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Introduction 
Modern-day aviation involves incredibly sophisticated 

technologies. Recent research on cockpit design of combat 
aircraft, often under the umbrella term of 6th generation 
cockpit design, is investigating novel modalities of inter-
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actions. Adaptive pilot vehicle interfaces (PVI) and wear-
able cockpit features are being studied (Robinson, 2018; 
Rowen et al., 2019). New modalities of interaction like 
brain-computer interface or eye gaze-controlled systems 
present new challenges and opportunities for PVI inside 
cockpit. Any such new PVI design evaluation necessitates 
human engineering methods to understand the variations 
in the cognitive load experienced by the users. Many re-
searchers have studied different means of measuring cog-
nitive load (Babu et al., 2019; Biella et al., 2017; Palinko 
et al., 2010; Zhang et al., 2017). Cognitive load may be 
quantified by subjective, physiological and performance-
based measures. User’s assessment of the system is cap-
tured through questionnaires in the subjective measure. 
Performance based methods quantify the same by captur-
ing how well he/she performs a given task. Physiological 
methods like pupil dilations, EEG signal variations, heart 
rate variability, galvanic skin responses and so on measure 
user’s physiological state. All these methods have their 
own drawbacks for standalone implementation. For exam-
ple, though subjective measures are simple to administer, 
their accuracy depends on user’s prior knowledge and bias. 
Performance based methods are very task specific. Ad-
vantage with the physiological methods is that it enables 
continuous monitoring of the workload. However, they are 
not reliable in cases wherein change in physiological indi-
cators may be due to factors not related to workload. They 
do not explain the cause of the variations. Hence, due to 
the multi-dimensional characteristic of cognitive load, a 
combination of the above methods needs to be used for es-
timating cognitive load. In this study, we used physiologi-
cal measures, namely ocular and EEG parameters, along 
with pilot workload using inceptor time histories to esti-
mate pilot’s cognitive load.   

Furthermore, design evaluations of any new aircraft 
technology need to be carried out in a realistic cockpit en-
vironment. Hence, an aircraft flight simulator plays a sig-
nificant role in the development and testing of such new 
technologies. Any aircraft program encompasses of differ-
ent flight simulators throughout its design, deployment and 
maintenance life cycle. The fidelity and complexity of a 
simulator depends on the application requirement (Chan-
drasekaran, et al., 2021). As more hardware interfaces get 
added to the simulator, the cost to build and maintain the 
simulator goes up. Virtual reality based flight simulator is 

a promising low cost and modular modality to offer a more 
immersive and adaptable experience for applications 
wherein lot of design iterations are involved. Augmented, 
virtual and mixed reality-based cockpits are already being 
used for cockpit/cabin design evaluations in terms of 
reachability and visibility, for providing inspection and 
maintenance training to engineers (Vora et al., 2002) and 
are considered even for real time deployment (EASA, 
2021). Oberhauser et al., (2018) compared VR based flight 
simulator with a conventional hardware simulator. Au-
thors found that ability for rapid prototyping in VR based 
simulators makes it a viable tool during the early phases of 
design process. VR based simulators are hence proven to 
aide human-in-the-loop testing of new systems and their 
interactions with pilot. 

In this paper, we discuss the development of a virtual 
reality-based flight simulator with automatic cognitive 
load estimation feature. The main aim of this study is to 
evaluate different methods for estimating cognitive load in 
a VR environment. The simulator exploits the existing 
tools such as Unity SDK engine and has generic USB 
based hardware. We employ HTC Vive Pro Eye as the VR 
head-mounted display with an in-built eye-tracker, Emotiv 
32 electrode EEG headset and a Thrustmaster HOTAS to 
control the aircraft. 

Next, we developed cognitive load estimation algo-
rithms based on ocular and EEG signals. Ocular parame-
ters are based on pupil dilation dynamics, gaze fixations 
and gaze distribution. EEG signal-based measures are for 
estimating task load and task engagement. Later, we de-
veloped an AI agent model that interacts with pilots. Se-
lection of this scenario is the fact that old F-16 fighters are 
being converted to unmanned targets (QF-16) by Boeing 
for US Airforce pilot training (Boeing, 2016). QF-16 is re-
motely piloted aircraft that helps pilots to practice air-to-
air combat skills. In this study, we consider an AI enabled 
target aircraft. Aim here is to generate different one-on-
one air combat scenarios through an AI agent and thereby 
evaluate effect of pilot-aircraft interactions on pilot’s cog-
nitive load.  We conducted a user study with twelve Air-
force test pilots for five AIAgent configurations. Results 
indicate that the developed algorithms estimate cognitive 
load accurately in the VR environment. 
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Rest of the paper is organized as follows. Next section pre-
sents the simulator framework. Section 3 describes con-
duct of the user study and analysis, followed by results and 
discussions in section 4. Concluding remarks are ad-
dressed in section 5. 

VR Flight simulator framework 

Figure 1 shows the overall framework of the VR flight 
simulator. The aircraft that the pilot/engineer operates is 
known as the piloted aircraft (PA). The autonomous 
aircraft is termed as the AI Agent. AI agent acts as the 
enemy aircraft in the scenarios considered for the study 
reported in the paper. Pilot has to track the AI agent and 
fire missile when commanded on the VR headset. 

Simulator uses Unity engine, which is one of the 
widely used game development platform due to its rapid 
prototyping capability and compatibility with VR displays 
and the interaction tools (www.unity3d.com). 

PA is modelled to mimic F-16 aerodynamics. ‘Air-
craftphysics’ asset provided by Unity is used to apply aer-
odynamic forces and torques to the rigid body aircraft. The 
moments acting on the aircraft is the sum of impact of in-
dividual control surfaces. 

 
Figure 1. VR flight simulator framework 

A generic head-up-display symbology and other con-
trols such as flaps, landing gear, airbrakes, toe brakes and 
parking brake functionalities are modelled in the system 
(Figure 2). We have used physiological measurement 
methods such as EEG signals and ocular parameters for 

estimating participant’s cognitive load. Gaze vector is also 
used for target pointing and selection. Pilot controls such 
as throttle, rudder pedals and the pilot control stick are 
from USB based Thrustmaster HOTAS.  

A generic missile model is developed for the simulator. 
User can release the missile with the fire button on the pilot 
control. Impact of missile hit is dependent on the range be-
tween the missile origin to the impact point, with a prede-
fined radius. 

We have used HTC Vive Pro Eye HMD for rendering 
cockpit view and outside window scenery to the partici-
pants. The HMD gives a diagonal FOV of 110° and a res-
olution of 1440 X 1600 pixels. HTC Vive Pro Eye has an 
inbuilt eye tracker which is used to record ocular parame-
ters such as x/y gaze direction vectors, left/right pupil po-
sitions and pupil size. All required data is synchronized 
with the aircraft data and is acquired at 120Hz. We used 
HTC Vive’s SRanipal SDK (VIVE Developers, 2022 and 
Liu et al., 2022) along with Tobii’s XR SDK version 1.8.0 
(Tobii XR Devzone, 2022) for eye tracker data recording. 
Tobii XR SDK uses Gaze-to-Object Mapping (G2OM) al-
gorithm to determine what the user is looking at. We rec-
orded gaze direction from Tobii XR and pupil diameter 
from SRanipal SDK. We also used Emotiv 32 channel 
EEG headset to record brain activity.  
 

 

Figure 2. VR flight Simulator: hardware Setup (left), visual ren-
dering on HMD on ground (right top) and during target tracking 
(right bottom) 

AI agent is modelled as a point mass model. It has an 
onboard tracking radar that detects targets within the cov-
erage of 1.2 km. The radar scans the targets, processes the 
data and estimates the target position. RADAR acquisition 
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and processing latency of 400ms is added to the output of 
radar data. This latency accounts for the time lag between 
receipt of a signal or data and its appearance on the pilot 
display and the propagation delay (Helliar, 2022). 

AI agent’s evasive maneuvers 

A simple pursuit-evade combat strategy is imple-
mented in this study. User controlled aircraft acts as the 
pursuer (P) and the AI agent is the evader (E). User gets an 
indication to launch the missile once the AI agent is within 
the chase range of the missile. 𝑉! is the PA velocity that is 
controlled through user’s throttle control. Evader initially 
starts at a constant velocity. Start position of the AI agent 
is randomized to simulate the real-life behavior. AI agent 
is implemented through three different approaches as de-
scribed in the subsequent sections. 

 
AI agent 1: No guidance 
 
Evader moves with a constant forward velocity, una-

ware of pursuer’s actions. His/her flight path has a con-
stantly varying altitude as shown in the Figure 3.   

 

Figure 3. AI agent 1 Flight profile  

Agent 2: Augmented Proportional Navigation 
guidance (APN) 

In this scenario, we considered a simplified one pursuer 
(PA), one evader (AI agent) model shown in Figure 4. 
Here, Y axis denotes the altitude, Z is the forward range 
and X denotes the lateral movement. The subscripts e and 
p represent evader and pursuer respectively. The approach 
taken is that if evader remains within the chase range or on 
the line joining the evader to pursuer (defined by the line-

of-sight angle), it will eventually hit the target. APN algo-
rithm computes acceleration command to steer the aircraft 
heading (Liu et al., 2019). The computed acceleration is 
proportional to the line of sight (LOS) rate (�̇�) and the clos-
ing velocity (Vc).  

LOS distance λ between pursuer and evader is given 
in Equation 1. λ is defined as the Euclidian distance be-
tween the two. 
 

λ = 	'(𝑥" − 𝑥!)# + (𝑦" − 𝑦!)# + (𝑧" − 𝑧!)# 

Equation 1 
 

Closing velocity 𝑉$ between the evader and the pur-
suer is  𝑉$ 	= 	𝑉!	–	𝑉" 

Normal acceleration command is given in Equation 2 
(Liu et al., 2019) 

𝑎% = 𝑁	𝑉$�̇� 	+	𝑎%&𝑁/2 
Equation 2 

Here, N is the navigation constant, taken as 3 and 𝑎%& 
is the target acceleration. 
 
 
 
 
 
 

 

 
 

 

Figure 4. Two-dimensional scenario 

Objective of evader is to maximize the distance be-
tween evader and pursuer so that evader’s survivability in-
creases. Evader’s velocity is made proportional to the line-
of-sight rate such that 𝑉" >	𝑉!.  

Agent 3: AI Agent trained using reinforce-
ment learning algorithm 

Reinforcement learning (RL) based guidance strategy 
(Li et al., 2022) is developed for training the third AI agent.   
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We used Unity’s machine learning (ML)-Agents Toolkit 
to develop and train the RL agent.  

Unity scene behaves as the environment and a Python 
API is used for training. Agent’s goal is to maximize the 
cumulative rewards. Rewards were given if the following 
conditions were satisfied (Wang et al., 2020) - 

1. Distance between PA and AI agent dt: 
dmin<dt<dmax. This condition ensures that 
evader is within the attack range. 

2. Deviation angle in degrees μ< μmax.  
3. Aspect angle in degrees η< ηmax 

The corresponding equations are given in Equation 3. 
 

𝑑𝑡 = '7𝑥! − 𝑥'8
# + 7𝑦! − 𝑦'8

# + (𝑧! − 𝑧')# 

 

𝜇 = 180 + 𝜓! − tan() A
7𝑥!	 − 	𝑥'8
7𝑧! − 𝑧'8

B ∗
180
𝜋  

 

η = 𝜓' − tan() A
7𝑥' 	 − 𝑥!8
7𝑧' 	 − 𝑧!8

B ∗
180
𝜋  

Equation 3 
Reward function consists of following advantage posi-

tions:  
§ Distance from pursuer is more than the chase range of 

the missile. 
§ Angle between the line-of-sight vector and the aircraft 

heading is larger than the maximum predefined angle. 
§ Aspect angle, which is the angle between pursuer’s 

longitudinal axis and the line joining from pursuer’s 
tail to agent’s nose, is larger than the predefined angle. 

 

  User Study: Study of Pilot’s interactions 
with aircraft 

Mission preparation 
The test scenarios in the study is to simulate dogfight 

battle scenarios with one AI agent in VR. AI agent’s initial 
position is set randomly at the start of the simulation. Sim-
ulation starts with the piloted aircraft on the runway and 
the AI agent at an initial altitude of 700 m. Pilot has to 
track the AI agent and fire the missile when commanded 
on the VR headset (Figure 5). To increase the missile fire 

accuracy, only six missiles are made available during each 
simulation. Simulation is terminated either when AI agent 
is shot down or when there is a ‘Timeout’ message dis-
played on the VR headset.  
 

 
Figure 5. Missile Fire 

We repeated the simulations with three AI agents men-
tioned in the previous section. Table 1 gives details on de-
sign and conduct of the test scenarios. Pilot’s control strat-
egy-based PIW metric is taken as the baseline. Physiolog-
ical parameters estimating participant’s cognitive load are 
the dependent variables used in the analysis. 

 
Table 1: Test scenario 

 
 

Task Details 

C1 Give throttle input to increase speed. Take off 
when speed in > 125 m/s. Fly wings level while 
maintaining speed of < 130 m/s. AI agent’s in-
itial altitude is 700m and shall maneuver as per 
AI agent 1. 

C2 Give throttle input to increase speed. Take off 
when speed in > 125 m/s. Fly wings level while 
maintaining speed of < 130 m/s. AI agent’s in-
itial altitude is 700m and shall maneuver as per 
AI agent 2. 

C3 C2 with a degraded radar latency of 800ms. 

C4 Give throttle input to increase speed. Take off 
when speed in > 125 m/s. Fly wings level while 
maintaining speed of < 130 m/s. AI agent’s in-
itial altitude is 700m and shall maneuver as per 
AI agent 3. 

C5 C4 with a degraded radar latency of 800ms. 
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Participants 
We conducted a user study with twelve Airforce test 

pilots; each for 5 test conditions. These professionally 
qualified test pilots are trained for quick decision making 
in difficult situations. By definition, test pilot is a pilot who 
is specially trained for evaluating yet to be certified 
aircrafts (Stinton, 1996). Pilots participating in the study 
have an average age of 40 years and a flying experience of 
over 3500 hours. None of the pilots were wearing any 
prescription lenses.  

Procedure  
All simulations were carried out with the same hard-

ware and in same environmental conditions. Participants 
were first briefed about the task to be carried out and were 
given ~15 minutes of flying time to get accustomed to the 
simulator set up. EEG electrodes were soaked in saline wa-
ter for a minimum of 30 minutes before start of simulation 
for each participant. We carried out five simulations for 
each participant. Test scenarios were carried out randomly 
to nullify the order effect. Experiments for each participant 
started with EEG headset calibration and Vive Pro eye 
tracker 5-point calibration. Interpupillary distance, which 
is participant specific, was adjusted for better viewing ex-
perience and to reduce the eye strain. Participants were 
asked to be in relaxed state for the first 5 seconds before 
start of each simulation and this data is recorded as the start 
condition for all the parameters.  

Data Processing and analysis 
This section discusses the procedure employed to 

analyse the ocular, EEG and flight parameter data. 
Different metrics formulated for analysing the participant 
behaviour and estimating the experienced cognitive load 
are also described.  

Ocular parameters 
a. Pupil dilation dynamics 

Literature review reveals that pupil diameter (PD) 
increases with increase in exerted mental effort (Petkar, et 
al., 2009; Marshall, 2002). Like other biological signals, 
pupil dilation is a non-stationary signal (Nowak et al., 
2008). Hence rather than using Fourier transform, which 
give only frequency resolution, we have used wavelet 
transform that gives both time and frequency resolution. 
Pedrotti, et al. (2014) also proposed wavelet analysis to 

extract relevant low frequency PD signal features by 
discarding the high frequency noise.  

We analysed timeseries PD data through multi 
resolution analysis (MRA) to compute PD fluctuations. 
Data frames in which eye measurements are marked as 
invalid by SRanipal are removed before analysis. This may 
either be due to failures to detect pupil (because of loss of 
tracking) or due to eye blink. Further, data is interpolated 
using cubic spline interpolation to fill in the missing 
timestamps. 

PD data is then normalized based on the maximum 
value of first 5 second reference data as given in Equation 
4. 

%𝑃𝐷 =
(𝑃𝐷*+,(𝑡) − 𝑃𝐷-+."/01")

𝑃𝐷-+."/01"
∗ 100 

Equation 4 
 

Where 𝑃𝐷*+,(𝑡) is the pupil diameter at time t. This 
correction shall remove the inter-participant variability. 
 

Later, we de-noised the PD signal using MRA to 
reproduce the low frequency component of the signal. We 
have used 1D-DWT with 7 level decompositions. Haar 
wavelet is chosen as the mother wavelet (Pedrotti et al., 
2014). Each wavelet decomposition level has a down 
sampling by a factor of 2. The initial sampling rate  is 
120Hz. Figure 6 shows the normalized pupil diameter 
along with its approximation and detail coefficients after 
7th level decomposition.  

 

Figure 6. DWT Coefficients: Normalized PD signal (left), After 
7th level decomposition (right). 

Standard deviation (𝑆𝑡𝑑𝐷𝑒𝑣𝑃𝐷) of 7th level 
approximation data is computed as an indicative of the low 
frequency PD variations with cognitive load (Equation 5). 
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𝑆𝑡𝑑𝐷𝑒𝑣𝑃𝐷 =	K
1

𝑁 − 1L(𝑃𝐷0 − 𝑃𝐷2"+1)#
%

03)

 

Where 𝑃𝐷2"+1 =
)
%
∑ 𝑃𝐷0%
03)  

Equation 5 
 

N is the total number of data points and 𝑃𝐷0 is the ith 
data point of the processed pupil diameter discussed earlier 
in this section. 

b. Gaze fixation analysis 

Fixation is a type of eye movement which indicates that 
visual information is registered by the brain. Saccades are 
rapid eye movements between one fixation to another. 
Fixation has been used to make inferences on level of 
attention and cognitive processing of a person (Walter & 
Bex, 2021 and Škvareková et al., 2020). Fixation can be 
determined either by computing fixation frequency or 
duration on the area of interest. 

We detected fixations and saccades from gaze direction 
data through velocity threshold using fixation 
identification method (Arjun et al., 2021; Mukhopadhyay 
et al., 2023). Firstly, we computed angle between 
consecutive gaze direction vectors. We then calculated 
angular velocity as change in angle divided by the time 
increment. We identified fixation based on a velocity 
threshold of 30 degree/sec. If the angular velocity is lesser 
than the velocity threshold, it is treated as a fixation. 
Successive fixations are computed as one fixation. 
Subsequently, we computed fixation rate as the ratio of 
total number of fixations to total task duration. Mean 
fixation duration is computed as the ratio of sum of all 
fixation durations to total number of fixations. 

Liu et al. (2022) has reported several studies with 
contradicting result patterns for fixation parameters. 
Authors argue that fixation rate increases in conditions 
where number of items/information to be processed for 
decision making is higher than that can be accommodated 
within a single fixation. Contrary to this, fixation rate 
reduces in situations which demand greater imagination 
and manipulations, wherein all items related to the task are 
processed within a single fixation. Hence variations in 
fixation rate is highly dependent on the nature of task 
under study.  

c.  Gaze distribution analysis 
Spatial gaze distribution patterns are sensitive to vari-

ations in cognitive load. In general, low workload is asso-
ciated with more deterministic and repetitive visual scan-
ning pattern (Bellenkes et al., 1997). Di Nocera et al. 
(2007) proposed nearest neighborhood index (NNI) to an-
alyze distribution of gaze position. NNI is the ratio of mean 
of nearest neighbor distance to mean random distance. 
Nearest neighbor distance is the distance between each 
gaze point to the next gaze point near it. A higher value of 
NNI denotes that visual scanning is more randomly dis-
tributed in space. Hebbar et al., (2021) gives details on the 
implementation of NNI.  

EEG parameters 
We used Emotiv EPOC Flex-32 channel saline sensor 

based wireless EEG headset to measure brain’s electrical 
activity. Raw EEG data for each electrode (in µV) is 
captured at 128Hz. Substantial amount of signal 
processing and filtering is carried out within the Flex 
headset to remove the ambient noise and harmonic 
frequencies (Williams et al., 2020). Flex headset has in-
built data pre-processing algorithms which includes a 
high-pass filter of 0.2 Hz, a low-pass filter of 45 Hz, a 
notch filter at 50 and 60 Hz, digitization at 1024 Hz and 
further filtering using a digital 5th order sinc filter. The data 
is further down sampled to 128 Hz for transmission.  

Sensor data is processed into four frequency bands: 
theta (4-8Hz), alpha (8-12 Hz), beta (16-25Hz) and gamma 
(25-45 Hz). Emotiv also provides average band power (in 
µV2/Hz) for each frequency band computed using fast 
fourier transform (FFT). Before applying FFT, the data is 
processed through a hanning window of size 256 samples 
that is slid by 16 samples in each iteration to create a new 
window (Emotiv, 2023; Hassan & Mahmoud, 2015).  Both 
the raw sensor data and the average power per frequency 
band for each sensor is stored for each simulation.  

Data from two participants could not be used due to 
poor contact quality while recording. Metrics used for 
EEG analysis are discussed below. 

d. EEG Task load index (TLI) 

EEG based TLI is the ratio of anterior frontal and 
frontal midline theta energy to mean parietal alpha energy 
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(Gevins et al., 2003; Holm et al., 2009). Studies (Xie et al., 
2016; Borghini et al.,2012) reveal that theta power in-
creases with increasing tasks that demands sustained con-
centration. TLI is a proven metric that increases with cog-
nitive tasks such as problem solving, integration of infor-
mation and analytical reasoning (Berka et al., 2007). 

The electrode positions are shown in Figure 7. We have 
computed TLI as ratio of power of theta frequency band of 
Fz, Fp1, Fp2, F3, F4, F7, F8, FC1, FC2, FC5, FC6 elec-
trodes to power of alpha frequency band of P7, P3, Pz, P4, 
P8 electrodes. Figure 7 shows the default electrode posi-
tions, while highlighting the electrodes used for computing 
TLI. 

 
Figure 7. Emotiv EPOC Flex- Electrodes placement: Electrodes 
used for TLI (Fz, Fp1, Fp2, F3, F4, F7, F8, FC1, FC2, FC5, 
FC6 electrodes - for theta frequency band; P7,P3,Pz,P4,P8 for 
alpha band) 

e. Task engagement index  

Freeman et al., (2000) derived an EEG signal-based 
Engagement index to explore user’s engagement, alertness 
and vigilance to a task conducted to evaluate an adaptive 
automation system. Prinzel et al., (2003) also recom-
mended TEI for designing automated systems. Pope et al., 
(1995) developed a biocybernetics system using TEI to 
evaluate flight deck automation based on operator’s en-
gagement in the task.  

EEG task engagement index (TEI) is defined as the ra-
tio of beta band power to sum of theta and alpha band 
power (beta power/(alpha power + theta power)). An array 

of different montages has been used in literature for TEI 
measurement. We evaluated five different montages – F4, 
F3, F7, F8 (Freeman et al., 2000); Pz, P3, P4, Cz (Pope et 
al.,   1995); Pz, P3, Fz, C3 (Chaouachi & Frasson, 2010); 
Fp1 (Szafir & Mutlu, 2012) and Pz, P4, Fz, C4 (Coelli et 
al., 2015). We analyzed all the five montages and observed 
that F4, F3, F7 and F8 electrode combinations exhibited 
higher correlation. We thus discuss this montage in this 
section.  

Average beta, alpha and theta bands of F4, F3, F7 and 
F8 electrodes (Figure 8) are considered to compute TEI.  
TEI reflects information gathering, visual processing, and 
allocation of attention as it tracks the demand for sensory 
processing and attentional resources.  

 
 

Figure 8. Emotiv EPOC Flex- Electrode placement: Electrodes 
used for TEI (F4, F3, F7 , F8 – for theta, alpha and beta 
frequency bands) 

Pilot control parameters 

Task difficulty and time pressure have a direct relation-
ship with cognitive load changes (Galy et al., 2012). Time 
history of pilot control inputs provide inference on task dif-
ficulty. We used two standard user’s inceptor control-based 
metrics as described by Hanson et al. (2014) for the analysis:  

• Duty cycle (DC): DC denotes the total percentage of 
time participant uses his/her controls. DC increases as 
the task demands higher control as given in Equation 6. 
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𝐷𝑢𝑡𝑦	𝐶𝑦𝑐𝑙𝑒 = 	100% ∗
1

𝑡1 −	𝑡#
L𝑥0

1

03#

 

Where 𝑥0 =

	R0		𝑓𝑜𝑟	
4!(	4!"#
&!(&!"#

< 𝑛𝑜𝑖𝑠𝑒	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑	𝑎𝑛𝑑	|𝛿0| < 𝛿2+6	

1					𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																																				
 

Equation 6 

𝑡# is the start time +1 and 𝑡1 is the end time of the data set; 
𝑛 is the number of data points; 𝛿0 are the discrete values of 
the stick deflections in degrees and 𝛿2+6 is the maximum 
stick deflection.  

Noise threshold is taken as 0.5% of inceptor’s total dis-
placement range per time increment. 

• Aggressiveness: Aggressiveness describes how rapid 
are the control inputs. Aggressiveness is measured in 
terms of rate of change of pilot stick inputs (Equation 
7). Increase in aggressiveness correlates with more 
random and abrupt control inputs; which is in turn 
related to higher task demands. 

𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 	K
1

𝑛 − 1L(
𝛿0 −	𝛿0()
𝑡0 − 𝑡0()

)#
1

03#

 

Equation 7 

Computation of individual parameters is mentioned in 
detail in Hebbar et al., (2021). Here, we have used DC * 
Aggressiveness as the Pilot Inceptor workload (PIW) met-
ric (Mitchell et al., 1998). Increase in PIW is a direct indi-
cator of task difficulty. 

Results and Discussions 

We used Pearson correlation coefficient to measure the 
association between pilot control behaviour-based PIW 
metric and physiological parameters. We generated one 
datapoint per user per condition where each row of 
physiological parameter came from one participant. 
Considering that each participant is a highly trained test 
pilot, sequence of task condition was regularly 
interchanged to avoid order effect and brief relaxation 
period was allowed between consecutive simulations; we 
assume independent observation across data points.  
 

We also report repeated measures correlation (rmcorr) 
results for cases where strong association is observed with 
Pearson correlation. This is carried out to assess common 
intra-pilot association for the paired repeated measures 
data. rmcorr uses analysis of covariance to account for 
inter-individual variability (Bakdash & Marusich, 2017). 
We used R Package (R Core Team, 2017) which is a 
statistical computing software to report the results. We 
report the magnitude and direction of both correlation 
coefficients in this section. 
 

Ocular parameter analysis 
a. Pupil dynamics analysis 

We observed that low frequency PD variations show 
highly significant (p<0.001) strong positive correlation 
(r(58) = 0.668 for left pupil and r(58) = 0.64 for right pupil) 
with respect to PIW. rmcorr also confirms a positive rela-
tionship (rrm(47) = 0.66, p<0.001 for left pupil & rrm(47) = 
0.63, p<0.001). Hence, we can infer that increase in the 
pupil diameter correlates with more abrupt pilot inceptor 
commands. (Figure 9). 

 
   (a) 

 
(b) 
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Figure 9. Correlation plot of low frequency PD variations: (a) 
left pupil- pearson correlation (left), rmcorr (right); (b) right 
pupil-pearson correlation (left), rmcorr (right). 

 
b. Fixation analysis 

We observed significant (p<0.001) strong positive cor-
relation (r(58) = 0.614, p < 0.001) between fixation rate 
and task difficulty and significant moderate negative cor-
relation for mean fixation duration (r(58) = -0.51, p < 
0.001) (Figure 10). rmcorr also computes a positive rela-
tionship for fixation rate with rrm(47) = 0.63, p<0.001. 
 

 
(a) 

 
(b) 

Figure 10. Correlation plot of Fixation analysis: (a) fixation rate 
- pearson correlation (left), rmcorr (right); (b) fixation duration 

 
c. Gaze distribution analysis 

A higher value of NNI denotes that visual scanning is 
more randomly distributed in space. We found moderate 
negative correlation between PIW and NNI (Figure 11)  
(r(58)=-0.39, p<0.01; (r(57)=-0.37, p<0.01 after removing 
the outlier of 0.4).  

 
Figure 11. Correlation plot of NNI 
 

Decrease in NNI with task difficulty in VR is due to 
pilot’s increased focus and concentration on scanning of 
the target aircraft. 
 

EEG Analysis 

a. Task load Index:  
We found that TLI shows highly significant (p<0.001) 

strong positive correlation (r(48)=0.67) with respect to 
PIW (Figure 12). rmcorr also confirms a positive relation-
ship with rrm(39) = 0.64, p<0.001. 

Hence increase in pilot’s activity increased the EEG task 
load index significantly. 

 
(a) 
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(b) 

Figure 12. Correlation plot of TLI: (a) pearson correlation; (b) 
rmcorr (right) 

 

b. Task engagement index 
We found highly significant (p<0.001) moderate nega-

tive correlation between TEI and PIW (r(48) = -0.48) 
(Figure 13). 

 
Figure 13. Correlation plot of TEI    

 
A reduction of engagement index demonstrates the 

deterioration of task engagement with increase in pilot’s 
activity. We can further infer from the results that 
difficulty of the task consumed most of the attentional 
resources. 

Inter-pilot variability 
 

Piloting skills and the perceived cognitive load varies 
with each pilot; for the same task condition. In this section, 
we present the results of analysis conducted to understand 

the inter-pilot variability across the estimated cognitive 
load parameters.  
 

We computed standard deviation of the cognitive load 
parameters for the five task scenarios offered to each pilot.  
Figure 14 shows variability scores obtained across task 
conditions for each participant; for different cognitive load 
parameters. It can be observed that inter-pilot variability is 
relatively low for pilot 10 (represented by dark green dots 
in earlier figures). In other words, pilot 10 perceives more 
consistent cognitive load with respect to changes in task 
condition than others. 

 
Figure 14. Inter-pilot variability 

The overall observations from this study are:  
• We measured pilot’s interaction with aircraft using 

his/her actions on the inceptor control through PIW 
metric. We further correlated PIW with ocular and 
EEG parameters-based metrics discussed in section 3. 

• From the ocular parameter analysis, we found that 
variations in pupil dilation is an important cognitive 
load parameter. Strong position correlation is 
observed between increase in pupil diameter and PIW. 

• We also noticed significant increase in fixation rate 
and reduction in length of fixation with increase in 
PIW. Results of the study corroborates the statement 
made in the previous section. The task reported in this 
article demands pilot to simultaneously process many 
flight parameters such as altitude, airspeed, 
orientation, distance from the target aircraft and 
number of remaining missiles to take decision to fire 
the missile. Decision-making process becomes more 
complex with increase in task difficulty; thereby 
resulting in an increased fixation rate. 
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• We observed that TLI shows strong positive 
correlation with increasing pilot activity. More 
importantly, we observed an inverse relation between 
TLI and TEI with increase in task difficulty. This 
negative association may be attributed to be due to 
nature of the task. TEI, by definition, explores 
information gathering, visual processing, vigilance 
and attention allocation. Decrease in TEI with PIW 
may be attributed to be due to decrease in availability 
of attentional resources and the amount of information 
processing due to pilot’s focus on tracking the target. 
This, in general, led to reduced peripheral activities 
such as visual scanning which is also evident from a 
reduced NNI with PIW (refer Figure 11).  

• Initially, we assumed each data point as an 
independent observation and carried out Pearson 
correlation. These results were substantiated with 
repeated measure correlation. Table 2 shows the 
comparison between Pearson correlation coefficient 
(r) and repeated measure correlation (rmcorr) for all 
the cognitive load parameters reported in the paper. It 
can be observed from Table 2 that r and rmcorr values 
are comparable for parameters where strong 
correlation is observed. 

Table 2: Comparison 
 

Cognitive load parameter 
Pearson 

correlation 
coefficient 

(r) 

Repeated 
measure 

correlation 
coefficient 
(rmcorr) 

Low frequency pupil 
dilation variations-left 
pupil  

0.668  0.6632  

Low frequency pupil 
dilation variations-right 
pupil  

0.64  0.63  

Fixation rate  0.614  0.6331  
Mean fixation duration  -0.51  -0.53  
NNI  -0.39  -0.142  
EEG task load index  0.67  0.64  
EEG task engagement 
index  

-0.48  -0.37  

Hence, in a VR environment, pupil diameter variations, 
gaze fixations, EEG task load index and EEG task 
engagement index are good indicators of cognitive load 
variations.  

Conclusions 
We have presented the development of a virtual reality-

based aircraft flight simulator that is proposed to be used 
to test new pilot vehicle interfaces. Realistic tracking sce-
narios are implemented. We conducted a user study with 
Air force test pilots to understand pilot’s interaction on the 
aircraft in an AI enabled battlefield scenario. No physical 
discomfort due to VR headset was reported during the con-
duct of simulations. Physiological measurement devices 
such as eye tracker and EEG headset are used for data col-
lection. Physiological parameters were used to understand 
the variations in cognitive load during the pre-defined sce-
nario simulations. Low frequency PD variations, gaze fix-
ation rate and EEG task load index were found to be good 
indicators for estimating cognitive load in a virtual reality 
environment. We also observed that as pilot’s perceived 
task difficulty increased, more of pilot’s attentional 
resources were consumed. This was evident from both 
EEG based engagement index and from gaze fixation 
based NNI. 
 

Analysis results indicate that the system estimates var-
iations in the cognitive load efficiently. Hence, it is evident 
from the user study that VR flight simulator may be pro-
posed for evaluations of new systems and their interactions 
in an iterative manner. Future studies should consider 
these results to evaluate new pilot friendly adaptive inter-
face designs. 
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