
Journal of Eye Movement Research
15(3):10

 1

Introduction
In the past decades, virtual reality (VR) made its way

from an abstract science fiction concept to easily imple-
mentable affordable consumer electronics. To allow the
reader to experience the same progression from abstract to
concrete, I will start with some general information about
VR and eye tracking. Progressing with presenting easily
applicable good practices for eye tracking in VR with the
HTC Vive and the Pupil Labs eye tracking add-on
throughout this paper.

In VR a three-dimensional computer-generated simu-
lated scene is used to create a sense of “being there” some-
times called (tele-)presence (Bowman & McMahan, 2007;
Steuer, 2006). Although different VR technologies co-ex-
ist, this paper focuses on head-mounted displays (HMD),
also named VR-goggles. To create an experience of virtual
realness, a variety of hard- and software components can
be used that facilitate the immersion. As standard stereo-
scopic images are applied to allow depth perception via
binocular disparities. Moreover, six degrees of freedom
head-based rendering takes the users’ translational and ro-
tational head movement into account. As an add-on ma-
nipulability of and interaction with the simulated objects
can be achieved when controllers are used.

Especially for applied research, the use of VR comes
with many advantages: VR allows for controllable envi-
ronments and the reproducibility of particular settings.
This also implies that cover stories are relatively easy to
implement. Thus, the immersive visual stimuli do facilitate
credibility. The possibilities of displaying visual stimuli
range from the resemblance of real physical objects to

Let’s get it started: Eye Tracking in VR
with the Pupil Labs Eye Tracking Add-On

for the HTC Vive
Judith Josupeit

Technische Universität Dresden, Germany
judith.josupeit@tu-dresden.de ORCID 0000-0003-2144-3161

Combining eye tracking and virtual reality (VR) is a promising approach to tackle various
applied research questions. As this approach is relatively new, routines are not established
yet and the first steps can be full of potential pitfalls. The present paper gives a practice
example to lower the boundaries for getting started. More specifically, I focus on an afford-
able add-on technology, the Pupil Labs eye tracking add-on for the HTC Vive. As add-on
technology with all relevant source code available on GitHub, a high degree of freedom in
preprocessing, visualizing, and analyzing eye tracking data in VR can be achieved. At the
same time, some extra preparatory steps for the setup of hardware and software are neces-
sary. Therefore, specifics of eye tracking in VR from unboxing, software integration, and
procedures to analyzing the data and maintaining the hardware will be addressed. The Pupil
Labs eye tracking add-on for the HTC Vive represents a highly transparent approach to
existing alternatives. Characteristics of eye tracking in VR in contrast to other head-
mounded and remote eye trackers applied in the physical world will be discussed. In con-
clusion, the paper contributes to the idea of open science in two ways: First, by making the
necessary routines transparent and therefore reproducible. Second, by stressing the benefits
of using open source software.

Keywords: Eye movement, eye tracking, virtual reality, HMD, HTC Vive, Pupil Labs,
Unity, good practice

Received December 23, 2022; Published June 19, 2023.
Citation: Josupeit, J. (2023). Let’s get it started: Eye Tracking in VR
with the Pupil Labs Eye Tracking Add-On for the HTC Vive. Journal
of Eye Movement Research, 15(3):10.
Digital Object.Identifier 10.16910/jemr.15.3.10
ISSN: 1995-8692
This article is licensed under a Creative Commons Attribution 4.0
International license.

Journal of Eye Movement Research J. Josupeit (2023)
15(3):10 Eye Tracking in VR with the Pupil Labs Eye Tracking Add-On for the HTC Vive

 2

complete artificial ones. Via logic components of the ap-
plication, physics can be applied that as a default matches
the empirical knowledge of the physical world but can also
be diametrically opposed. In either case, these simulations
allow studying the respective physiological reactions of
the autonomous nervous system in a highly controlled but
simultaneously immersive setting. In addition, participants
seem to be more motivated and willing to adhere to the
procedure compared to classical laboratory experiments
(Aronson et al., 1998), as participants have reported more
fun and enjoyment, or engagement and motivation com-
pared to non-immersive setups (Bryanton et al., 2006;
Manera et al., 2016).

The use of VR generates accessible metadata, e.g. head
movement data required for head-based rendering can be
easily recorded. In addition to the rotational and transla-
tional metadata, that can be accessed through the build-in
sensors of the HMD and its motion-tracked controllers,
eye tracking in VR is applied in many areas of cognitive
research: For instance focusing on spatial orientation
(König et al., 2021), medical training (Lu et al., 2020) or
marketing (Khatri et al., 2020). Combining spatial and
temporal eye data allows for the allocation of eye move-
ment events such as fixations (i.e. gaze is relatively sta-
tionary) and saccades (i.e. eye movements) (Reingold,
2014). In combination with additional spatial and temporal
information about the displayed events, scan paths can be
derived and aggregated to heat maps. If available, prede-
fined areas of interest (AOI) provide further process indi-
cators e.g. dwell count and dwell duration (Orquin &
Holmqvist, 2018).

Various suppliers for eye tracking solutions in VR ex-
ist. There are expensive HMD solutions that are manufac-
tured for eye tracking in the workplace. Manufacturers
promise more efficient prototyping, training, and research
(Varjo, 2022). Other HMDs with an eye tracker as a stand-
ard feature belong more to consumer electronics (e.g. HTC
Vive Pro Eye, HTC Vive, 2022). The disadvantage of most
of these solutions is the black box algorithm that processes
the eye tracking data. Depending on the software used to
actuate the eye tracker, only aggregated data is available
limiting the research questions that can be addressed
(Tobii Pro VR, 2018).

In contrast, open source solutions might be an afforda-
ble, transparent, and flexible alternative. One of these eye
tracking systems will be discussed in this paper: The Pupil
Labs eye tracking add-on for the HTC Vive (Pupil Labs,

2022a): a binocular add-on solution with a maximum sam-
pling rate of 200Hz. According to the manufacturer, the
gaze accuracy is about 1.0°, the gaze precision is about
0.08°, the camera has a latency of 8.5 ms, and the pro-
cessing latency is 3 to 4 ms depending on the CPU (Core
i5).

However, such an affordable solution requires addi-
tional effort in the setup. To facilitate the start with eye
tracking in VR, I would like to focus on practical aspects
of implementing eye tracking in VR, which have not been
mentioned elsewhere. A detailed overview together with a
case study with the same hardware is provided by Clay et
al. (2019). In case the reader wants to get informed about
publications and projects from diverse research fields that
applied Pupil Labs eye trackers in VR I recommend taking
a look at the manufacturer’s publication list filtering for
VR (Pupil Labs, 2022b). Even for those who are already
familiar with the technology, the present paper might con-
tain some helpful practical suggestions. Novices in this
field will be guided through the overall process and
pointed to potential pitfalls and risks.

I will go through the necessary steps in chronological
order: First, I will focus on the mounting of the hardware,
then continue with software integration of the Pupil Core
apps and Unity, as well as suggestions for experimental
procedures, accessing raw data and preprocessing, and
conclude with maintenance recommendations for large-
scale laboratory studies.

Mounting
Starting with the unboxing of the Pupil Labs eye track-

ing add-on, the package includes two distinct hardware
components. The first component is the eye tracker − the
cameras and infrared illuminators − installed on clip-on at-
tachment rings, one ring for each lens of the HMD. The
second component is a USB-C to USB-A cable that pow-
ers the lenses and streams the data. Compared to “plug-
and-play” solutions an extra step is needed, which is
mounting the eye tracker onto the lenses of the HTC Vive.

In general, the mounting is well documented and help-
ful instruction videos are provided on Pupil Labs’
YouTube channel (Pupil Labs, 2019). Nevertheless, the in-
structional video for the HTC Vive should be more precise
since the attachment rings are quite delicate and prone to
damage. There is a comment under the instructional video

Journal of Eye Movement Research J. Josupeit (2023)
15(3):10 Eye Tracking in VR with the Pupil Labs Eye Tracking Add-On for the HTC Vive

 3

on YouTube that suggests turning the knob of the HTC
Vive on the lower right side that adjusts the interpupillary
distance (IPD) to the maximum to avoid obstruction by the
HMD’s plastic facerest when mounting the eye tracker.
However, in my opinion, the HMD’s facerest still ob-
structs access to the lenses, if it is not removed. Therefore,
disassembling all parts that are interfering seems appropri-
ate1.

Before the facerest can be removed, the cables, the
elastic head straps, and the eye relief adjustment mecha-
nism need to be disassembled (see Figures 1 and 2). Start
with removing the connector cables, which are at the top
of the HMD (see Figures 1.1 to 1.3). This part is covered
with a plastic locking bolt that can be removed by pushing
each corner of the cover down and sliding it toward the
front of the HMD. Under the cover are the connector ca-
bles (HDMI, USB-A 3.0, and DC barrel jack for power
supply, sometimes an additional 3.5 mm audio jack). Un-
plug all cables. Put the cables and the cover aside. Then
the mount of the elastic head straps on either side of the
HMD, which sits on top of a grey ring that is part of the
eye relief adjustment mechanism, can be released. For this
purpose simply turn the plastic bracket upwards, until you
hear it click, which indicates it is loose (see Figure 1.4).
Do apply only gentle force because the dents of the bayo-
net mount are made of thin plastic.
Figure 1
Steps Necessary to Remove the Cables and Head Straps of the
HTC Vive

Note. 1.1 and 1.2. Removing the cover of the connector cables,
1.3 Connector cables unplugged, 1.4 Removing the head strap
mount by turning it upwards.

1 In case you are using the newer version, the HTC Vive Pro,
there is a detailed instruction for dismounting the HMD’s face-
rest online (Omiotek, 2022).

Now you can put the head straps aside and continue
with removing the facerest of the HMD (see Figure 2).
Make sure that the mechanism for the adjustment of the
eye relief is locked, which means that the grey rings are
pushed down on either side of the HMD’s facerest (see
Figure 2.1). Next, you can loosen the mechanical fastening
of the cogs that adjust the eye relief. To do this, use a Torx
T6 from inside the HMD (see Figure 2.2). Once the screws
are loose, the mechanism will come apart in five parts the
grey ring, the cog, the socket, the nut, and the screw. Mem-
orize the colocation of the parts of the mechanism (see Fig-
ure 2.3). In general, for (de-)assembling it is recommended
to use a container for all loose parts. Finally, pull away the
facerest of the HMD (see Figure 2.4). As a result, you will
gain unobstructed access to the lenses (see Figure 2.5).
Now, the attachment rings from the Pupil Labs add-on can
be gently clipped onto the lenses of the HTC Vive. Align
the bare flexible printed boards in parallel to the HMD’s
facerest. Check its fit by cautiously putting the facerest
back on, before you begin to re-assemble the HMD.

To this end, take the steps in reverse order. Let gravity
Figure 2
Steps Necessary to Remove the Eye Relief Adjustment Mecha-
nism and the Facerest of the HTC Vive

Note. 2.1. Locking the eye relief adjustment mechanism 2.2
Loosen the screws of the mechanism with a Torx T6 screwdriver
2.3 The five parts of the eye relief adjustment mechanism 2.4 Re-
moving the HMD’s facerest 2.5 Result of dismounting the HMD.

Journal of Eye Movement Research J. Josupeit (2023)
15(3):10 Eye Tracking in VR with the Pupil Labs Eye Tracking Add-On for the HTC Vive

 4

help you when reassembling the eye relief adjustment
mechanism, by pushing the HMD’s facerest to the mini-
mum (see Figure 3.1). The nut of the eye relief adjustment
mechanism has to line up precisely with the plastic socket,
which itself needs to line up precisely with the slot of the
facerest. Once all parts are back in place, fasten them.
Avoid overtightening the screws and make sure that the
eye relief adjustment is working. Enable the mechanism
by pushing the grey rings outwards and turn them to check
whether the eye-relief changes, i.e. the facerest is rolling
out.

Next, pull off the face cover foam, pass the USB-C
connector under (see Figure 3.2), and put the foam back on
again. For laboratory studies as well as for public demon-
strations a damp wipeable PU leather foam face cover with
disposable single-use hygiene covers on top is recom-
mended. If the cover has not been changed previously, this
would be a good opportunity to do so.

Continue by closing the flexible head straps outside the
HMD's facerest by turning them down. Thereafter, plug in
all cables and close the cover of the head compartment
again.

Now as the mounting is completed, the USB-C con-
nector should be attached to the computer using the 1.5 m
long USB-C to USB-A cable that came with the package.
Use a USB-A 3.+ socket of this computer to enable a suf-
ficient data transfer rate. The computer should not only
record the eye tracking data but also render the VR envi-
ronment. This enables initializing the recording of the eye
tracker and saving the event file simultaneously. Moreo-
ver, synchronizing the timestamps that apply different time
formats will be easier.

The 1.5 m long USB-C to USB-A cable should be used

Figure 3
Precautions for Reassembling the HTC Vive with the Pupil
Labs Eye Tracking Add-On Clipped onto the Lenses

Note. 3.1. Facerest at the minimum position concerning eye relief
3.2. HMD with the add-on installed and face cover foam re-
moved.

without any modification, which unfortunately limits the
range of motion. Although not recommended by the sup-
plier, modifications tried – an active USB-A extension ca-
ble, as well as connecting the cable to the spare USB-A
slot of the head compartment of the HMD −, failed, poten-
tially because of low voltage. To increase the range of mo-
tion, the computer can be mounted on something mobile
and adjustable, such as a wheeled lectern (see Figure 4).
Using a backpack computer might be another option, alt-
hough this technology is discontinued, as it was received
as overpriced and cumbersome (Greenwald & Buzzi,
2018; HTCviveadmin, 2018).

Software Integration
In the upcoming paragraphs, different font styles will

be used for more clarity: names for scripts and prompts
will be written in Courier New, whereas names for
prefabs and components will be written in Italics.
Figure 4
Re-staged Experimental Setup for Room-Scale VR

Note. A re-staged experimental setup with the computer used for
eye tracking and rendering on a wheeled lectern to enable adjust-
ments for room-scale VR.

Journal of Eye Movement Research J. Josupeit (2023)
15(3):10 Eye Tracking in VR with the Pupil Labs Eye Tracking Add-On for the HTC Vive

 5

Pupil Labs Core Apps
To get the latest version of the Pupil Labs Core apps

the reader is referred to the Pupil Repository on GitHub
(Kassner et al., 2014; Pupil Labs, 2022c). The Pupil Labs
Core apps include three apps: Pupil Capture, Pupil Player,
and Pupil Service. Whereas Pupil Capture and Pupil Ser-
vice are for recording, streaming, and calibration, Pupil
Player enables visualizing, preprocessing, and exporting
the data. Therefore, Pupil Player will be addressed later in
the sections Accessing Raw Data and Preprocessing.

Pupil Capture and Pupil Service differ concerning the
GUI: Pupil Service contains only the two eye cameras,
while Pupil Capture contains an additional window of the
world camera, i.e. the third camera that records the dis-
played scene. One way to enable the world camera view in
Pupil Capture is to use a Screencast, which will be the fo-
cus of an upcoming section. Accordingly, Pupil Service re-
quires less processing power, which is advantageous for
higher sampling frequencies of the eye tracker. However,
if one wishes to start the recording through the VR appli-
cation, the use of Pupil Capture is indicated, as the Record-
ing component is not supported by Pupil Service.

The first time you plug in the USB-A connector of the
eye tracker into the computer the drivers for the eye cam-
eras will be installed automatically. Make sure that both
eye cameras are displayed on the screen when starting Pu-
pil Capture or Pupil Service. When the HMD is worn al-
ready, it might happen that the eye camera for the right eye
from the wearer’s point of view (camera 0) is not visible.
This usually happens because the bare flexible printed cir-
cuit board underneath the nosepiece is disconnected when
the HMD is sitting very tight on the nose. Moreover, if
both eye cameras are not available, it might help to unin-
stall the drivers and plug the USB-A connector in again. If
none of the usual troubleshooting measures work (e.g. re-
starting the computer or unplugging the USB-A con-
nector), the problem may be due to a rupture in the flexible
circuit board. The rupture will be obvious to you by a vis-
ual inspection. If you are technically inclined, you can sol-
der a bridge as a makeshift solution. Other ideas to prevent
cable rupture will be covered in the Maintenance section.

For the integration of the software, it is enough to know
the differentiation and unique characteristics of the Pupil
Core apps. I will refer to some basic settings of the Pupil
Core apps in the section Recommendations for the Exper-
imental Procedure.

Unity
The following paragraphs refer to Unity Professional

(v 2019.1.1.1f1). The professional license is free of charge
if you are working in academia for educational purposes.
The default view of the GUI can be split into five sections
(see Figure 5). First, there is the toolbar section for editing
the current project by importing packages and compo-
nents, adjusting settings, and compiling the scene for test-
ing, as well as building the final application. The second
section, the Hierarchy, contains all game objects in the
scene. You can change the hierarchy of game objects by
dragging and dropping game objects onto one another. The
objects hierarchically lower are called child objects and
depend in all degrees of freedom on the object they are at-
tached to, i.e. the parent (game) object. Third, in the center
of Unity’s GUI, there is the Scene view for previewing, the
Game view for testing, and the Asset Store for download-
ing preconfigured assets. Many facilitating assets are
available for free: For instance, the SteamVR Plugin helps
with the integration of the HMD and its controllers, while
other assets contain meshes and materials for 3D-game ob-
jects. Forth on the right side, the Inspector displays de-
tailed information about the game object that is currently
selected in the Hierarchy. In the Inspector the selected
game object can be adjusted in size position and rotation.
Moreover, scripts − written in C#. – and components − e.g.
a Rigidbody for enabling Unity’s physics engine − can be
attached to the game object. Finally, in the lower part of
the GUI, there is the Project browser and Console tab. The
Project browser shows all folders of the current project. If
you want to add a game object to the current scene that is
already imported into your Project folder just browse
through the Project folders, drag and drop it into the Hier-
archy. The Console is important during testing the Unity
scene, i.e. when you press play in the toolbar, according to
the settings warnings and, or error messages, and logged
information are displayed.

In case the Unity scene does not define all game objects
as child objects of the main camera, the virtual height im-
pression depends on the physical height of the user. If you
want to unify the camera perspective for users of all
heights, add a Character Controller to the main camera
component opened in the Inspector. The character control-
ler can define a fixed virtual height. The importance of the
y-axis constraint on the main camera depends on the VR
setup: While it may be important for room-scale VR or a
standing position with a perspective higher than the user's

Journal of Eye Movement Research J. Josupeit (2023)
15(3):10 Eye Tracking in VR with the Pupil Labs Eye Tracking Add-On for the HTC Vive

 6

Figure 5
The Five Sections of the Default View of the GUI in Unity

Note. 5.1. Toolbar 5.2 Hierarchy: currently the Calibration Con-
troller is selected 5.3. Scene view is selected; the following tabs
are the Game view and the Asset Store. 5.4. In the Inspector the
adjustable settings of the Calibration Controller are shown. In
case you wish to change the Settings or Targets just dou-
ble-click on the ScriptableObject 5.5. The Project browser is dis-
played; the following tab is the Console.

physical height, the y-axis constraint may be marginal for
a seated VR (Rothe et al., 2019). Nevertheless, there may
be good reasons not to fix the perspective, such as ecolog-
ical validity or a reduced immersion.

In addition, to the previously mentioned Asset Store
some facilitating and beginner-friendly frameworks for de-
signing VR experiments with Unity can be recommended
(Bebko & Troje, 2020; Brookes et al., 2020). In case you
need some special 3D-game object, that is not available via
the Asset Store, the free and open source software Blender
might be an appropriate alternative (Blender Foundation,
2022). For creating 3D-game objects with Blender keep in
mind, that Unity uses a left-handed y-up coordinate sys-
tem, whereas Blender uses a right-handed z-up coordinate
system.

The Pupil Labs Unity package hmd.eyes needed to ac-
tuate the eye tracker from inside the Unity application is
available on GitHub (Pupil Labs, 2020). For general infor-
mation refer to the Pupil Labs VR/AR developer docs that
not only support the game engine Unity (2018.4+), but also
the software development platform Vizard (Worldviz),
which is not covered here. You can import the package via
the import custom package prompt through the
toolbar into your Unity project. In the following sections,
I will focus on different components that are included in
the package hmd.eyes and are more or less relevant when
actuating the Pupil Labs eye tracker inside Unity. The
package hmd.eyes requires the Pupil Core apps to be v

2.0+, which will be the case if you followed the instruction
and installed the latest version.

If you just want to get started with eye tracking in VR,
I recommend using the Gaze Tracker component from the
package hmd.eyes. After importing the custom package
into your Unity scene, you can attach the Gaze Tracker to
your Camera Rig of the main camera, as a child object by
dragging it into the Hierarchy.

Calibration

Regardless of the research question, calibration of the
eye tracker is required to map pupil positions to corre-
sponding gaze positions in the VR scene. For the calibra-
tion procedure, a neutral background with equal brightness
compared to the VR scene is recommended to minimize
visual distraction. I suggest using Blender to create a cus-
tom prefab like a tube that can be loaded into Unity as a
game object. The tube can be displayed during the proce-
dure and destroyed once the calibration was successful via
a script.

When using the Gaze Tracker component keep the
Gaze Visualizer (see Figure 6.1), which highlights with a
sphere the Unity object that is currently fixated by the user,
and the Eye Frame Visualizer (see Figure 6.2), i.e. a
screencast of the eye cameras into the Unity application,
disabled during the calibration. Open the Calibration Con-
troller component in the inspector. In the Calibration
Controller script add your main camera as Refer-
ence Camera and enable Show Preview which will
display the targets used for the calibration procedure. You
can change the Calibration Settings and Tar-
gets to your needs via changes in the Inspector (see Fig-
ure 5.4). Make sure to calibrate the whole field of view you
wish to display stimuli in. For depth perception in VR,
keep in mind that Unity units can be theoretically arbitrary,
but are recommended to be thought of as meters as the
physics settings assume so (Unity, 2018), e.g. gravity is set
to the earth’s equivalent of 9.81!

"²
 (0, -9.81, 0).

Open the Inspector for the object Canvas which is a
child object of Status Text. Select the Screen Space – Cam-
era as the Render Mode. Assign the Camera Rig of your
main camera as the Render Camera to display the re-
spective text inside the HMD irrespective of the head po-
sition and rotation.

Journal of Eye Movement Research J. Josupeit (2023)
15(3):10 Eye Tracking in VR with the Pupil Labs Eye Tracking Add-On for the HTC Vive

 7

If you want to validate your calibration, add a second
Calibration Controller as a child object to the Gaze
Tracker and rename it to Validation. Use a different order
of the displayed targets for your validation. Therefore, you
need to adjust the Settings and Targets once again
in the Inspector. Furthermore, open the C#-script and
change the keycode for starting the Validation process
from C to V.

Between the experimental sessions, allow the partici-
pants to rest without wearing the HMD, which reduces the
likelihood of discomfort or visually induced motion sick-
ness (VIMS). Begin each new VR application with a cali-
bration. To control for the effect of slippage repeat the cal-
ibration at the end of each session; therefore just initialize
the calibration process a second time by pressing C. If your
environment is causing some form of VIMS, a recalibra-
tion may be weighed against reducing the overall exposure
time (Rebenitsch & Owen, 2021).

Visualizing Scan-Paths and Areas of Interest

If it is of interest, which objects a participant is fixating
on, the Gaze Visualizer needs to be enabled after the cali-
bration process and the Gaze Origin should be set to
the Transform of the main camera. Furthermore, the game
objects of interest should have colliders. Colliders are in-
visible meshes which mimic the shape of the game object
and are needed by Unity’s physics engine to enable inter-
action with game objects. Otherwise, the ray cast of the
Gaze Tracker cannot hit them. You could think of a ray
cast as a laser beam that starts from a fixed point (origin)
and radiates on all colliders that are in alignment (direction
and distance).

The visualization of the gaze can be enabled with the
Gaze Visualizer component of the Gaze Tracker. In gen-
eral, this is often distracting but can be helpful when using
gaze-based interaction or when simulating visual impair-
ments like a cataract (Krösl et al., 2020). For these pur-
poses, the Gaze Visualizer should be enabled and modified
by adding either a script or changing the Materials of
the Sphere Cast. In case the ray cast is too coarse,
modify the scripts for the Confidence Threshold
and the Sphere Cast Radius according to your needs
through the sliders in the Inspector.

To obtain scan paths for post-processing, the hits of the
Gaze Visualizer’s ray cast need to be saved. Moreover, for

AOI you should label your game objects of interest by us-
ing custom tags or for the areas of interest of large game
objects by adding specific Mesh colliders as child objects.

Recording

For the synchronization between the system time in
Unix epoc and Pupil Labs time in arbitrary timestamps, it
is recommended to start the recording of the Pupil Core
app from inside the Unity application. This also facilitates
the handling of the software, once the Unity application is
build. Add the Recording Controller script to the
Gaze Tracker component opened in the Inspector to enable
the opportunity to start the recording from inside the same
application. Select the Connection (i.e. Request Control-
ler) as the Request Ctrl. Allow the control Start
Recording for starting the recording from inside the
Unity application by pressing R on the keyboard, but do
not enable the Stop Recording control to reduce the
likelihood of experimenter’s error by pressing R multiple
times.

The recording will start on Update(), meaning the
script will be called once per frame and the recording will
start in the respective frame when the key is pressed on the
keyboard (Unity, 2019). When using a custom path for
saving the recordings, the path should be identical to the
path for the Unity event file for higher clarity. As long as
the Unity Editor is used, using the path to the project folder
is fine. Keep in mind that the Unity project folder is nor-
mally not the folder you wish to build your Unity applica-
tion in.

Screencast

In some cases, you might want to include a screencast,
i.e. recording the virtually displayed scene, to illustrate the
functionalities of the eye tracker or for troubleshooting.
Make sure that the screen capture software records with
the appropriate frames per second for a jitter-free screen
recording (for a screencast with OBS see OBS, 2022).

To achieve a screencast with sufficient frames per sec-
ond, but a limited resolution, attach the Screen Cast
script to the Gaze Tracker. In the Inspector, assign the
Screen Cast Camera as the Centered Camera. Use the
respective Request Ctrl as Connection and the Time
Sync as Time Sync. Now the Game view will be displayed
in the world video window when you are using the Pupil
Core apps Pupil Capture or Pupil Player (for replay). The
screencast will be saved as an additional file in the same

Journal of Eye Movement Research J. Josupeit (2023)
15(3):10 Eye Tracking in VR with the Pupil Labs Eye Tracking Add-On for the HTC Vive

 8

folder as the other recording information. If the Unity
scene is visually complex, the Clipping Planes of
the main camera and renderings of the Skybox may look
slightly different in the world video compared to Unity’s
Game view.

Moreover, you might want to visualize the functional-
ity of the Gaze Tracker for a demonstration or documenta-
tion, to this end enable the Gaze Visualizer (see Figure
6.1). If you additionally want to include the eye images of
the eye tracker inside the Unity application, the Eye Frame
Visualizer of the Gaze Tracker component needs to be en-
abled (see Figure 6.2). However, due to the demanded pro-
cessing power, a jittered rendering can result and sampling
frequency might become irregular. Thus, a screencast is
generally neither recommended nor needed for most re-
search questions.

Saving Unity Events

To get inspiration for structuring and writing an event
file in C#, the reader is referred to the Electronic Supple-
mentary Material section. In general information about the
head movements of the participant, the use of the control-
ler, and what was displayed at a particular time, needs to
be saved in an additional file with a code for all planned or
initialized Unity events. This can be achieved by creating
a new C#-script attached to the Unity scene. It allows sav-
ing a csv-file including the temporal, spatial, and virtually
displayed information.

The sampling frequency will be depending on the
frame rate when the script is called through the event func-
tion Update(). This event fiction is applied for all Gaze
Tracker functionalities triggered inside Unity. As this
function is depending on the volatile frame rate, it might
result in variable intervals of records. Nevertheless, there
is no benefit in rendering faster than the display refresh
rate of 90 Hz. Thus sampling of the Unity event file around
60 to 120 Hz is common practice (Bebko & Troje, 2020).
Additionally, using Unity timestamps based on the system
time in milliseconds is recommended (for Windows see
Microsoft, 2022).

The event file can be labeled by using an input field as
a GUI element to enter the participant code. The use of C,
P, R, and/or V should be avoided as these key codes are
already assigned to controls and would lead to an implau-
sible event count. After entering the participant’s code and
pressing the confirmation key, e.g. Enter on the numb

Figure 6
Demonstration of the Gaze Visualizer and Camera Images of the
Eye Frame Visualizer

Note. 6.1. The ray cast of Gaze Tracker illustrated by a yellow
sphere (Gaze Visualizer) is hitting an object of interest, the green
glowing semi-circle in a complex VR environment 6.2. Dis-
played images of the Eye Frame Visualizer for demonstrational
purposes in a simple VR environment.

pad, the saving script should be initialized. As a path for
saving use Application.dataPath +
“/folder_name/”. Additionally, use the system time
of the initialization of the Unity application in the label.
This adds redundancy to the file and helps to reduce the
likelihood of experimenter’s error by mislabeling. Further-
more, it is recommended to sample the reference coordi-
nates of the main camera Position and Transform in
Unity so you can keep track of the head movement. This is
important information for eye tracking in VR due to two
reasons. First, as mentioned in the introduction rendering
in VR is head-based. So, the position of the head needs to
be known, including the content and the perspective at a
time point, to visualize scan paths and heat maps. Second,
there would be a chance of misinterpreting the vestibulo-

Journal of Eye Movement Research J. Josupeit (2023)
15(3):10 Eye Tracking in VR with the Pupil Labs Eye Tracking Add-On for the HTC Vive

 9

ocular reflex, when head movement is disregarded. The
vestibulo-ocular reflex is a reflex that stabilizes the line of
sight during head motion via an eye movement in opposite
direction to the head rotation (van der Steen, 2009).

In case you are using controllers with predefined or
custom (key-)bindings, the controller input needs to be
tracked, as either the events are triggered via the controller
input or the controllers are applied for locomotion. In the
former case, game objects and thus the visual input is
changed. Therefore, you would additionally save the coor-
dinates of the interactive game object. In the latter case,
you will need to know the controller input to keep track of
the changes in perspective that are not caused by head
movement.

For scan paths and heat maps, the ray cast hit marker
of the Gaze Visualizer in Position and Transform in Unity
coordinates needs to be added to the event file. When you
have predefined AOI, add each tag of the respective col-
lider as a string to the event file and count the hits of the
ray cast accordingly.

Furthermore, the timestamp when R is pressed i.e.
when starting the recording in Pupil Capture needs to be
logged. Additionally, use counters for the calibration and
validation onset, the start of the VR application after suc-
cessful calibration and validation, i.e. when the neutral
background game object is destroyed, and for the end of
the VR exposure if a re-calibration is applied. Moreover,
use a counter for the onset of the planned events, especially
when they are triggered irrespective of time spend in VR
this is needed to match the eye tracking data with the Unity
events.

Building the Unity Application

Before starting to build the Unity application try to find
and delete all unnecessary code and game objects. I rec-
ommend using a checklist for a code review (Chong et al.,
2021) if no experienced developers can provide support.
Once you have your Unity scenes cleaned up and ready for
the build, you need to make sure that the player configura-
tions in the build settings have the Scripting Runtime Ver-
sion set to .NET 4.x Equivalent, whereas the API Compat-
ibility Level should be .NET 4.x. Enable the Virtual Reality
Supported OpenVR Virtual Reality SKD. Moreover, to
have easier handling between the VR application you are
about to build and the Pupil Core apps set Resolution to
Windowed. For more clarity build your application in an
empty folder, as the Pupil Labs recordings and the Unity

event file will be stored at Application.dataPath
+ “/”. Keep in mind that you have to change the path to
this folder in the Recording Controller component opened
in the Inspector.

Recommendations for the
Experimental Procedure

Further aspects that need to be considered in the con-
text of planning the experimental procedure, are either ap-
plicable for eye tracking in VR in general or soft- and/or
hardware specific for the Pupil Labs eye tracking add-on
for the HTC Vive.

Participants Inclusion Criteria
Not to mention that normal or corrected to normal vi-

sion is mandatory for experiments in VR and specifically
in combination with eye tracking. If participants do need
visual correction, they should wear contact lenses, but not
glasses (Schuetz & Fiehler, 2022). This information
should be included in the promotional e-mail or flyers used
for recruiting. Additionally, the study information should
include that participants should not wear eye makeup.
Concerning eye makeup, keep some more permanent face
modifications in mind e.g. permanent makeup or fake
lashes. Furthermore, one can think of other exclusion cri-
teria for VR studies such as migraineurs, pregnancy,
and/or photosensitive epilepsy (for justifications see: Jin et
al., 2018; Martins da Silva & Leal, 2017). Moreover, ex-
periments working with VR should monitor VIMS during
the VR exposure using self-rating scales. Three categories
of self-rating-scales can be distinguished: Screening ques-
tionnaires which can be applied before the VR exposure to
exclude highly susceptible participants (Golding, 1998),
symptom questionnaires that illustrate the palette of VIMS
symptoms (Kennedy et al., 1993; Kim et al., 2018) and sin-
gle-item questionnaires for a quick query throughout the
VR exposure.(Bos et al., 2006; Keshavarz & Hecht, 2011).
Even if one is not interested in studying VIMS the partici-
pants’ safety needs to be ensured at all times, which is why
the repeated use of a single-item questionnaire and moni-
toring of the participant through careful observation is in-
dicated.

Since participants do not always know their visual acu-
ity or what is meant by normal vision, two important pre-
requisites should be assessed before the VR exposure.

Journal of Eye Movement Research J. Josupeit (2023)
15(3):10 Eye Tracking in VR with the Pupil Labs Eye Tracking Add-On for the HTC Vive

 10

First, visual acuity should be tested e.g. with the FrACT
(Bach, 2007; Bach, 2022). As the eye relief of the HMD is
quite small, one could think that you would need a high-
resolution display to determine the visual acuity. However,
the Fresnel lenses of the HTC Vive manipulate the focal
length, so that the vergence that is used to perceive virtual
distance, is resembling the real world (Hoffman et al.,
2008). In general, the HTC Vive has been found to be quite
accurate in virtual distance projection (Hornsey et al.,
2020). Keep in mind that the facerest of the HMD obstructs
any additional lighting so use a dim-lit setting for testing
visual acuity. Second, VR requires stereopsis for an un-
distorted perception. Therefore, a stereo acuity test should
be performed before the session. For a quick and reliable
assessment of stereopsis, the modified Random Dot But-
terfly stereo test is a good option (for instructions see
Chopin et al., 2019).

Soft- and Hardware
Experimental Routine

If the participant is eligible for participation, you
should set the mandatory software. First, open the Pupil
Core app and make sure that both eye cameras are dis-
played. You can define a threshold for low confidence.
The standard setting is < 0.6; this threshold does influence
the results of your calibration. If you would like to add
some redundancy to match the Pupil Labs recordings with
the Unity event file, you can annotate the user info with
the participant’s code.

Although the technical specifications of the eye tracker
list a sampling rate of 200Hz, the sampling rate should be
checked before you continue with initializing the Unity ap-
plication. Especially since the desired sampling rate is not
saved necessarily, when the software is closed, but reset to
the default setting for HMDs (currently 120Hz). Changing
the sample rate is possible in the settings (cog symbol) in
each eye camera window separately.

Second, open the Unity application, to avoid warning
messages and to be certain, that the respective keys, trig-
gering events from the Gaze Tracker component in the Pu-
pil Core app, are also logged in the Unity event file. More-
over, the displayed Unity application should be indicating

2 To avoid confusion: the illustration shows the 3D eye model,
neither in Pupil Capture nor in Pupil Service, but based on post-
hoc pupil detection in Pupil Player.

that the Request Controller uses the correct port, i.e. dis-
play “Connected”. For an easier handling of the software,
using either a split screen or multiple screens for monitor-
ing the eye cameras and the Unity environment simultane-
ously is recommended.

Fitting the HMD

After checking all necessary software prerequisites,
continue with fitting the HMD. Adjust the head straps in
the sagittal and the transversal axis according to the head
circumference. Furthermore, the HTC Vive allows adjust-
ing the IPD between 60.6 and 74.8 mm via a small wheel
on the right side of the HMD. The IPD is measurable with
a ruler that comes with the HTC Vive and should be indi-
vidually fine-tuned. Moreover, the eye relief can be ad-
justed in the range from 13 to 24 mm, but the optimal dis-
tance is not easy to determine. Thus, the participant should
assess all calibration markers as sharp when they are dis-
played with the preview function (keycode P when pre-
view is enabled). In case the markers appear blurry the eye
relief should be adjusted and the HMD should be fit again.
The calibration will fail when the HMD is not properly fit.
A proper fit can be assessed from the experimenter’s point
of view through the eye camera windows, in which both
eyes should be completely visible and centered.

As soon as the participant is wearing the HMD cor-
rectly, start the recording of the session to avoid the loss of
information. The recording should be started inside the
Unity application via the Recording Controller to avoid
differences in time points, between Pupil Labs time and
Unix epoc system time issued by Unity.

Calibration

To provide a good basis for the Pupil Labs 3D pupil
detection algorithm, instruct the participant to circle with
their eyes. The Pupil Core app will start to adjust the 3D
eye model that is represented by a green circle. When ac-
curately recognized, it will match the eyeball. Moreover,
there should be a red circle around the pupil with a red dot
in the center (see Figure 72). To reduce redundancy for
other best practices, which are not hardware specific, the
reader is referred to the Pupil Labs documentation (Pupil
Labs, 2022e). Before hitting C on the keyboard to start the
calibration procedure, instruct the participant to reduce

Journal of Eye Movement Research J. Josupeit (2023)
15(3):10 Eye Tracking in VR with the Pupil Labs Eye Tracking Add-On for the HTC Vive

 11

blinking while fixating on the targets during the calibra-
tion.

After the calibration, the amount of data below the pre-
defined confidence threshold will be displayed in the con-
sole of the Pupil Core app. For comparable settings, valid
trials included only data sets with between 70 and 80% of
the data over the confidence threshold (Ramkumar et al.,
2019; van der Meulen et al., 2017). In case more than 30%
of the data is missing, or whatever threshold you have pre-
defined, reset the eye model(s) manually in the settings of
the Pupil Core app you are using and restart the calibration.

Accessing Raw Data
After terminating the VR application, you will find a

folder with a running three-digit label in the path you set
for saving the eye tracking recordings. The folder includes
the info.player JSON file containing some metadata such
as software and system version. In case it is used, the
user_info table will include the participant’s code. Moreo-
ver, for troubleshooting and visualization, as well as of-
fline pupil detection, the videos of the eye camera(s), and
if a screencast is applied, the world video, can be found in
this folder.

Additionally, the folder contains a variety of npy-files,
which are effortlessly conveyable to readable csv-files via
the Pupil Player. Hence, open the Pupil Player. Drag and
drop the folder into the Pupil Player window. Once pro-
cessed, the Pupil Player will display a window with a va-
riety of selectable preprocessing functionalities on the
right side (see Figure 7). Two raw data csv-files can be
accessed in the plugin manager: the pupil positions and the
gaze positions, moreover a text document with information
about the meaning of the columns in the respective csv-
files. Once selected, an additional GUI element with a pro-
gress bar will be displayed. After the progress bar is full,
you can export the raw data by pressing E.

Preprocessing
Pupil Player
The Pupil Player not only exports raw data but also in-

cludes functionalities that can be used to preprocess the
data before exporting them in csv-format: For instance, the
dispersion-duration-based fixation detector. If you use a

Figure 7
Graphic View of the Pupil Core App Pupil Player

Note. The camera images of the eye cameras are displayed in-
cluding the 3D eye model (green circles) and pupil detection (red
circles) in the top section. In the background, the world video is
visible. A variety of preprocessing functionalities is selected and
the frequencies of the occurrences of eye events are shown un-
derneath the screencast of the world video. On the right side, se-
lectable and selected GUI elements for preprocessing can be
found.

dispersion-duration based-fixation detector, apply an in-
formed choice for the thresholds, as they affect the classi-
fication of the events (Alhashim, 2020). The same logic
applies to the blink detector that allows setting the thresh-
old for confidence, in onset and offset, as well as the se-
lected length. As mentioned in the previous section, re-
spective csv-files are exported by pressing E.

Sampling Frequency
When visually inspecting the raw data, the sampling

frequency will be around the selected sampling rate, but
slightly varying over time and from eye to eye (for the bin-
ocular setup). This has been explained by competing pro-
cesses that are run simultaneously on the computer
(Duchowski et al., 2016). Moreover, in case binocular data
are estimated with low confidence (i.e. < 0.6), data will be
mapped monocular. It follows that there will be empty
cells for certain timestamps which are not blinks. Espe-
cially for velocity-based algorithms sampling rates should
be uniform (Ehinger et al., 2019).

There are two options for handling these special cases.
The first one is direct processing which considers the ir-
regularities by using the actual intervals between
timestamps instead of the constant time. For algorithms
that are depending on averaging over time points, e.g. for
smooth pursuit eye movements, or over gaze positions for
a cyclopean eye, e.g. visualization of monocular stimuli
(Gao et al., 2020), this option cannot be suggested. The

Journal of Eye Movement Research J. Josupeit (2023)
15(3):10 Eye Tracking in VR with the Pupil Labs Eye Tracking Add-On for the HTC Vive

 12

second option reconstructs the signal and allows a fixed
sampling rate through interpolation. Each interpolation
contains a different assumption about the data, which
should be considered. Pupil Labs data has been linearly in-
terpolated (Murray et al., 2020), but also advanced meth-
ods like piecewise cubic hermite interpolating polynomi-
als (Ehinger et al., 2019) have been applied.

Velocity Information Based on 3D-Gaze
Points

Many research questions require the extraction of the
gaze velocity information, based on the 3D-gaze points,
which are available after the raw data (gaze position) ex-
port, for example when studying smooth pursuit eye move-
ments. The depth of the gaze point is a derivative of the
vergence that is provided via the gaze point 3D z-coordi-
nate. For further information see the Pupil Tutorials page
on GitHub (Pupil Labs, 2022d). Even if you are not famil-
iar with Python, you can apply the logic of the algorithm
to any programming language you would like, e.g. in R.

Merging Data via Timestamps
To match the system time in the Unix epoc and the Pu-

pil Labs arbitrary timestamps you can look at the recording
info.csv file that is included in the recordings. Set the first
entry of the Pupil Labs timestamp to zero by subtracting
all entries from the minimum and adding the system time
to these timestamps. Next, the data from Unity and Pupil
Labs can be merged. The usage of the nearest function
is recommended, especially as sampling frequencies are
likely to be different (maximum refresh rate of the HTC
Vive 90Hz vs. sampling frequency Pupil Labs eye tracker
200Hz), and as mentioned previously sampling frequency
might sometimes be volatile.

Maintenance
When combining eye tracking and VR, you might want

to allow physical movement, or at least head rotation. Not
only slippage (see the Calibration section) but also cable
damage due to head movement might become problematic.
Even though the flexible printed boards are protected
against rupture with a flexible mesh tube, the rotational
head movement during the VR exposure creates shear con-
ditions. As a result, the flexible printed circuit boards are
clinched and signals are lost, sometimes resulting in irre-

versible complete cable failure. Therefore, it is recom-
mended that a 3D-printed cable protector is added to pro-
tect against damage caused by rotational movement (see
Figure 8). The protector was custom-built using Solid-
Works. First, a solid CAD model was created, for access-
ing the CAD model the reader is referred to the Electronic
Supplementary Material section. Then, the 3D printing
manufacturing parameters were set to 0.3 mm. After man-
ufacturing, the molds were machined. The 3D-printed ca-
ble protector consists of two molds that can be screwed
together. It can be slid under the cable management lug of
the headband. This setup protects the delicate connection
between the flexible printed circuit boards and the USB-C
connector.

When the HMD is not in use for an extended period,
cover the lenses and the eye tracker with a piece of cloth
to prevent them from getting stretched or dusty. Moreover,
you should protect the Fresnel lenses from direct sunlight,
because the lenses act like burning glass, which can inflict
heat damage to the display.

In contrast, when the eye tracker is intensely used the
eye cameras might get greasy. This will become apparent
in blurry images of the eye cameras displayed in the Pupil
Core apps. To degrease and clean them, you can use lint-
free alcohol wipes; there is no need to dismount the
facerest.

Discussion
This paper describes good practices and precautions

when dealing with the Pupil Labs eye tracking add-on for
Figure 8
Assembly of the custom-built 3D-Printed Cable Protector

Note. The 3D-printed cable protector is assembled by screwing
the two molds together and it prevents the cable from damage due
to rotational movement.

Journal of Eye Movement Research J. Josupeit (2023)
15(3):10 Eye Tracking in VR with the Pupil Labs Eye Tracking Add-On for the HTC Vive

 13

the HTC Vive. The goal was to address low-threshold first
steps and raise awareness for nifty prerequisites that might
help researchers who want to get started with eye tracking
in VR. The recommendations can be assessed as a blue-
print, especially for novices.

Furthermore, the paper can be seen as a contribution in
the context of open science. For eye tracking in VR rec-
ommendations are needed, not only because they are not
established yet, but also because the used configuration
should be made transparent. As there are many degrees of
freedom for VR applications, as well as the definition of
eye events, and equally valid solutions co-exist, this infor-
mation should be part of the reporting.

Particularly concerning custom development, prepro-
cessing, visualizations and analyses the possibilities for
adaptations are diverse. Therefore, to achieve transparency
and reproducibility with more customizability more effort
into reporting is needed. Compared to proprietary solu-
tions more information can and should be provided. Trans-
parent reporting has implications for study design, evalua-
tion, and reproducibility; thus existing guidelines should
be considered (see Holmqvist et al., 2022)

In contrast to competing companies, which are putting
proprietary software for accessing the eye tracker at their
disposal, the Pupil Core apps can be found on GitHub. This
is an advantage in the context of open science and no li-
cense subscription is required for using the software. Ad-
ditionally, it allows modifying the software according to
the respective needs. GitHub repositories even enable par-
ticipating in the development of software and sharing ideas
for changes by submitting pull requests. Contributions of
the community make the software sustainable, because us-
ers are neither depending on a valid subscription nor the
continued support of the license.

Nevertheless, it is questionable whether a researcher
needs to be involved in the software development process.
First of all, the likelihood of erroneous code and the time
required to create a custom application can be judged as
inefficient. This is especially true if someone has to make
a trade-off between speed and accuracy since the project
durations are not unlimited − a statement that can be ap-
plied to all open science efforts. Especially for optimizing
the procedures a high level of expertise is necessary, which
can be hard to acquire (Shadbolt & Smart, 2015). Moreo-
ver, using "plug-and-play" solutions is not only more con-
venient and faster, but also distributes the responsibility

for the correctness of the procedures between the re-
searcher and the manufacturer, in line with the principle:
“Ignorance is bliss”. However, I consider these arguments
weak compared to the knowledge gained, the achievable
sustainability, and the empowerment of the researcher.

For a faster and easier click-through analysis, proprie-
tary analysis software is available. Thus, some prepro-
cessing, analysis, and visualization can be outsourced. For
this purpose, the Pupil Player contains an export function
for iMotions data format, but other analysis software like
BlickShift analytics is also able to read the Pupil Labs ex-
ports in csv-format, facilitating the preprocessing and vis-
ualization. However, the subscription to this software is
costly and should be judged in the context of the respective
research question. Consequently, it might be worthwhile
to take a look at Pupil Labs Tutorials on GitHub with the
research question in mind. This might empower the re-
searcher to develop the required algorithms by oneself,
thereby enabling one to control and manipulate the code
according to the needs, but also get a better understanding
of eye tracking in general.

I would like to stress that, some of the suggestions are
general-purpose: Not only when you are using another
Vive product (Vive Pro or Vive Cosmos) that is compati-
ble with the Pupil Labs add-on, but also when using a dif-
ferent eye tracker. Furthermore, even with different eye
tracking devices in VR, there is the need for calibration, to
sample a Unity event file, the consideration for minimum
requirements for participants, handling, and maintaining
the hardware. Additionally, actuating the eye tracker from
inside Unity is similar to the integration of other build-in
eye trackers for HMD: For instance, the integration of the
HTC Vive integrated Tobii eye tracker inside Unity via the
Tobii XR SDK (Tobii, 2022). This SDK allows for loading
an initialization script from inside Unity. Accordingly,
only the Unity application needs to be started and all de-
fault settings for the eye tracking software will be initial-
ized simultaneously. This might inspire a reader who is
adept in programming to write a similar initialization script
for the Pupil Core apps, which would facilitate the setup
process and reduces the likelihood of errors.

Moreover, to take advantage of the combination of eye
tracking and VR researchers should borrow from best
practices for other remote and head-mounted systems
(Holmqvist et al., 2011), but keep the specialties of VR in
mind. Eye tracking in VR can be thought of as a hybrid
form in terms of controllability and constraint. Since VR

Journal of Eye Movement Research J. Josupeit (2023)
15(3):10 Eye Tracking in VR with the Pupil Labs Eye Tracking Add-On for the HTC Vive

 14

allows the use of an interactive and less restricted setup,
e.g. allowing head movement, while having high control-
lability of the visual stimuli.

Compared to head-mounted eye trackers for the physi-
cal world the analysis of previously defined AOI via the
Gaze Tracker component and some C# code is rather sim-
ple. Additionally, if the perspective is important, it is ad-
visable to constrain the y-axis in Unity coordinates as men-
tioned in the section on Software Integration for a height-
independent VR perception, which is of course impossible
for eye tracking in the physical world. Despite the unnatu-
ralness, it is an advantage especially for studying easily
confounded eye events like pupillometry (de Winter et al.,
2021).

As movement is not only possible physically but also
virtually via controllers, controlling movement can be-
come cumbersome. Thus, it is advisable if the laboratory
allows room-scale VR to take a pass on controller input for
virtual movement, which as a side benefit increases the
perceived comfort (Sayyad et al., 2020). Nevertheless, to
avoid slippage the degrees of freedom for physical head
movement should be restrained. A suitable compromise
can be allowing only physical rotational head movement
and using the controller input for translational movement
or applying teleportation.

The Pupil Labs head-mounted eye tracker, which is us-
ing the same algorithms for the 3D eye model, as the add-
on for the HTC Vive, was found to be prone to errors due
to talking and facial expressions (Niehorster et al., 2020).
Therefore, a facial add-on could control for these artifacts
in future setups (Vive Team, 2022). Additionally, to make
the most of the combination of eye tracking and VR wire-
less alternatives should be pursued while aiming for com-
parable low signal processing latencies as cable-based so-
lutions. Until then, providing longer connector cables can
be a makeshift solution, analogous to the discontinued
backpack computers.

Despite the analogies, keep the differences between the
virtual and the physical world in mind. As stated previ-
ously, achievable controllability is even higher than in the
physical world. Nevertheless, spatial and temporal accu-
racy and precision are not comparable to modern remote
eye trackers (Ehinger et al., 2019). Moreover, promoted
accuracy and precision might not be achievable if condi-
tions are suboptimal. Therefore, it might be worthwhile to
test accuracy and precision in the custom application used,

e.g. via the open source suite GazeMetrics (Adhanom et
al., 2020). However, even if the accuracy and precision are
sufficient, answering some research questions is still lim-
ited with this technology. For example, whenever there is
a need for averaging over timespans because the sampling
frequency is volatile. Furthermore, whenever the AOIs are
small, the resolution not only of the eye cameras but also
of the HMD is limited. This ongoing resolution problem is
called the screen door effect − a mesh-like optical effect
that resembles a screen door (Nguyen et al., 2020).

In general, the Pupil Labs eye tracking add-on for the
HTC Vive can be assessed as an affordable and transparent
solution with many degrees of freedom. Thus, the raw
data, the preprocessing, and the analysis of the data are
customizable. With a little programming knowledge, you
can integrate the necessary plugin in Unity and write your
own routines to visualize and analyze the eye tracking data
in VR. As expected for open source code software, a lot of
useful information can be found online. For individual
questions, support is also available cost-neutral on the Pu-
pil Labs Discord channel, in which the text channels can
be browsed via the search function, as well as new ques-
tions be raised. Moreover, you can even become a part of
the software development via GitHub.

To conclude, open source solutions like the one pro-
vided by Pupil Labs with very active community support
and helpful information on GitHub should be pursued to
enable flexible, accessible, transparent, and sustainable
eye tracking in VR.

Ethics and Conflict of Interest

The author(s) declare(s) that the contents of the article
are in agreement with the ethics described in http://bib-
lio.unibe.ch/portale/elibrary/BOP/jemr/ethics.html and
that there is no conflict of interest regarding the publica-
tion of this paper.

Acknowledgements

I wish to thank my two colleagues of the Technische
Universität Dresden: Sebastian Pannasch for his time, sup-
port, and patience to copyedit this article and Gernot
Pascher for sharing the CAD model for the 3D-printed ca-
ble protector provided in the Electronic Supplementary
Material.

Journal of Eye Movement Research J. Josupeit (2023)
15(3):10 Eye Tracking in VR with the Pupil Labs Eye Tracking Add-On for the HTC Vive

 15

The Article Processing Charges (APC) were funded by the
joint publication funds of the TU Dresden, including Carl Gustav
Carus Faculty of Medicine, and the SLUB Dresden as well as the
Open Access Publication Funding of the DFG.

References

Adhanom, I. B., Lee, S. C., Folmer, E., & MacNeilage, P.
(2020). Gazemetrics: An Open-Source Tool for
Measuring the Data Quality of Hmd-Based Eye
Trackers. Symposium on Eye Tracking Research
and Applications (ETRA ’20 Short Papers),
Stuttgart, Germany.
https://doi.org/10.1145/3379156.3391374

Alhashim, A. G. (2020). Eye Movement Classification
Algorithms: Effect of Settings on Related
Metrics. In C. Stephanidis, M. Kurosu, H.
Degen, & L. Reinerman-Jones, HCI
International 2020 - Late Breaking Papers:
Multimodality and Intelligence 22nd HCI
International Conference, Copenhagen,
Denmark. https://doi.org/10.1007/978-3-030-
60117-1_1

Aronson, E., Wilson, T. D., & Brewer, M. B. (1998).
Experimentation in Social Psychology. In The
Handbook of Social Psychology, Vols. 1-2, 4th
Ed. (pp. 99-142). McGraw-Hill.

Bach, M. (2007). The Freiburg Visual Acuity Test-
Variability Unchanged by Post-Hoc Re-
Analysis. Graefe's Archive for Clinical and
Experimental Ophthalmology, 245, 965 - 971.
https://doi.org/10.1007/s00417-006-0474-4

Bach, M. (2022, October 10). Freiburg Vision Test
('Fract').Bach, M. Personal Web Page.
https://michaelbach.de/fract/

Bebko, A. O., & Troje, N. F. (2020). Bmltux: Design and
Control of Experiments in Virtual Reality and
Beyond. Iperception, 11(4), 2041669520938400.
https://doi.org/10.1177/2041669520938400

Blender Foundation. (2022, October 21). Blender Manual
3.4. - About Blender Blender Foundation.
Online Manual.
https://docs.blender.org/manual/en/dev/getting_s
tarted/about/index.html

Bos, J., Mackinnon, S., & Patterson, A. (2006). Motion
Sickness Symptoms in a Ship Motion Simulator:
Effects of inside, Outside and No View.
Aviation, space, and environmental medicine,
76, 1111-1118.

Bowman, D. A., & McMahan, R. P. (2007). Virtual
Reality: How Much Immersion Is Enough?
Computer, 40(7), 36-43.
https://doi.org/10.1109/MC.2007.257

Brookes, J., Warburton, M., Alghadier, M., Mon-
Williams, M., & Mushtaq, F. (2020). Studying
Human Behavior with Virtual Reality: The
Unity Experiment Framework. Behavior
Research Methods, 52(2), 455-463.
https://doi.org/10.3758/s13428-019-01242-0

Bryanton, C., Bossé, J., Brien, M., Mclean, J.,
McCormick, A., & Sveistrup, H. (2006).
Feasibility, Motivation, and Selective Motor
Control: Virtual Reality Compared to
Conventional Home Exercise in Children with
Cerebral Palsy. CyberPsychology & Behavior,
9(2), 123-128.
https://doi.org/10.1089/cpb.2006.9.123

Chong, C. Y., Thongtanunam, P., & Tantithamthavorn, C.
(2021). Assessing the Students' Understanding
and Their Mistakes in Code Review Checklists:
An Experience Report of 1,791 Code Review
Checklist Questions from 394 Students. 2021
IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering
Education and Training (ICSE-SEET), Madrid,
Spain. https://doi.org/10.1109/ICSE-
SEET52601.2021.00011

Chopin, A., Bavelier, D., & Levi, D. M. (2019). The
Prevalence and Diagnosis of 'Stereoblindness' in
Adults Less Than 60 years of Age: A Best
Evidence Synthesis. Ophthalmic Physiol Opt,
39(2), 66-85. https://doi.org/10.1111/opo.12607

Clay, V., König, P., & König, S. (2019). Eye Tracking in
Virtual Reality. J Eye Mov Res, 12(1).
https://doi.org/10.16910/jemr.12.1.3

de Winter, J. C. F., Petermeijer, S. M., Kooijman, L., &
Dodou, D. (2021). Replicating Five
Pupillometry Studies of Eckhard Hess.
International Journal of Psychophysiology, 165,

Journal of Eye Movement Research J. Josupeit (2023)
15(3):10 Eye Tracking in VR with the Pupil Labs Eye Tracking Add-On for the HTC Vive

 16

145-205.
https://doi.org/10.1016/j.ijpsycho.2021.03.003

Duchowski, A. T., Jörg, S., Allen, T. N., Giannopoulos,
I., & Krejtz, K. (2016). Eye Movement
Synthesis. Proceedings of the ninth biennial
ACM symposium on eye tracking research &
applications, Charleston South Carolina, United
States. https://doi.org/10.1145/2857491.2857528

Ehinger, B. V., Groß, K., Ibs, I., & König, P. (2019). A
New Comprehensive Eye-Tracking Test Battery
Concurrently Evaluating the Pupil Labs Glasses
and the Eyelink 1000. PeerJ, 7, e7086.
https://doi.org/10.7717/peerj.7086

Gao, Z., Zhai, G., & Yang, X. (2020). Stereoscopic 3d
Geometric Distortions Analyzed from the
Viewer’s Point of View. PLOS ONE, 15(10),
e0240661.
https://doi.org/10.1371/journal.pone.0240661

Golding, J. F. (1998). Motion Sickness Susceptibility
Questionnaire Revised and Its Relationship to
Other Forms of Sickness. Brain Research
Bulletin, 47(5), 507–516.

Greenwald, W., & Buzzi, M. (2018, February 16). Hp
Omen X Compact Desktop and Vr Backpack
Review.PCMag. PCMag Web Page.
https://www.pcmag.com/reviews/hp-omen-x-
compact-desktop-and-vr-backpack

Hoffman, D. M., Girshick, A. R., Akeley, K., & Banks,
M. S. (2008). Vergence–Accommodation
Conflicts Hinder Visual Performance and Cause
Visual Fatigue. Journal of Vision, 8(3), 33-33.
https://doi.org/10.1167/8.3.33

Holmqvist, K., Nyström, M., Andersson, R., Dewhurst,
R., Jarodzka, H., & Van de Weijer, J. (2011).
Eye Tracking: A Comprehensive Guide to
Methods and Measures. UK: Oxford University
Press.

Holmqvist, K., Örbom, S. L., Hooge, I. T. C., Niehorster,
D. C., Alexander, R. G., Andersson, R.,
Benjamins, J. S., Blignaut, P., Brouwer, A.-M.,
Chuang, L. L., Dalrymple, K. A., Drieghe, D.,
Dunn, M. J., Ettinger, U., Fiedler, S., Foulsham,
T., van der Geest, J. N., Hansen, D. W., Hutton,
S. B., & ...Hessels, R. S. (2022). Eye Tracking:
Empirical Foundations for a Minimal Reporting

Guideline. Behavior Research Methods, 55(1),
364-416. https://doi.org/10.3758/s13428-021-
01762-8

Hornsey, R. L., Hibbard, P. B., & Scarfe, P. (2020). Size
and Shape Constancy in Consumer Virtual
Reality. Behavior Research Methods, 52(4),
1587-1598. https://doi.org/10.3758/s13428-019-
01336-9

HTC Vive. (2022, October 10). Vive Pro Eye.HTC
Cooperation. Web Page.
https://www.vive.com/us/product/vive-pro-
eye/overview/

HTCviveadmin. (2018, January 9). Msi Vr One 7re-065us
Virtual Reality Backpack Pc-Review.Vive
advisor Web Page. https://www.vive-
advisor.com/msi-vr-one-7re-065us-virtual-
reality-backpack-pc-review/

Jin, W., Fan, J., Gromala, D., & Pasquier, P. (2018).
Automatic Prediction of Cybersickness for
Virtual Reality Games. 2018 IEEE Games,
Entertainment, Media Conference (GEM),
Galway, Ireland.
https://doi.org/10.1109/GEM.2018.8516469

Kassner, M., Patera, W., & Bulling, A. (2014). Pupil: An
Open Source Platform for Pervasive Eye
Tracking and Mobile Gaze-Based Interaction.
Proceedings of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous
Computing: Adjunct Publication, Seattle,
Washington.
https://doi.org/10.1145/2638728.2641695

Kennedy, R. S., Lane, N. E., Berbaum, K. S., &
Lilienthal, M. G. (1993). Simulator Sickness
Questionnaire: An Enhanced Method for
Quantifying Simulator Sickness. The
International Journal of Aviation Psychology,
3(3), 203–220.

Keshavarz, B., & Hecht, H. (2011). Validating an
Efficient Method to Quantify Motion Sickness.
Human factors, 53(4), 415–426.
https://doi.org/10.1177/0018720811403736

Khatri, J., Moghaddasi, M., Llanes-Jurado, J., Spinella,
L., Marín-Morales, J., Guixeres, J., & Alcañiz,
M. (2020). Optimizing Virtual Reality Eye
Tracking Fixation Algorithm Thresholds Based

Journal of Eye Movement Research J. Josupeit (2023)
15(3):10 Eye Tracking in VR with the Pupil Labs Eye Tracking Add-On for the HTC Vive

 17

on Shopper Behavior and Age. In C. Stephanidis
& M. Antona, HCI International 2020 - Posters
22nd HCI International Conference,
Copenhagen, Denmark.
https://doi.org/10.1007/978-3-030-50729-9_9

Kim, H. K., Park, J., Choi, Y., & Choe, M. (2018).
Virtual Reality Sickness Questionnaire (Vrsq):
Motion Sickness Measurement Index in a
Virtual Reality Environment. Applied
ergonomics, 69, 66-73.
https://doi.org/10.1016/j.apergo.2017.12.016

König, S. U., Keshava, A., Clay, V., Rittershofer, K.,
Kuske, N., & König, P. (2021). Embodied
Spatial Knowledge Acquisition in Immersive
Virtual Reality: Comparison to Map Exploration
[Original Research]. Frontiers in Virtual Reality,
2. https://doi.org/10.3389/frvir.2021.625548

Krösl, K., Elvezio, C., Luidolt, L. R., Hürbe, M., Karst,
S., Feiner, S., & Wimmer, M. (2020). Cataract:
Simulating Cataracts in Augmented Reality.
2020 IEEE International Symposium on Mixed
and Augmented Reality (ISMAR), Porto de
Galinhas, Brazil
https://doi.org/10.1109/ISMAR50242.2020.0009
8

Lu, S., Sanchez Perdomo, Y. P., Jiang, X., & Zheng, B.
(2020). Integrating Eye-Tracking to Augmented
Reality System for Surgical Training. Journal of
Medical Systems, 44(11), 192.
https://doi.org/10.1007/s10916-020-01656-w

Manera, V., Chapoulie, E., Bourgeois, J., Guerchouche,
R., David, R., Ondrej, J., Drettakis, G., &
Robert, P. (2016). A Feasibility Study with
Image-Based Rendered Virtual Reality in
Patients with Mild Cognitive Impairment and
Dementia. PLOS ONE, 11(3), e0151487.
https://doi.org/10.1371/journal.pone.0151487

Martins da Silva, A., & Leal, B. (2017). Photosensitivity
and Epilepsy: Current Concepts and
Perspectives—a Narrative Review. Seizure, 50,
209-218.
https://doi.org/10.1016/j.seizure.2017.04.001

Microsoft. (2022, October 17). Datetime Struct .Net
Framework 4.0.Microsoft. Web Page.
https://learn.microsoft.com/en-

us/dotnet/api/system.datetime?view=netframewo
rk-4.0

Murray, N. G., Szekely, B., Islas, A., Munkasy, B., Gore,
R., Berryhill, M., & Reed-Jones, R. J. (2020).
Smooth Pursuit and Saccades after Sport-
Related Concussion. Journal of neurotrauma,
37(2), 340-346.
https://doi.org/10.1089/neu.2019.6595

Nguyen, J., Smith, C., Magoz, Z., & Sears, J. (2020).
Screen Door Effect Reduction Using Mechanical
Shifting for Virtual Reality Displays. SPIE AR
VR MR, https://doi.org/10.1117/12.2544479

Niehorster, D. C., Santini, T., Hessels, R. S., Hooge, I. T.
C., Kasneci, E., & Nyström, M. (2020). The
Impact of Slippage on the Data Quality of Head-
Worn Eye Trackers. Behavior Research
Methods, 52(3), 1140-1160.
https://doi.org/10.3758/s13428-019-01307-0

OBS. (2022, October 20). Forum Tag "Virtual
Reality".OBS. Community platform by
XenForo.
https://obsproject.com/forum/tags/virtual-reality/

Omiotek, S. (2022, August 8). Htc Vive Pro Facerest
Replacement.iFixit Web Page.
https://www.ifixit.com/Guide/HTC+Vive+Pro+
Facerest+Replacement/151088

Orquin, J. L., & Holmqvist, K. (2018). Threats to the
Validity of Eye-Movement Research in
Psychology. Behavior Research Methods, 50(4),
1645-1656. https://doi.org/10.3758/s13428-017-
0998-z

Pupil Labs. (2019, August 29). Pupil + Htc Vive Eye-
Tracking Add-on Assembly Guide.YouTube.
https://www.youtube.com/playlist?list=PLi20Yl
1k_57r4j0LXDfo6IYXAKTp_FIKf

Pupil Labs. (2020, December 10). Hmd-Eyes Unity
Package.Pupil Labs. GitHub.
https://github.com/pupil-labs/hmd-eyes/releases

Pupil Labs. (2022a, October 12). Htc Vive Binocular:
Add-on Technical Specs & Performace.Pupil
Labs. Web Page. https://pupil-
labs.com/products/vr-ar/tech-specs/

Journal of Eye Movement Research J. Josupeit (2023)
15(3):10 Eye Tracking in VR with the Pupil Labs Eye Tracking Add-On for the HTC Vive

 18

Pupil Labs. (2022b). Publications. Webpage.December
22 from https://pupil-labs.com/publications/

Pupil Labs. (2022c, October 24). Pupil (Pupil Core
Apps).Pupil Labs. GitHub.
https://github.com/pupil-labs/pupil

Pupil Labs. (2022d, May 2). Pupil Tutorials.Pupil Labs.
GitHub. https://github.com/pupil-labs/pupil-
tutorials

Pupil Labs. (2022e, October 10). User Guide Best
Practices.Pupil Labs. Web Page
Documentation. https://docs.pupil-
labs.com/core/best-practices/

Ramkumar, N., Fereydooni, N., Shaer, O., & Kun, A. L.
(2019). Visual Behavior During Engagement
with Tangible and Virtual Representations of
Archaeological Artifacts. Proceedings of the 8th
ACM International Symposium on Pervasive
Displays, Palermo, Italy.
https://doi.org/10.1145/3321335.3324930

Rebenitsch, L., & Owen, C. (2021). Estimating
Cybersickness from Virtual Reality
Applications. Virtual Reality, 25(1), 165-174.
https://doi.org/10.1007/s10055-020-00446-6

Reingold, E. M. (2014). Eye Tracking Research and
Technology: Towards Objective Measurement
of Data Quality. Visual Cognition, 22(3-4), 635-
652.
https://doi.org/10.1080/13506285.2013.876481

Rothe, S., Kegeles, B., & Hussmann, H. (2019). Camera
Heights in Cinematic Virtual Reality: How
Viewers Perceive Mismatches between Camera
and Eye Height Proceedings of the 2019 ACM
International Conference on Interactive
Experiences for TV and Online Video, Salford
(Manchester), United Kingdom.
https://doi.org/10.1145/3317697.3323362

Sayyad, E., Sra, M., & Höllerer, T. (2020). Walking and
Teleportation in Wide-Area Virtual Reality
Experiences. 2020 IEEE International
Symposium on Mixed and Augmented Reality
(ISMAR), Porto de Galinhas, Brazil
https://doi.org/10.1109/ISMAR50242.2020.0008
8

Schuetz, I., & Fiehler, K. (2022). Eye Tracking in Virtual
Reality: Vive Pro Eye Spatial Accuracy,
Precision, and Calibration Reliability. J Eye
Mov Res, 15(3), 3.
https://doi.org/10.16910/jemr.15.3.3

Shadbolt, N., & Smart, P. R. (2015). Knowledge
Elicitation: Methods, Tools and Techniques. In
J. R. Wilson & S. Sharples (Eds.), Evaluation of
Human Work (Vol. 4th ed, pp. 163-200). CRC
Press. http://eprints.soton.ac.uk/id/eprint/359638

Steuer, J. (2006). Defining Virtual Reality: Dimensions
Determining Telepresence. Journal of
Communication, 42(4), 73-93.
https://doi.org/10.1111/j.1460-
2466.1992.tb00812.x

Tobii. (2022). Tobii Htc Vive Devkit Development
Guide.Tobii. Tobii XR Devzone.October 11
from
https://developer.tobii.com/xr/develop/unity/gett
ing-started/tobii-htc-dev-kit/

Tobii Pro VR. (2018, June 1). Is It Possible to Access
Exported Raw Data for the Tobii Pro Vr
Analytics Sessions?Tobii Web Page.
https://connect.tobii.com/s/article/Is-it-possible-
to-access-exported-raw-data-for-the-Tobii-Pro-
VR-Analytics-sessions?language=en_US

Unity. (2018, April 19). Preparing Assets for
Unity.Unity. Unity Manual.
https://docs.unity3d.com/2019.3/Documentation/
Manual/BestPracticeMakingBelievableVisuals1.
html

Unity. (2019, March 18). Order of Execution for Event
Functions.Unity. Unitiy Documentation Web
Page.
https://docs.unity3d.com/Manual/ExecutionOrde
r.html

van der Meulen, H., Kun, A. L., & Shaer, O. (2017).
What Are We Missing? Adding Eye-Tracking to
the Hololens to Improve Gaze Estimation
Accuracy. Proceedings of the 2017 ACM
International Conference on Interactive Surfaces
and Spaces, Brighton, United Kingdom.
https://doi.org/10.1145/3132272.3132278

van der Steen, J. (2009). Vestibulo-Ocular Reflex (Vor).
In M. D. Binder, N. Hirokawa, & U. Windhorst

Journal of Eye Movement Research J. Josupeit (2023)
15(3):10 Eye Tracking in VR with the Pupil Labs Eye Tracking Add-On for the HTC Vive

 19

(Eds.), Encyclopedia of Neuroscience (pp. 4224-
4228). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-29678-
2_6310

Varjo. (2022, October 10). Varjo Pricing and
Order.Varjo. Web Page.
https://varjo.com/purchase/

Vive Team. (2022, September 7). Vive Focus 3 Gets
Facial Tracker and Eye Tracker.HTC
Cooperation. Blog
https://blog.vive.com/us/vive-focus-3-gets-
facial-tracker-and-eye-tracker/

Electronic Supplementary Material

Below is the link to the electronic supplementary ma-
terial (an exemplary Unity event file code and the CAD
model) that can be accessed on GitHub:
https://github.com/JudiJ/Electronic-Supplementary-Mate-
rial

