (Riby & 

Hancock, 2008) or Alzheimer disease (Beltrán et al., 
2018). Recently, these applications have utilised novel 
mathematical and machine learning approaches. For ex-
ample, Tseng et al. (2013) used machine learning to iden-
tify critical features that differentiated patients from con-
trol subjects based on their eye movement data while 
watching 15 minutes of television. They classified Parkin-
son’s disease versus age-matched controls with 89.6 % ac-
curacy (chance 63.2 %), and attention deficit hyperactivity 
disorder versus fetal alcohol spectrum disorder versus con-
trol children with 77.3 % accuracy (chance 40.4 %). 

Importantly, it is not just brain dysfunction that may be 
detected via analyses of eye movements, but more subtle 
psychological differences. Optimists, for example, spend 
less time inspecting negative emotional stimuli than pessi-
mists (Isaacowitz, 2005), and extraversion influences fix-
ation time of people-based images (Moss et al., 2012), 
2012). Individuals high in openness spend a longer time 
fixating and dwelling on locations when watching abstract 
animations (Rauthmann et al., 2012), and perceptually cu-
rious individuals inspect more of the regions in a natural-
istic scene (Risko et al., 2012). More recently, Hoppe et al. 
(2018) tracked eye movements while participants ran an 
errand on a university campus. They revealed that the vis-
ual behaviour of individuals engaged in an everyday task 
can predict four of the Big Five personality traits (neuroti-
cism, extraversion, agreeableness, and conscientiousness) 
as well as perceptual curiosity. Building on Hoppe’s work, 
Woods et al., (2022) demonstrated that using just twenty 
seconds of visual behaviour on social-media gives insight 
into personality traits. 

Our approach therefore extrapolates from two fields: 
recent psychometric work examining how task related eye 
movements can predict personality traits (e.g., Hoppe et 
al., 2018) and our own work unravelling socio-motor bi-
omarkers in schizophrenia through the identification of in-
dividual motor signatures (coordinated hand movements) 
(Słowiński et al., 2016, 2017, 2019). There is exciting po-
tential to model eye and hand movements in the comple-
tion of goal-directed tasks that might act as biomarkers of 
the underlying cognitive processes that support the com-
pletion of these tasks. Recently, researchers have started to 
consider combining gaze behaviour with other movement 
modalities for identity classification (Liebers et al., 2021; 
Pfeuffer et al., 2019) as well as personality trait predictions 
(Madan et al., 2021), using extended reality and other ex-
perimental set-ups. 
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We therefore aim to quantify an individual’s propen-
sity for cognitive biases using a novel augmented reality 
(AR) platform as the first step in developing a suite of tools 
to mitigate biases in operators of defence and security sys-
tems. We choose the AR platform, instead of a computer 
or a smartphone, to showcase and explore feasibility of 
collecting multimodal behavioural data in AR scenarios. 
The AR headsets have a large range of proposed applica-
tions, from construction and engineering, through 
healthcare to defense and security, which potentially could 
benefit from behavioural monitoring. Specifically, we 
aimed to demonstrate that we can (1) create tasks in aug-
mented reality that might reflect elements of rational think-
ing, and (2) compute behavioural markers of performance 
for these tasks that correlate with psychometric measures 
of rational thinking. 

As is typical of machine learning studies that seek to 
associate biological measures with psychometric ones 
(e.g., Hoppe et al., 2018; Słowiński et al., 2016), this work 
was primarily exploratory, therefore we had no a priori hy-
potheses other that such an association exists. 

Methods 
Participants 
40 participants (age 18+ years) from the student popu-

lation at the University of Exeter volunteered to take part 
in the study; data about age and gender of the participants 
was not collected in the Qualtrics platform 
(https://www.qualtrics.com). Participants who needed to 
wear corrective glasses (contact lenses were allowed) to 
use a computer were excluded from the study. The reason 
being that the eye-tracker would not fit together with the 
glasses under the headset. Participants did not have any 
experience in using the experimental set-up consisting of 
the AR headset with leap motion sensor. Participants were 
paid £10 for completing both elements of the study (the 
online psychometric tests and the augmented reality tasks). 
The online psychometric tests took about 2 hours and the 
laboratory session took about 30 minutes. Participants 
completed two tasks in AR; an odd-one-out task and a mir-
ror game task (based on Słowiński et al., 2016). They also 
completed the HEXACO-60 personality inventory 
(Ashton & Lee, 2009). As we were interested in exploring 
rational thinking in this paper, we did not include data 
from either the mirror game task or the HEXACO-60 in 

our analyses. Ethical approval for the study was provided 
both by the University of Exeter (190506/A02) and MO-
DREC (971/MoDREC/2022) and participants provided 
written informed consent before taking part. 

Design 
This study adopted a correlational design, with vali-

dated psychometric measures of rational thinking corre-
lated with performance and gaze/hand/head movement 
data in the augmented reality tasks. 

Materials 
Psychometric Measure: Comprehensive Assessment of 

Rational Thinking (CART: Stanovich, 2016). The CART 
is a comprehensive framework for measuring rational 
thinking and considers a range of thinking errors, related 
to both miserly processing - the tendency to use shortcuts 
and heuristics to make decisions when processing de-
mands are high and, mindware problems - reflecting errors 
caused by missing (mindware gaps) or incorrect 
knowledge (contaminated mindware). Mindware is a label 
for the rules, knowledge, procedures, and strategies that a 
person can retrieve from memory to aid decision making 
and problem solving. 

The full assessment takes about 3 hours to complete, 
while a short version takes ~2 hours (scored out of 100, 
with a higher score reflecting more rational thinking). We 
decided to use the short form in this project for expediency 
and because normative data does exist. The short-form has 
a Cronbach's alpha of 0.76 (calculated by treating subtests 
as items with no differential weighting of CART points al-
located – Stanovich et al., 2018). The CART was presented 
using the Qualtrics platform, which participants accessed 
via an email link. The Qualtrics items were provided by 
the lead author of the instrument once evidence that the 
accompanying book had been purchased was provided 
(Stanovich, 2016) and a research contract signed by the 
principal investigator (MRW). 

Measures from the AR tasks were collected using the 
AR goggles’ sensors (head movements), a Leap motion 
tracker (for hand movements,) and an eye-tracker (eye 
movements) and subsequently modelled (see Figure 1 for 
hardware images and Table 1 for hardware specification). 
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Figure 1. Hardware images. a. Pupil-labs eye-tracker. b. Dream 
Glass augmented reality goggles. c. Leap motion tracker. 

 

Table 1. Hardware specifications 

 Eye move-
ments 

Head move-
ments 

Hand move-
ments 

Equipment Pupil labs 
(Kassner et 
al., 2014) 

DreamGlass 
Developer 

Edition 2019 
(Dreamworld 

AR, n.d.) 

Leap motion 
(Niechwiej-

Szwedo et al., 
2018; 

Ultraleap, 
2022) 

Max capture 
rate 

200 Hz 60 Hz 100 Hz 
 

Placement On head (un-
der AR gog-

gles) 

On head On table in 
front of a par-

ticipant 

Tasks were developed by a professional software de-
veloper with multiple rounds of feedback and revisions to 
decide size of images, spatial layout, and viewing distance. 
Feedback to developer was provided by mainly by PS and 
to lesser extend by BG, HM and MRW. Tasks were devel-
oped using the Unity Real-Time Development Platform 
(Unity 2019.2.17f1) and task specific functionality was 
coded in C# programming language. To interface with the 
equipment we used Dreamworlds glasses unity SDK 
(DreamWorld_2018.3.6.unitypackage), Leap Motion 
unity SDK (Unity Core Assets 4.4.0) and Pupil-labs unity 
SDK (Hmd-Eyes.VR.v1.1.unitypackage). Tasks used 
graphical assets obtained from the Unity Asset Store. The 
design did not control focal plane distance (potentially in-
ducing vergence-accommodation conflict). Two tasks 
were originally designed; a mirror game task based on 
Slowinski et al.’s (2016, 2017) studies in patients with 
schizophrenia, and an odd-one-out task designed to test 
cognitive biases. In this paper we will only focus on the 
odd-one-out task. 

 

 

Procedure 

The odd-one-out task used in the study is based on sim-
ilar tasks that are used to measure deductive reasoning 
abilities (Ruiz, 2011). The task involved looking at four 
objects or animals displayed on 2-by-2 grid and deciding 
which is the odd-one-out based on a number of factors 
(e.g., colour, shape, ‘natural’ environment - see Figure 2). 
The task is designed to be ambiguous without one fully 
right answer. Once participants decided on an option, they 
reached out to ‘touch’ the displayed object to confirm their 
choice. Participants were allowed to use either hand to 
‘touch’ the displayed object. 

Figure 2. An example of the ambiguous odd-one-out task – zebra 
has no horns, rhino has no fur, and cow is a domesticated animal. 
Graphics are assets from the unity asset store. 

Participants completed two rounds of the task, which 
are referred to as OOO1 and OOO2. The first round (OOO1; 
12 trials) is relatively simple, with mostly inanimate ob-
jects (e.g., chairs, tables, cars). The instruction given to the 
participant before the 1st round is: ‘You will now play an 
odd-one-out game. You will see a series of 12 sets of 4 
objects. Please use your hand to select the object that is 
different, the “odd one”. There are multiple reasons why 
each object could be the odd one out. In half of the trials, 
selected at random, you will be presented with a possibility 
to change your selection.’ 

In the second round (OOO2; 13 trials) the possible op-
tions are more ambiguous, with at least two choices be-
tween animals that could be picked out as the odd one (see 



Journal of Eye Movement Research Słowiński et al., (2022) 
15(3):4 Assessment of cognitive biases: Beyond eye tracking 

  5 

Figure 2 for an example). The full instructions read: ‘You 
will now play the odd-one-out game again. This time the 
game will be more ambiguous than previously. Instead of 
objects you will see 13 sets of 4 animals. There are multi-
ple reasons why each animal could be the odd one out (e.g. 
the place where it lives). Again, in half of the trials, se-
lected at random, you will be presented with a possibility 
to change your selection.’. 

The opportunity to change their initial response was 
provided to participants in half of the trials in each round 
(randomly allocated with probability 1/2). At this point, 
participants were also presented with additional infor-
mation aimed to challenge their initial response. For exam-
ple: ‘Have you noticed that: only the rhino has no fur, only 
the zebra has no horns, only the cow is a domesticated an-
imal. Please make a new selection or make the same selec-
tion again.’ As such, the odd-one-out task aimed to quan-
tify elements of confirmation bias during visual inspection 
tasks (e.g., Nakhaeizadeh et al., 2014) - the tendency to 
look for evidence that confirms our initial beliefs. The se-
quence of OOO1 and OOO2 (including the order of indi-
vidual trials) was the same for all participants. A list with 
the description of all the 25 sets of OOO tasks and the ad-
ditional information messages to challenge the initial re-
sponse can be accessed at osf.io/kcd83. 

Participant’s choices, as well as head, hand and eye 
movement data were recorded for subsequent analysis. In 
the analysis, we compare the data collected in the two 
rounds. 

Task measures computed for each round are: ratio of 
changed decisions – normalised number of times a person 
changed decision after the initial response (1st decision) if 
presented with opportunity to do so; mean time of the 1st 
decision; mean time of the 2nd decision; total time – time 
from presentation of the 1st trial to the last decision in the 
last trials of the round. 

Data collection and pre-processing 
We excluded 4 participants that did not complete the 

questionnaires. We further excluded 4 participants that 
completed the questionnaires in under 62 minutes as it was 
felt that their responses were likely to be insufficiently 
thought out. We based the cut-off value on the fact that 
nearly all respondents typically complete the HEXACO-
60 in 12 minutes (HEXACO, n.d.) and the assumption that 
it takes at least 50 minutes to complete the short CART 
battery of questions (majority of respondents completed it 

in under 75 minutes, and nearly all completed it under 100 
minutes). We further excluded any participants that had 
less than 60 seconds of valid datapoints; separately for 
each data modality and across them for analysis of corre-
lation patterns. See summary in Table 2. 

Table 2. Datasets available after exclusions.  

 CART Head Hand  Gaze Corr. 

OOO1 32 31 29 24 24 

OOO2 32 32 31 26 25 

Note. CART – CART scores, Head – head movements record-
ings, Hand – hand movements recordings, Gaze – gaze record-
ings, Corr. – correlation matrices (lower number of available 
correlation matrices is due to misalignment of intervals of miss-
ing data in different recordings). 

Head rotations were recorded using dreamworld aug-
mented reality goggles Developer Edition 2019 
(Dreamworld AR, n.d.) and transformed from 0–360 de-
grees range to -180–180 degrees range and resampled at 
10Hz. 

Hand movements were recorded using leap motion 
sensor (Niechwiej-Szwedo et al., 2018; Ultraleap, 2022). 
Before analysis they were resampled at 10 Hz and had first 
and last 2 seconds of data removed. 

Eye-tracking data was recorded using pupil-labs track-
ers (Kassner et al., 2014). Before analysis we: (1) removed 
any gaze data points with position estimation confidence 
below <0.6, (2) removed points with coordinates below 0 
and above 1 (which indicate that gaze was pointing outside 
the world frame), and (3) resampled the data at 60Hz. To 
detect saccades in the gaze data we followed well-accepted 
conventions (Engbert & Kliegl, 2003). Saccades were de-
tected by searching for samples where velocity exceeded 
a.u./sec, peak acceleration exceeded 90 a.u./sec2 and total 
distance traveled during saccade exceeded 0.005 a.u. Here 
a.u. is a ratio of the normalized world frame (diagonal 
FOV of the DreamGlass is 90o, approx. 74 o horizontal and 
51 o vertical). 

For calibration we used the Pupil Labs calibration for 
head mounted displays (Pupil Labs Calibration, 2020) 
adapted to use with DreamGlass AR headset. We were un-
able to adjust the inter-pupillary distance of the 
DreamGlass Developer Edition 2019 headset, as the SDK 
used in the study did not provide this option. 
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An example of the aligned time series for one partici-
pant is shown in Figure 3. 

Figure 3. Visualisation of an example of the data collected in the 
odd-one-out task. a. hand, b. gaze and c. head time-series; 
vertical lines indicate times at which participant selected an 
object. In a. x (blue) corresponds to the left-right movement; y 
(orange) corresponds to up-down movement; z (yellow) is 
forward-backward motion. In b. x (blue) corresponds to the left-
right movement; and y (orange) corresponds to up-down 
movement. In c. blue indicates left-right rotation along x-axis 
(turn); orange indicates up-down rotation along y-axis (nod); 
yellow indicates left-right rotation along z-axis (tilt). The visible 
discontinuities in the gaze data are due to missing data 
(confidence < 0.6). 

Biometric measures 
To assess the associations between the recorded data 

and short CART score we first transformed the time-series 
into data representations that could be considered objec-
tive markers of rational thinking propensity. Following our 
earlier work (Słowiński et al., 2016, 2017, 2019), we used 
distributions and correlation matrices. 

Velocity distributions 
Specifically, we analysed distributions of absolute total 

velocities, 𝑣!"! = #𝑣#$ + 𝑣%$ + 𝑣&$! , of the head, hand and 
gaze (just 2 dimensions so: 𝑣!"! = #𝑣#$ + 𝑣%$! ). In 

comparison with point measures (e.g., means, medians, 
standard deviations) distributions preserves significantly 
more information about a sample and thus allows for more 
accurate analysis. To approximate the distributions, we 
used histograms with bin edges obtained when applying 
the Freedman-Diaconis rule (Freedman & Diaconis, 1981) 
to the combined velocity values from all the datasets of a 
given modality. The rule is particularly suitable for veloc-
ity data with heavy-tailed distributions (see examples in 
Figure 4). 

Figure 4. Examples of the histograms of the total velocity of a. 
head, b. hand and c. gaze. The ranges of the velocities are reduced 
in comparison with the ranges used for analysis. 

Earth mover’s distance 
To quantify similarities between the distributions we 

used Earth mover’s distance (EMD). Intuitively, the EMD 
is the minimal cost of work required to transform one ‘pile 
of earth’ into another; here each ‘pile of earth’ represents 
a probability distribution. EMD has been widely used in 
computer and data sciences (Levina & Bickel, 2001; 
Muskulus & Verduyn-Lunel, 2011). For univariate proba-
bility distributions, the EMD has the following closed 
form formula (Cohen & Guibas, 1997): 

EMD)𝑃𝐷𝐹'(𝑧),  𝑃𝐷𝐹$(𝑧)1 = 2|𝐶𝐷𝐹'(𝑧) − 𝐶𝐷𝐹$(𝑧)|dz
&

. 

Here, 𝑃𝐷𝐹' and 𝑃𝐷𝐹$ are probability density functions 
being compared, while 𝐶𝐷𝐹' and 𝐶𝐷𝐹$, are their respec-
tive cumulative distribution functions. Z is the support set 
of the 𝑃𝐷𝐹𝑠. To compute the EMD, we first find the ex-
perimental 𝐶𝐷𝐹𝑠	of the distributions of total velocities. 
We then interpolated the 𝐶𝐷𝐹𝑠 at the same points for each 
distribution. 

Correlation matrices 
To obtain correlation matrices we computed all the 

pairwise Pearson’s correlation coefficients between the 
aligned time-series of hand (x, y and z coordinates), eyes 
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(x and y coordinates) and head movements (rotations along 
x, y and z axis). In this way we obtained 8x8 symmetric 
matrices with all the values between -1 and 1 (see example 
in Figure 5). 

Figure 5. An example of a correlation matrix. Each entry in the 
correlation matrix is a Pearson’s correlation coefficient between 
two timeseries. The values are colour coded with negative values 
in blue and positive values in red; darker shades indicate lower/ 
higher values. 

Riemannian distance 
To quantify similarities between the coordination pat-

terns (correlation matrices) we applied Riemannian geom-
etry approach which is mathematically suitable for their 
analysis (Congedo et al., 2017; Kim et al., 2014). The Rie-
mannian distance (RD) between two correlation matrices 
𝐶' and 𝐶$	is given by: 

RD(𝐶', 𝐶$) = <= 𝑙𝑜𝑔$ λ(
)

(*'
	, 

where 𝜆( are the N eigenvalues of a matrix 𝐶'
+'/$𝐶$𝐶'

+'/$ 
(or equivalently 𝐶'+'𝐶$) (Congedo et al., 2017; Słowiński 
et al., 2019). 

Data analysis 
To quantify and assess existence of associations be-

tween short CART scores and our objective markers we 

computed correlations of the short CART scores with total 
velocity distributions or coordination patterns, and task 
outcomes, using two statistical methods: a combination of 
multi-dimensional scaling (MDS) with regression analysis 
and bias corrected distance correlation (BCDC) (Székely 
& Rizzo, 2013). To interpret the findings we additionally, 
computed correlations of the short CART scores with 
mean velocities of the head, hand and gaze movements and 
saccades rate (number of saccades per second). Descrip-
tion of the BCDC method is presented in Supplementary 
Note 1. Results of the analysis by means of BCDC are pre-
sented in the Supplementary Table 1. We used the BCDC 
to verify the findings using an alternative method. We in-
clude the BCDC analysis in the supplement for the sake of 
transparency and to show that our conclusions (in a broad 
sense) can be reached using different statistical methods. 

Multi-dimensional scaling 
We further employed the multidimensional scaling 

space (MDS) to transform the similarity/ distance matrices 
into points in an abstract geometric space; MDS is similar 
to principal components analysis (PCA) in which similar-
ity between variables is measured using correlation (see 
also Słowiński et al., 2016, 2019). In this abstract geomet-
ric space, each dataset is represented as a single point, and 
distances between the points are proportional to how sim-
ilar they are, i.e., similar points are located closely to-
gether. Higher MDS dimensions represent smaller ratio of 
variability (like in the case of higher principal compo-
nents). 

Regression analysis 
The coordinates of the points computed by means of 

MDS allow an alternative way of quantifying and as-
sessing existence of associations between the short CART 
scores and movements. To this end we employ linear re-
gression models estimated using stepwise regression. Af-
ter the initial fit, the stepwise regression examines a set of 
available terms, and adds the best one to the model if an F-
test for adding the term has a p-value of 0.05 or less. If no 
terms can be added, it examines the terms currently in the 
model, and removes the worst one if an F-test for removing 
it has a p-value 0.10 or greater. It repeats this process until 
no terms can be added or removed. The function never re-
moves the constant term. To avoid potential pitfalls of the 
stepwise regression (Smith, 2018) we only considered 
models that showed significant correlation with a single 
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MDS coordinate and we only considered correlations with 
the first 10 dimensions.  

Finally, we adopt robust regression, using the bi-square 
weighting function (Street et al., 1988), to estimate the R2 
coefficients and significance levels for any reported re-
gression analysis. The advantage of the robust regression 
is that it reduces outlier effects in linear regression models. 
The p-value of the robust regression is based on the F-sta-
tistic vs. constant model. 

All data analysis was done in Matlab R2022a. All 
scripts and functions necessary to reproduce the results can 
be found in osf.io/kcd83. 

Results 
We investigate if the short CART score is associated 

with: (1) measures extracted from the odd-one-out task, (2) 
the individual movement modalities recorded during the 
task and (3) the coordination patterns. All the statistical re-
sults, effect sizes and their significance levels can be found 
in Tables 3 and 4. 

Task Performance 
We found that short CART score is correlated with ra-

tios of changed decisions (see Table 4 and Figure 6) and 
with the mean time of the 1st (initial) decisions (see Table 
4). We further observe that in OOO2 only 4 participants 
always changed their decisions (8 in the OOO1) and 7 par-
ticipants never changed their decision (9 in the OOO1). 
Time of initial decision was longer in the OOO2 (me-
dian2=8.2 sec.) than in OOO1 (median1=6.8 sec.); 
p=0.0077, Wilcoxon-Mann-Whitney test. Additionally, 
regression analysis shows that participants with higher 
CART score took more time to make the initial decision in 
OOO2. 

Figure 6. Correlation between ratio of the changed decisions in 
a) the 1st round and b) the 2nd round of the odd-one-out task and 
the short CART score. Black dots – indicate CART scores and 
corresponding ratios of changed decisions of individual partici-
pants, black line – fitted linear model, grey shaded region – 95% 
confidence bounds of the linear fit, red curves – 95% prediction 
bounds of the linear fit c. Sankey (flow) diagram illustrating 
change in distributions of the ratios of changed decisions in 
OOO1 and OOO2. Stacked bar plots show distribution of the ra-
tios of changed decisions (rounded to a single decimal place). 
The connectors (flows) show change in behaviour of individual 
participants (they connect their ratios of changed decisions in 
OOO1 and OOO2). 

Movement Modalities (Velocity distribu-
tions) 

Short CART score correlation with MDS coordinates 
show that the velocity distributions (and correlation matri-
ces) are associated with the short CART scores (see Table 
3). Correlations with lower MDS dimensions indicate that 
the association between short CART scores and head, hand 
and gaze velocities is stronger for the 2nd OOO round. 
Analysis of associations of the velocity distributions and 
correlation matrices with the other task measures can be 
found in Supplementary Table 2. 
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Table 3. Statistical results for stepwise linear regression on MDS 
coordinates) with short CART score as a response variable.  

 MDS coordinates 

 OOO1 OOO2 

Head  R2=0.18, p=0.017, (x3) R2=0.19, p=0.013, (x2) 

Hand  R2=0.25, p=0.0058, (x6) R2=0.21, p=0.010, (x1) 

Gaze R2=0.24, p=0.015, (x8) R2=0.16, p=0.042, (x1) 

Corr. Mat. R2=0.21, p=0.028, (x2) R2=0.21, p=0.026, (x2) 

Note. R2 – coefficient of determination of robust linear regres-
sion, p – p-value of F-statistic vs. constant model, (xi) – MDS 
coordinate with the strongest correlation (in terms of R2) found 
using the stepwise regression. Since the space defined by the 
MDS is abstract, directions of the association are irrelevant. In 
bold p-value < 0.05.  

To interpret the significant correlations with the distri-
bution from the 1st dimension of the MDS in Table 3 we 
also analysed the association between the CART and the 
mean velocities of the actual movement modalities (see 
Table 4). The short CART scores were negatively corre-
lated (𝜌 < 0) with mean head velocity and mean hand ve-
locity in the 2nd round of the odd-one-out task.  

Table 4. Statistical results for regression analysis with short 
CART score as a response variable. 

 OOO1 OOO2 

Ratio of changed decisions 𝝆=-0.42, 
R2=0.25, 
p=0.0033 

𝝆=-0.48, 
R2=0.21, 
p=0.0089 

Mean time of 1st decision 𝜌=0.29, 
R2=0.078, 

p=0.12 

𝝆=0.36, 
R2=0.13, 
p=0.043 

Mean time of 2nd decision 𝜌=0.12, 
R2=0.013, 

p=0.53 

𝜌=-0.17 
R2=0.23, 

p=0.4 

Total time 𝜌=0.29, 
R2=0.094 
p=0.087 

𝜌=0.16 
R2=0.02, 
p=0.43 

Mean head velocity 𝜌=-0.061, 
R2=0.0033, 

p=0.76 

𝝆=-0.36, 
R2=0.12, 
p=0.048 

Mean hand velocity 𝜌=-0.11, 
R2=0.0085, 

p=0.63 

𝝆=-0.46 
R2=0.19, 
p=0.013 

Mean eye velocity 𝜌=0.25, 
R2=0.059. 

p=0.25 

𝝆=0.42 
R2=0.16, 
p=0.044 

Saccade rate, #saccades/sec 𝜌=0.29, 
R2=0.082. 

p=0.18 

𝝆=0.44 
R2=0.18, 
p=0.031 

Riemannian distance between coordi-
nation patterns in the two odd-one-out 

task rounds, RD(OOO1, OOO2) 

𝝆=-0.53 
R2=0.25, 
p=0.018 

Note. 𝜌 – Pearson's linear correlation coefficient, R2 – coeffi-
cient of determination of robust linear regression, p – p-value of 
F-statistic vs. constant model for the robust regression. In bold 
p-value < 0.05. 

Figure 7 provides an illustration of the correlations be-
tween the short CART scores and the 1st MDS dimension 
of the hand movement distributions (a – from Table 3) as 
well as with the mean hand movement velocity (d – from 
Table 4). It also shows two examples of the distributions 
of the absolute hand velocities (b and c). The figure shows 
that the 1st MDS dimension of the abstract geometric space 
captures variability of the mean hand movement velocity. 
This is often, but not always, the case when analysing out-
comes of the MDS of probability distributions (Słowiński 
et al., 2016). The head data patterns were very similar to 
those for hand movements and are not shown (mean head 
velocity is correlated with the 2nd MDS dimension). 
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Figure 7. a. correlation between x-coordinate (1st MDS dimen-
sion) of points representing distributions of absolute velocity of 
hand movements recorded in the OOO2 and the short CART 
score. Colours and symbols are the same as in Figure 6. b. and c. 
examples of the two distributions of absolute hand velocities in-
dicate with b (short CART score 81) and c (short CART score 
40) in panel a. red vertical line indicates mean velocity (b – 
0.051[a.u./sec] and c – 0.11 [a.u./sec]) d. correlation between 
mean velocity of hand movements recorded in the OOO2 and the 
short CART score.  

In contrast to the head and hand data, the short CART 
scores are positively correlated	𝜌 > 0 with mean gaze ve-
locity (Table 4). Participants with higher CART scores had 
faster eye movements. More specifically they have more 
saccades as confirmed by the positive correlation with sac-
cade rate.  

 

 

Coordination Patterns 
Analysis of the correlation matrices showed existence 

of an association between both OOO rounds and the short 
CART scores (Table 3). Since correlation matrix has 28 
unique entries and can be parametrised in multiple ways 
(e.g., average correlation, maximum correlation, average 
correlation of head, hand gaze, etc.) the study is underpow-
ered to precisely interpret correlations between which var-
iables are driving the observed associations. 

Figure 8. a. correlation of the Riemannian distance between cor-
relation matrices from the two OOO rounds, RD(OOO1, OOO2), 
and the short CART score. Colours and symbols are the same as 
in Figure 6. b. shows two correlation matrices with of the partic-
ipant that had the smallest change in the coordination pattern be-
tween the OOO1 (left) and OOO2 (right) c. shows two correla-
tion matrices with of the participant that had the largest change 
in the coordination pattern between the OOO1 (left) and OOO2 
(right). 
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Discussion 
In the presented work we sought insights into the ‘how’ 

and ‘why’ of individual, group and population behaviour, 
enabling predictions about how they are likely to act in the 
future. We explored ideas related to decision-making in 
uncertain conditions and particularly with respect to the ef-
fect of ambiguity (in the odd-one-out task particularly; see 
Shattuck et al., 2009). 

This exploratory work was novel in a number of ways, 
including (1) the use of AR to present tasks, (2) the devel-
opment of novel experimental tasks to test rational think-
ing, (3) the assessment of physiological data related to how 
participants completed the task, and (4) the use of novel 
data analysis techniques. In summary, we demonstrated 
that it is possible to relate aspects of rational thinking with 
quantitative measures recorded in an interactive task tak-
ing place in augmented reality. As the CART – even in its 
short form – is a lengthy and somewhat abstract test, there 
is certainly potential for novel objective tasks to generate 
markers of important elements of rational thinking 
(Berthet, 2021). 

Synthesis of findings 
In the odd-one-out task, we found that more rational 

thinkers (higher short CART scores) were less likely to 
change their decisions when provided with this oppor-
tunity, and when presented with information that might 
challenge their initial response (see Table 4 and Fig. 6). In 
the more ambiguous OOO2, participants presented fewer 
extreme behaviours than in the OOO1; fewer people never 
changed the initial decision and fewer people always 
changed the initial decision. They also took more time to 
make initial decision in the more ambiguous OOO2 round. 

We also showed that our objective measures of motor 
behaviour (separate movement velocity distributions for 
eye, head and hand) and coordination patterns (eye-head-
hand coordination) were associated with the overall short 
CART score (Tables 3 and 4). Specifically, we observed 
that participants with higher short CART scores moved 
their eyes more quickly but moved their head and hands 
more slowly than their less rational counterparts. This 
might reflect more deliberate and planned movements. 
They also maintained more similar eye-head-hand coordi-
nation patterns across both odd-one-out rounds, despite in-
creased ambiguity (Table 4 and Fig. 8). 

Overall that data collected in the 2nd OOO round shows 
stronger associations with the short CART scores. This is 
probably unsurprising, as the 2nd OOO round was more 
ambiguous (animals vs inanimate objects) and there was a 
higher chance that the additional information presented 
could include information that the participant did not con-
sider when making their initial selection of the odd-one-
out animal. Correlation of the short CART score with rate 
of saccades indicates that participants with higher CART 
scores might have different ways of analysing the dis-
played objects when choosing the odd-one-out element. 
Note that other eye-tracking measures (fixation rate, 
search rate and gaze transition entropy) were not correlated 
with the short CART scores (see supplementary Table 3). 

While it is difficult to interpret these results in terms of 
specific task strategies, it suggests that more rational par-
ticipants had a more coordinated process in gathering in-
formation and selecting options than their less rational 
counterparts; a process which helped them to be more con-
fident in their initial choices. Previous research has shown 
that top-down attention drives our coordinated eye-head-
hand behaviour in natural environments (Anastasopoulos 
et al., 2015; Land, 2009). With experience, we learn to 
conserve limited cognitive resources and strategically di-
rect our gaze control system to maximize information ac-
quisition and guide accurate, goal-directed movement 
(Land, 2009). A specific example that aligns with our cur-
rent findings is an eye movement study by Jovancevic-
Misic and Hayhoe (2009). These authors showed that par-
ticipants learn to attend to important events in the environ-
ment; with the time taken to first fixate on the stimulus de-
creasing for important events as participants become more 
experienced with the task. 

Our findings reinforce the benefits of applying ad-
vanced statistical methods to the assessment of how sys-
tems coordinate (i.e., controlling eye, head, and hand 
movements) when trying to understand complex behav-
iour. Indeed, it has been suggested that it is important to 
consider how information provided by the entire body and 
its coordination dynamics, influences the way we make de-
cisions (e.g., Oullier & Basso, 2010). Such embodied cog-
nition – the view that cognitive dynamics are grounded in 
the way our body interacts with its physical and social en-
vironments – is arguably even more relevant to decision-
making in tasks which involve consideration of what the 
body can do to enact decisions in the environment (see 
work in sport, Araújo et al., 2006). Our preliminary 



Journal of Eye Movement Research Słowiński et al., (2022) 
15(3):4 Assessment of cognitive biases: Beyond eye tracking 

  12 

findings, suggest that it might be possible to establish 
novel mechanistic ways of understanding the complex re-
lations between individual coordination strategies, behav-
iour and decision making in real-world environments 
where the quality of the movements themselves are im-
portant (e.g., sport, rehabilitation, defence and security, 
aviation, surgery etc.). 

One critical issue to consider in real world, uncertain 
time-constrained environments, is the degree to which 
non-rational thinking is a problem and whether intuition 
might be useful, or even a characteristic of expertise 
(Gigerenzer & Todd, 2001; Klein, 2015). For example, 
Klein and other naturalistic decision-making (NDM) re-
searchers view intuition as an expression of experience, as 
people learn patterns that enable them to rapidly size up 
situations and make rapid decisions without having to 
compare options (see Klein, 2015 for a recent discussion). 
In the real-world, the ‘mindware problems’ outlined in the 
CART (Stanovich et al., 2018) become more about the 
identification of task-specific patterns learned over time 
(and through training). As this research develops, the in-
terplay between the NDM and ‘heuristic and biases’ fields 
will need more careful examination. 

Limitations 
As a pilot study, this work is testing proof of principle, 

and as such our results should be interpreted with caution. 
There are dozens of separate biases referred to in the liter-
ature (e.g., Kahneman, 2013) and we selected one that 
arose from our initial task planning work. It is perhaps not 
surprising that this distinct bias was only partially related 
to such a comprehensive measure as the CART. Addition-
ally, it is possible that we are conflating susceptibility to 
biases to the use of an availability heuristic, or other per-
sonality traits such as openness to persuasion. For exam-
ple, it is known that individuals might be persuaded to 
change choices based on additional (and recent) contextual 
information from an ‘expert’ (Nakhaeizadeh et al., 2014). 
While it might have been useful to examine the relation-
ships between specific factors of the CART and our objec-
tive measures, this was not allowed in the terms of the con-
tract signed for publishing CART data (Stanovich, 2016). 
It is noteworthy that since we conducted this research, new 
measures for rational thinking are emerging which are 
more multi-dimensional (e.g., Berthet, 2021). Further-
more, we expect that the results should be replicable using 
the computer or mobile devices screens. Such replication 
would be very valuable. 

Future Research/ Exploitation 
There are a number of future directions for this re-

search to take. Currently, the analysis takes place offline 
as there are significant pre-processing and computational 
demands. It would be interesting to explore if we could get 
similar classification for online detection and feedback – 
something that will be important if we are to intervene at 
the point where thinking errors might be prevalent. Sec-
ond, the exploration of the effect of different types of 
prompts (e.g., the modality by which they are presented, 
their linguistic form, their timing, etc.) will be important 
as this work moves into more ecologically valid settings. 
There is evidence that information presented via video is 
more readily believed than information presented in text 
format (Sundar et al., 2021). Third, it would be interesting 
to explore how participants might be more or less biased 
by information presented in AR when compared to the real 
world. For example, the current odd-one-out task could be 
modified so that two items are presented in AR and two on 
a table, to see if there is consistent bias for one or the other. 
This might be relevant when it comes to operators making 
decisions based on AR information compared to the infor-
mation they draw from their ‘own’ senses. A key heuristic 
related to both the modality of presentation and the use of 
AR is the realism heuristic, or the rule of thumb that “if 
something seems real, then it is credible” (Sundar, 2008). 

Fourth, task specific odd-one-out environments could 
be generated that provide more realistic scenarios and ad-
vice (or ‘case history’ contextual information). Such hypo-
thetical clinical scenarios and vignettes are used regularly 
when assessing biases in medical decision making 
(Blumenthal-Barby & Krieger, 2015). The impact of such 
information is an important consideration for biases and 
decision making in a number of fields. For example, it is 
believed that up to 75% of errors in internal medicine prac-
tice are thought to be cognitive in origin, and errors in cog-
nition have been identified in all steps of the diagnostic 
process, including information gathering, association trig-
gering, context formulation, processing and verification 
(O’Sullivan & Schofield, 2018). Similar issues with the 
provision of contextual information are evident in forensic 
science (Nakhaeizadeh et al., 2014) and in policing, given 
the role of bias in use of force decisions (Mears et al., 
2017). 

To conclude, our study presents some promising re-
sults evidencing the potential pathways for developing ob-
jective measures of cognitive biases. It also clearly 
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demonstrates advantages of going beyond gaze analysis in 
this area of research. The main benefits being potential in-
sights into behavioural strategies and ability to compensate 
for lower quality of the eye-tracking data. 
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