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Introduction 
The calibration of an eye tracker is the challenge of 

mapping features extracted from an image of the eye onto 
the scene camera's view to obtain the point of regard. An 
established method is to derive two polynomials, one for 
the x-coordinate and one for the y-coordinate pixel. Com-
monly used features are the pupil centre, the vector be-
tween pupil and corneal reflection or the eyeball orienta-
tion. The workflow is to collect correspondences between 
eye features and a known target point that the person looks 
at. From these associated features and gaze target coordi-
nates an estimation of the coefficients of a polynomial can 

be performed. The estimation is done via least-squares-er-
ror fitting. 

In a desktop eye tracking scenario, n-point calibration 
is the state of the art because it is easy to visualise points 
on the screen and get the subject to look at them. In a head-
mounted scenario, there is no screen available, so the sub-
ject must look at a marker that can be easily detected. The 
marker is then moved over the scene field. 

While both methods seem to produce similar data 
correspondences, there are some major differences in 
practice: In a desktop scenario, the recorded points are 
evenly distributed over the screen. These points span the 
entire screen and thereby the entire target area. False 
measurements can be compensated by averaging over all 
samples associated with a specific gaze target. 

In the head-mounted scenario the distribution of sam-
ples over the scene field depends on how the subject per-
forms the calibration. The images in Figure 1 (a) and (b) 
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shows calibration paths of two subjects with identical in-
structions on how to perform the calibration. While the 
first calibration was done over a large field of the scene but 
also with a high density towards the centre, the second one 
calibrated the centre only. We found that most often sam-
ple density is high towards the centre and low towards the 
periphery. This is problematic when applying least-
squares-error fitting to the problem, as the central area will 
likely dominate over the less important and consequently 
less accurate periphery data. 

Moreover, large gaze angles are often completely 
avoided or performed with simultaneous head rotation. 
The resulting implication for a calibration function is a 
need to extrapolate gaze outside of the calibrated area. 

Overall, the gaze signal in mobile eye-tracking suffers 
from much less constrained conditions as in the desktop 
case, often resulting in decreased quality of the gaze signal 
and more false measurements - especially towards large 
gaze angles, where the pupil or glints are harder to track. 
In general, mismeasurements may be due to incorrect pupil 
or glint detection, environmental influences such as bright-
ness or reflections in the pupil. There are a variety of 
sources of mismeasurement. As we cannot always easily 
exclude these samples from the calibration, the way we fit 
the calibration function must be tolerant to outliers. 

The image of Figure 1 (c) shows a heat map over seven 
recorded calibration paths. Again, the problem of different 
sample density is obvious. Fitting a calibration function 
has to cope with unbalanced sample densities, areas that 
are not covered, and outliers in the eye features data. 

 
Figure 1. Smooth pursuit calibration of a mobile eye-tracking 
device. A gaze target marker is followed by the eye and moved 
in front of the scene camera. The first image is from Subject 1 
and covers a large area. The second is the result of Subject 2 and 
covers only the central area. The third is a density map over 7 
subjects. 

     A least-squares error fit of a high degree polynomial is 
likely to yield unpredictable results for extrapolation of 
gaze outside of the calibrated area, while a low degree 
polynomial might lead to less accurate results within the 
calibrated area. 

     In order to investigate which fitting methodology is 
well suited for which purpose, we need to investigate the 
effect of different measurement error characteristics as 
well as different calibration patterns on the resulting 
calibration. To be able to vary their parameters in a 
controlled and quantified way, we performed: 

• A simulation of gaze vectors during simulated 
calibration. Horizontal and vertical angles 
between the optical axis and the line from the 
centre of the eyeball to the eye camera are 
simulated and enriched with controlled patterns 
of measurement noise. We use these gaze angles 
because they have proven to be relatively stable 
in terms of device slippage (Santini et al., 2019). 

• A simulation of different calibration patterns. 
Different target patterns (e.g., circular pursuit, 9-
point calibration) are investigated in different 
conditions. In particular, the difference in 
performance for inter- and extrapolation is 
addressed. 

• To transfer the results of the simulation to the real 
world, we created a real-world study where we 
recorded calibration data of 7 subjects. So, we 
obtain real calibration patterns, and it gives us the 
opportunity to confirm that the simulated results 
can be transferred to a real application. In this 
case, we compare the performance of the 
calibration method with the simulated data of the 
real samples with the data from the experiment. 

Related Work 
     As essential building blocks of an eye-tracking device, 
calibration functions have been studied in some detail - 
even though other components such as pupil detection 
have experienced much more attention by the community 
(Fuhl et al., 2021). 

    For example, Kasprowski et al. (Kasprowski et al., 
2014) analysed possible scenarios of different simulation 
presentations and discussed the influence of different 
regression functions and two different head-mounted eye 
trackers on the results. Ultimately, however, they cannot 
say which regression is the best, because the performance 
is different across different eye trackers. Accordingly, they 
advise that the regression function used should be 
optimised for the eye tracker, raising thus the question on 
which properties of the device make the difference. 
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Using the pupil centre - corneal reflection vector as an 
input feature was found to make the calibration somewhat 
resilient to head movements. This approach is explored in 
more detail by Blignaut (Blignaut, 2014). The author opti-
mised the calibration configuration of the hardware con-
figuration and tested several mapping functions. 

In addition, Blignaut proposed a method for identifying 
a set of polynomial expressions that provide the best pos-
sible accuracy for a specific individual (Blignaut, 2016). 
Real-time recalculation of regression coefficients and real-
time gaze correction are also proposed. In the evaluation, 
Blignut concludes that the choice of polynomial is very 
important for accuracy when no correction is used. How-
ever, when real-time correction is used, the performance 
of each polynomial improves, while the choice of polyno-
mials becomes less critical. 

The influence of the placement of the eye camera on 
the results was also investigated. Narcizo et al. showed that 
the distribution of the features of the eyes is deformed 
when the eye camera is far away from the optical axis of 
the eye (Narcizo et al., 2021). To solve this problem, they 
propose a geometric transformation method to reshape the 
distribution of eye features based on the virtual alignment 
of the eye camera at the centre of the optical axis of the 
eye. That leads to a high gaze estimation accuracy of 0.5. 

Recently. Hassoumi et al. improve the calibration ac-
curacy by a symbolic regression approach (Hassoumi et 
al., 2019). Instead of making prior assumptions about the 
polynomial transfer function between input and output 
data sets, this approach seeks an optimal model from dif-
ferent types of functions and their combinations. The au-
thors achieved a substantial 30% improvement in calibra-
tion accuracy compared to previous approaches. 

A similar work to ours is that of Drewes et al. (Drewes 
et al., 2019). They tried two circular trajectories with dif-
ferent radii. Both were run on a display in front of which 
the participants sat. In each calibration, an offset, a regres-
sion, and a homography calibration were tried, and it was 
found that the accuracy of offset and regression was simi-
lar for the circular trajectory, and the precision of regres-
sion was better. The homography approach is the worst in 
both cases. 

Although there are several related works that have ad-
dressed calibration accuracy, but rather few have on gaze 
vectors. Therefore, in this paper we have focused on 

mapping these features onto the scene using well-known 
methods such as polynomial regression. 

Summarised, previous research underpins the im-
portance of research in how and which calibration func-
tions should be used. There is no clear consensus on the 
optimal function and how that function is fitted is probably 
of similar importance as the function itself. Likely, the 
magnitude of measurement errors as well as the nature of 
samples collected during the calibration process drive this 
decision. 

Dataset 
Two data sets are used in this work. One of these data 

sets is simulated, the other contains real-world recordings 
of smooth pursuit calibration processes of a head-
mounted device. 

Simulated Data 
This dataset consists of simulated gaze vectors and the 

associated targets. Gaze vectors are the horizontal and ver-
tical angle between the optical line and the line from the 
centre of the eyeball to the eye camera. In a more formal 
way: Let 𝑐!"! ∈ ℝ# be the centre of the eye and 𝑒$%& ∈ ℝ# 
the position of the eye camera, than  

𝑐𝑒 = 𝑒$%& − 𝑐!"! ∈ ℝ# 

Is the direction vector from the centre of the eye to the eye 
camera. Furthermore, let 𝑜 ∈ ℝ# be the direction vector of 
the optical axis (see Figure 3). In our scenario, the z-axis 
is the depth, the y-axis is the height, and the x-axis is the 
width. The horizontal angle is therefore the rotation around 
the y-axis, i.e., the angle in the x-z plane, and the vertical 
angle is the rotation around the x-axis, i.e. the angle in the 
y-z plane. So, the horizontal angle can be calculated as fol-
lows: Let 𝑐𝑒'()* , 𝑜'()* ∈ ℝ+ be the direction vectors with-
out the y-component. Then the horizontal angle 𝜙 can be 
calculated as follows: 

𝜙 = 𝑎𝑟𝑐𝑐𝑜𝑠 -
𝑐𝑒'()*, ⋅ 𝑜'()*

‖𝑐𝑒'()*‖ ⋅ ‖𝑜'()*‖
0 

The vertical angle 𝜃 can be calculated in a similar way, 
with 𝑐𝑒-!). , 𝑜-!). ∈ ℝ+ being the direction vectors without 
the x-components. The gaze vector is thus defined as: 

𝑔𝑣 ≔ 5𝜙𝜃6 
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To simulate gaze vectors, we used Unity with the 
scripting language C#, to cover all the heavy lifting with 
3D geometry as well as visualization. A brief explanation 
of the use of Unity in this work can be found in the appen-
dix. In contrast to eye image synthesis (Nair et al., 2020), 
(Kim et al., 2019), (Wood et al., 2016), our purpose does 
not necessitate a full eye model. The representation as a 
simple sphere is fully sufficient and numerical output is 
much faster to calculate than graphical renderings. We cre-
ated a scene with two spheres that represent the eyes, a 
plane with a point that serves as a fixation point, and dum-
mies for the eye cameras. Figure 2 shows the scene. 

 

 
Figure 2. Unity 3D scene that represents objects involved in the 
simulation. 

Additionally, there is a camera over the two spheres, 
producing the cyclops image of an eye-tracker's field cam-
era. 

To create the gaze vectors, we move a fixation target 
on a plane in front of the eyes. The position is determined 
via the field camera. To achieve this, we specify two val-
ues 𝑥, 𝑦 ∈ [0,1], which indicate the distance between the 
left bottom edge of the image and the target point. Then 
we rotate the two spheres so that the optical axes (the line 
through pupil centre and cornea centre) are directed to-
wards the point. 

To include an individual offset between optical and 
visual axis (the line through pupil centre and fovea), we 
need to simulate the 𝜅 angle. We simulate a horizontal and 
vertical angle: 𝜅'()* , 𝜅-!).. Since the spheres can only be 
rotated at their centre, we have to calculate this angle. Fig-
ure 3 shows a sketch of the situation.                                                                                

Figure 3. Sketch for calculating the angle of rotation 𝛼 to 
simulate a given 𝜅. 

Given 𝜅 we search for the angle 𝛼. We know the radius 
𝑟 of the sphere and the distance 𝑏 between the centre of the 
sphere and the target. In addition, the 𝛽 angle can be rep-
resented as follows: 

𝛽 = 180 − 𝜅 

Thus follows: 

𝛼 + 𝛽 + 𝛾 = 180 ⇒ 𝛼 + (180 − 𝜅) + 𝛾 = 180 

⇒ 𝛾 = 𝜅 − 𝛼 

With the law of sines, we get: 

𝑟
sin 𝛾 =

𝑏
sin𝛽 ⇔

𝑟
sin(𝜅 − 𝛼) =

𝑏
sin(180 − 𝜅) 

When this is transformed to 𝛼, it follows: 

𝛼 = 𝜅 − arcsin 5
𝑟
𝑏 ⋅ sin

(180 − 𝜅)	6 

With this formula and the given angles 𝜅'()* and 𝜅-!).   
we create 𝛼'()* and 𝛼-!). to rotate the sphere. We apply 
this transformation to both spheres. 

To calculate the gaze vectors, a line is constructed from 
the centre of the dummy eye camera to the centre of the 
sphere. Then the horizontal (𝜙) and vertical (𝜃) angles be-
tween the constructed line and the optical line are calcu-
lated. These correspond to the gaze vectors. 
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We simulate these gaze vectors for all positions within 
the calibration patterns shown in Figure 4.                               

Figure 4. Pattern. (a) 5-point calibration (b) 9-point calibration 
(c) Centre calibration (d) Full calibration (e) Subject huge (f) 
Subject small (g) 20 × 20 full field 

We used the gaze vectors simulated on those patterns 
to estimate an eye-tracker calibration. Afterwards, we test 
the quality of the calibration on a test pattern that covers 
the whole field of view. 

Moreover, we also simulated gaze vectors for calibra-
tion patterns found in the real-world experiment. This way, 
we can compare the simulation results directly to real-
world observations. Below is a brief description of the pat-
terns. 

5-point calibration (5p) This is a normal 5-point calibra-
tion pattern with dots in the corners and one in the centre. 
It is usually used to fit a homography for gaze mapping. 
9-point calibration (9p) This is a normal 9-point calibra-
tion pattern with three points on three lines. Popular for 
calibrating desktop eye-tracking devices. 
Centre calibration (Centre) Snake pattern, simulating a 
smooth pursuit calibration, in the centre of the seen field. 
Full calibration (Full) Snake pattern across the entire 
field of view. 
Subject huge (huge) This pattern is extracted from the ex-
periment to compare the simulation with the real data. This 
pattern covers almost the field. 
Subject small (small) This pattern is extracted from the 
experiment to compare the simulation with the real data. 
This pattern covers only the centre field. 
𝟐𝟎 × 𝟐𝟎 full field This is a pattern consisting of 20 × 20 
dots evenly distributed over the entire field. It is used to 
evaluate the performance of calibrations. 

Normally, the n-point calibration points tend to be cen-
tered because that is where the corners of the stimulus re-
gion of interest are. Since we are looking at the perfor-
mance of the entire image, we placed the calibration points 
very close to the edges. 

After simulating the error-free gaze vectors, we use Py-
thon to simulate three types of measurement noise: system-
atic error, precision noise, and completely misidentified 
samples. 

The systematic error depends on the gaze vectors. The 
eye-tracking system we used to compare our results shows 
difficulties in determining reliable gaze vectors when the 
person looks into or close to the eye cameras. The detected 
pupil outline then becomes almost circular, making it dif-
ficult to tell where the person is looking at. For this reason, 
we added an error that is larger when the gaze vectors are 
small. For this purpose, we extracted the largest horizontal 
𝜙&%/ and vertical 𝜃&%/ angle magnitude. With probability 
𝑝!))(), we apply an error to the gaze vector. When an error 
occurred the new gaze vector (𝜙0"0, 𝜃0"0) is created as fol-
lows: 

𝜙0"0 = 𝜙 +T	
2 −	 |𝜙|𝜙&%/

−	 |𝜃|𝜃&%/
2 V

1

(𝑢 − 0.5)𝑟!))()𝜋	

𝜃0"0 = 𝜃 +T	
2 −	 |𝜙|𝜙&%/

−	 |𝜃|𝜃&%/
2 V

1

(𝑢 − 0.5)𝑟!))()𝜋 

Where 𝑟!))() is a parameter for the maximum error and 
𝑢 ∼ 𝑈(0,1) is a uniformly distributed random number. If 
no error occurred, the gaze vectors remain unchanged. 

The precision error is white noise 𝜖2)!$ ∼ 𝑁(0, 𝜎2)!$) 
added to the gaze vectors (given in radians). The 𝜎2)!$ is a 
parameter with which we can simulate different precisions. 
This error can be considered a recording device specific. 
The new gaze vector (𝜙2)!$ , 𝜃2)!$) is created as follows. 

𝜙2)!$ = 𝜙0"0 + 𝜖2)!$	
𝜃2)!$ = 𝜃0"0 + 𝜖2)!$ 

In Table 1, we provide some values on how 𝜎 and the 
resulting magnitude of gaze angle deviation relate to each 
other. We show the 95% confidence intervals of added er-
ror in radians and degree. 
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Table 1. 95% confidence intervals for different 𝜎!"#$ 

𝜎!"#$ Radians Degree 

0.001 ±0.002 ±0.112 

0.005 ±0.01 ±0.561 

0.01 ±0.02 ±1.123 

0.05 ±0.098 ±5.615 

The third type of error simulates when the pupil is de-
tected in the wrong place for a few frames. This can hap-
pen due to several reasons, e.g., when an object is reflected 
in the eye, or the pupil is partially covered. For each gaze 
vector and per eye, we decided with a probability 𝑝34 =
0.005 whether a false detection has happened. If so, we 
choose a random number 𝑛 ∈ [1,9] ⊂ ℕ to determine how 
many gaze vectors are corrupted. The final gaze vector 
(𝜙3 , 𝜃3) is calculated as follow, when a false detection oc-
curred. 

𝜙3 = 𝜙2)!$ + (𝑢 − 0.5) ⋅
𝜋
2	

𝜃3 = 𝜃2)!$ + (𝑢 − 0.5) ⋅
𝜋
2	 

When no false detection occurred, the gaze vectors remain 
unchanged. 

An example of simulated gaze vectors with added 
measurement noise as well as a real recording is shown in 
Figure 5. 

 

Figure 5. Example of real and simulated gaze vectors. The pa-
rameters for the simulated vectors are: 𝑝#""%" = 0.1, 𝑟#""%" =
0.5 and 𝜎!"#$ = 0.005. (a) and (b) are the left and right vectors 
from a real experiment and (c) and (d) are the left and right sim-
ulated ones. 

 

Data collected in real-world experiment 
For the experimental data collection, we used a head 

mounted eye-tracker by Look! (Kübler, 2021), which op-
erated at 30 Hz at an eye image resolution 320 × 240 px. 
The scene is recorded at 30 Hz and at a resolution of 
640 × 480 px. To get the gaze vectors, we used the Purest 
pupil tracking method and the Get a Grip eye model 
(Santini et al., 2017), as implemented in EyeRecToo 
(Santini et al., 2017). 

For the eye-tracking recording, subjects (2 females, 5 
males, 16-36 years old, without glasses) were instructed to 
direct their gaze at a target marker. Subjects were in-
structed to keep their heads still and move only their eyes 
while following the 15 × 15 cm target aruco-marker. In 
the appendix you will find an example of an aruco-marker. 
They were instructed to move the marker in a large spiral 
from the centre outwards. This procedure is repeated once 
so that we have different data for estimating and evaluating 
the calibration. 

Not all subjects followed the instructions as intended. 
Since this dataset is mainly intended to test the transfera-
bility of the simulated results to the real world, we allowed 
them to deviate slightly from the protocol to match the re-
alistic expected calibration data. 

This dataset is created to extract realistic calibration 
patterns (Subject small and huge see Figure 4e and f) and 
to provide proof of concept for the transferability of the 
results produced with the simulation to the real world. The 
number of subjects is too small to make statistically signif-
icant statements.  

Methods 
Since Drewes et al. show in their paper (Drewes et al., 

2019) that regression works very well for circular calibra-
tion, we tested different ways to fit a calibration. All of 
them were implemented in the Python module scikit-learn 
(Pedregosa et al., 2011) are briefly summarised in the fol-
lowing. 
The methods find a polynomial of degree n 

𝑝(𝑥, 𝛾) =g𝛾* ⋅ 𝑥*
5

*67

 

by minimising a loss function. The most trivial (and most 
often used) method is polynomial regression, which mini-
mises the residual sum of squares 
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𝑠𝑠𝑒(𝛾) =g(𝑝(𝑥8 , 𝛾) − 𝑦8)+
&

869

 

Where 𝑥8 are the features and 𝑦8 the true value. In this 
method we have one parameter, namely the degree (𝑑 =
1, 2, 3, 4, 5) of the estimated polynomial. We have also 
tried Lasso (Tibshirani, 1996) and Ridge (Hoerl & 
Kennard, 1970) regression. They are very similar to poly-
nomial regression, with the only difference being that the 
sum of the coefficients is added to the loss function, as 
shown below. 

𝑙𝑜𝑠𝑠:%00((𝛾) = 𝑠𝑠𝑒(𝛾) + 𝛼g|𝛾*|
5

*69

	

𝑙𝑜𝑠𝑠;*4<!(𝛾) = 𝑠𝑠𝑒(𝛾) + 𝛼g𝛾*+
5

*69

 

𝛼 > 0	is a weight parameter of the additional loss term. 
We performed a grid search over the degree of the polyno-
mial and 𝛼 = 10=1, 10=#, 10=+, 0.1, 1, 2. 

The above methods however do not explicitly cover 
outliers (such as false pupil detections). RANSAC (ran-
dom sample consensus) (Fischler & Bolles, 1981) is an it-
erative algorithm that randomly splits the dataset into inli-
ers and outliers and fits the model, in our case a polynomial 
regression, to the inlier dataset. Here we have only used 
the degree 𝑑 = 1, 2, 3. Since only a subset of the data 
points is used to estimate the polynomial, a larger data set 
is needed for the estimation. The patterns with 5 and 9 
points (Figure 4 (a) and 4 (b)) do not have enough data 
points for a higher degree. 

Support Vector Regression (SVR) (Drucker et al., 
1997) is an extension of the Support Vector Machine 
(SVM) (Cortes & Vapnik, 1995). While the SVM looks 
for a hyperplane 𝑓(𝑥) = 𝑤,	𝜙(𝑥) + 𝑏 that separates the 
classes in such a way that no point lies within a given mar-
gin, the SVR looks for a hyperplane where all points lie 
within the margin. In this case 𝜙:	ℝ4! → ℝ4" , 𝑑9 < 𝑑+ is 
a function that transforms a point into a higher dimensional 
space where the classes are linearly separable. To find this 
hyperplane, the optimization problem 

min
>,@,A,A∗

 1
2𝑤

,𝑤 + 𝐶g(𝜉* +	𝜉*∗)
5

*69

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜 𝑦* − 𝑓(𝑥*) ≤ 𝜖 + 𝜉* ,	
𝑓(𝑥*) −	𝑦* ≤ 𝜖 + 𝜉*∗,	
𝜉* , 𝜉*∗ ≥ 0, 𝑖 = 1,… , 𝑛 

is solved. Here 𝜖 is the margin, 𝐶 is a weighting parameter 
for the penalty if a point is not within the margin and 𝑛 is 
the count of training vectors. Since the optimisation prob-
lem is solved by the dual form, the hyperplane can be given 
as 𝑓(𝑥) = 	∑ 𝑎*𝑦*〈𝜙(𝑥*), 𝜙(𝑥)〉 + 𝑏5

*69 , where 
〈𝜙(𝑥*), 𝜙(𝑥)〉 is the scalar product of the higher dimen-
sional transformation of 𝑥* and 𝑥 and 𝑎* are the associated 
Lagrangian variables of the dual problem. Because of the 
high computational cost of this scalar product, a positive 
definite kernel function 𝐾(𝑥* , 𝑥) = 	 〈𝜙(𝑥*), 𝜙(𝑥)〉 is used. 
In this work we tried three different kernel functions: 

linear:  𝐾(𝑥C, 𝑥) = 	 〈𝑥C, 𝑥〉 

polynomial: 𝐾(𝑥C, 𝑥) = 	 (𝑐〈𝑥C, 𝑥〉)4 

rbf:  𝐾(𝑥C, 𝑥) = exp	(−𝑐‖𝑥C − 𝑥‖) 

Here 𝑐 = 1/(4 ⋅ 𝑉𝑎𝑟(𝑋)), where 4 is the number of differ-
ent features and 𝑉𝑎𝑟(𝑋) is the variance of the feature ma-
trix. This is the default of the scikit-learn module. For the 
degree 𝑑, we tried 1, 2, 3, 4 and 5. In addition, we used for 
𝐶 the values 10=D, 10=1, 10=#, 10=+, 0.1, 0.5, 1, 2, 5 and 
for 𝜖 the values 10=1, 10=#, 10=+, 0.1, 0.2, 0.5, 1, respec-
tively.  Table 2 shows a summary of the methods used and 
their corresponding parameters, for which we also used 
different values. 

Table 2. Methods used for fitting a calibration function as well 
as their parameters investigated. 

Method Full Name Parameter 

Poly Polynomial Regres-
sion 

(degree,) 

Lasso Lasso Regression (degree, alpha) 

Ridge Ridge Regression (degree, alpha) 

RANSAC Random Sample Co-
sensus Regression 

(degree,) 

SVR Support Vector Re-
gression 

(kernel, degree, 
C, 𝜖) 

In summary, all proposed methods have a different ap-
proach to estimate the function. Lasso and Ridge penalize 
the sum of the estimated coefficients, so smaller coeffi-
cients are preferred by these methods, which leads to the 
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fact that fluctuations in the input values lead to less large 
fluctuations in the result, so the possibility to overfit 
should be smaller. Whereby Ridge penalizes coefficients 
smaller than one less and greater than one more than Lasso, 
because Ridge uses the sum of squares and Lasso the sum 
of magnitudes as penalty term. In both cases it is possible 
to control the importance of the penalty with the alpha-pa-
rameter. 

RANSAC tries to identify outliers by dividing the input 
values several times and not to include them in the estima-
tion of the polynomial. Therefore, this method should han-
dle false measurements like missmatches well and identify 
that as outlier and not include them to the estimation. 

SVR is the only method in this paper that estimates a 
hyperplane rather than a polynomial. This hyperplane is 
estimated in such a way that it tries to match all points as 
closely as possible. To prevent overfitting, the method has 
two hyperparameters. The first is 𝜖, which specifies how 
far the estimated hyperplane is allowed to miss the points, 
and the second is 𝐶, which specifies the weighting of the 
penalty if a point is missed further than the allowed 𝜖. 

To evaluate the performance of the different methods, 
we created 100 different 𝜅-angles with horizontal 
𝜅'()*~𝑁(3.9, 2.2) and vertical 𝜅-!). ∼ 𝑁(0.2, 1.7) 
(Atchison, 2017) for both eyes. With each 𝜅-angle, we 

create a simulation for each pattern. Now the following 
steps are carried out for each calibration pattern: 

1. Calculate the error for each simulation: 

a. Fit the method with the gaze vectors to 
the target points of the calibration pattern 
used. 

b. Estimate the gaze points with the gaze 
vectors of the full field pattern (Figure 4 
(g)) 

c. Calculate the angle between the vector 
from the camera to the estimated point 
and the vector from the camera to the true 
point. 

d. Calculate the mean of the amount of the 
angles. This is the mean angle error of the 
simulation. 

2. Calculate the mean of the mean error angles of all 
simulations. 

Note that the true and estimated points are within the 
camera image. They indicate the proportion of the vertical 
and horizontal axis of the image. To calculate the angle, 
the points must be transformed into the scene coordinates. 
The formula used can be found in the appendix. 
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Table 3. Best results for different precision qualities with the different calibration methods with the simulated gaze vectors. The 
standard deviation is given in the parentheses. 

Precision Error Calibration Method Parameter Mean Error (°) 

0.001 5-point Lasso (3, 0.001) 2.718	(±1.184) 

 9-point Ridge (3, 2) 2.439	(±0.570) 

 Centre Ridge (3, 0.001) 2.188	(±0.755) 

 Full Ridge (4, 0.1) 1.479	(±0.580) 

 Subject huge Ridge (3, 0.001) 2.523	(±0.771) 

 Subject small SVR (‘linear’, 1, 0.01, 0.0001) 4.678(±0.430) 

0.005 5-point Lasso (3, 0.001) 2.908	(±1.104) 

 9-point Ridge (3, 1) 2.215	(±0.841) 

 Centre Ridge (4, 0.01) 2.297	(±0.674) 

 Full Ridge (5, 1) 1.490	(±0.508) 

 Subject huge Ridge (3, 0.01) 2.555	(±0.687) 

 Subject small SVR (‘linear’, 1, 0.01, 0.0001) 4.806	(±0.441) 

0.010 5-point Lasso (3, 0.001) 2.979	(±1.286) 

 9-point Ridge (3, 1) 2.379	(±0.667) 

 Centre Ridge (3, 0.001) 2.478	(±0.901) 

 Full Ridge (5, 0.1) 1.731	(±0.622) 

 Subject huge Ridge (3, 0.01) 2.791	(±0.822) 

 Subject small SVR (‘poly’, 1, 0.01, 0.001) 5.048	(±0.378) 

0.050 5-point SVR (‘linear’, 1, 0.1, 0.1) 4.346	(±0.502) 

 9-point Ridge (4, 2) 3.943	(±0.566) 

 Centre SVR (‘poly’, 1, 0.1, 0.001) 4.370	(±0.312) 

 Full SVR (‘rbf’, 1, 0.1, 0.001) 3.285	(±0.357) 

 Subject huge SVR (‘linear’, 1, 0.01, 0.001) 4.361	(±0.311) 

 Subject small RANSAC (1,) 8.313	(±0.727) 
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Evaluations 
In this section we discuss our results with the simulated 

gaze vectors and start with an overview of all methods 
used, followed by a closer look at the polynomial and ridge 
regression (as polynomial approaches are commonly used 
for calibration). More specifically, we look at the error 
within and outside the calibration range is considered and 
at the end the results of the experiment and the correspond-
ing simulation are shown. For all statements, we report the 
p-value of the t-test or the F-value with corresponding p-
value to determine if the difference is statistically signifi-
cant. 

Comparative view on all methods 
Before assessing the performance of individual meth-

ods in more detail, we compared all methods against each 
other. For each method, several parameters (such as the 
degree for the estimated polynomial) are tested in a grid-
search based approach. The best results for each calibra-
tion pattern are shown in Figure 6 (a), where the parame-
ters of the simulation are set to: 𝑝!))() = 0.1, 𝑟!))() =
0.5, 𝜎2)!$ = 0.005 (we found these to match our real-
world data).  It can be seen that the choice of calibration 
pattern has a significant impact on the performance of the 
method. To prove this, we perform ANOVA for each 
method: polynomial regression (𝐹 = 434, 𝑝 < 0.001), 
ridge regression (𝐹 = 610, 𝑝 < 0.001), lasso regression 
(𝐹 = 569, 𝑝 < 0.001), RANSACRegressor (𝐹 = 76, 𝑝 <
0.001) and SVR (𝐹 = 445, 𝑝 < 0.001). In the following, 
these differences are examined in more detail. 

The calibration with 5 and 9 points works equally well 
for the polynomial regression, RANSACRegressor, Lasso 
and SVR (𝑝	 > 	0.05). But for the Ridge method, the extra 
4 points seem to improve performance significantly (𝑝	 <
	0.001). The centre calibration seems to lead to slightly 
better results than the 9-point calibration (𝑝	 < 	0.001 for 
all methods expect Lasso and Ridge with 𝑝	 > 	0.05). It 
can be assumed that the estimation within the calibrated 
range works better with the central calibration, but outside 
of this range the 9-point calibration is less likely to lead to 
overfitted polynomials that explode when leaving the cal-
ibrated area. This explains why the full calibration works 
better then centre (𝑝	 < 	0.001 for all methods except 
RANSAC with 𝑝 = 0.011), because in the small range 
where the centre calibration does not fit, the full calibration 
gives much better results and compared to the 9-point 

calibration (𝑝 < 0.001 for all methods) there is much 
more data for a better estimate. 

The problem with extrapolation is also evident in the 
small calibration pattern, for which all methods lead to a 
rather poor result. Even the 5-point calibration gives better 
results (𝑝	 < 	0.001) for each method. The huge subject 
pattern, on the other hand, seems to lead to similar results 
as the centre pattern for the most methods (𝑝	 > 	0.05 for 
all methods except of Ridge with 𝑝 = 0.008). Only Ridge 
performs slightly better on with the centre pattern (𝑝 =
0.004).	Since it covers almost the same part of the field, 
this was to be expected. 

Figure 6. Results over 100 Simulations with the parameters: 
𝑝#""%" = 0.1, 𝑟#""%" = 0.5. (a) Best Results with fixed 𝜎!"#$ =
0.005. (b) Best Results for polynomial (top) and ridge (bottom) 
regression for different precision errors and the centre calibration 
(Figure 4 (c)). 

The best results for different precision qualities are 
shown in Table 3. As expected, the error increases as the 
precision decreases. In most cases, however, the ridge re-
gression gives the best results, except for the small subject 
pattern, which seems to cover too small a range to estimate 
a good polynomial. This could explain why the only 
method that does not estimate a polynomial, usually leads 
to the best results. Furthermore, Figure 6 (b) shows the 
course of the polynomial and ridge regression for increas-
ing precision errors in the centre calibration. In addition, 
graphics for the other methods can be found in the appen-
dix. As shown in the figure, the higher degrees of ridge 
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regression work better for very small errors, while they are 
still slightly better for high errors. 

In summary, most methods work well, with a slight ad-
vantage for ridge regression. Only when the calibration fits 
a very small range do the SVR and the RANSACRegressor 
outperform the other methods. However, the RAN-
SACRegressor seems to perform worst in all other cases. 

Polynomial Regression 
Since polynomial regression is often used in calibration 

scenarios, we will examine this method in more detail as 
shown in Figure 7. 

 
Figure 7. Polynomial Regression accuracy with an exponential 
scale averaged over 100 simulation runs for the different calibra-
tion patterns. Clearly, higher polynomial degrees require a more 
complex and complete calibration procedure, while degrees 
above three are unlikely to yield good results due to overfitting 
the calibration data. 

There are significant differences in the performance of 
the degree used for the estimated polynomial in the 5-point 
(𝐹 = 658, 𝑝 < 0.001), 9-point (𝐹 = 429, 𝑝 < 0.001), 
subject small (𝐹 = 1847, 𝑝 < 0.001), subject huge (𝐹 =
200, 𝑝 < 0.001), centre (𝐹 = 442, 𝑝 < 0.001) and full 
(𝐹 = 57, 𝑝 < 0.001) calibration patterns. 

When the calibration range is large, such as the centre, 
full and subject huge pattern, the polynomial with degree 
3 seems to be the best choice (𝑝	 < 	0.001 except full cal-
ibration with degree 3 and 4 with 𝑝	 = 	0.046). However, 
if there is only one viewpoint or the calibration is only in 
the middle (Subject small), degree 3 or higher seem to 
overfit, so grade 1 and 2 are better (𝑝	 < 	0.001). However, 
there is no significant difference in the subject small cali-
bration between degree 1 and 2 (𝑝	 > 	0.05). 

Ridge Regression 
Since the ridge regression leads to the best results for 

most calibration patterns (see Table 3) we will take a closer 
look at it. Figure 8 (a) shows the best results of the differ-
ent degrees of the polynomials. Like polynomial regres-
sion there are significant differences between the chosen 

degree in the 5-point (𝐹 = 403, 𝑝 < 0.001), 9-point (𝐹 =
101, 𝑝 < 0.001), subject small (𝐹 = 37, 𝑝 < 0.178), sub-
ject huge (𝐹 = 73, 𝑝 < 0.001), centre (𝐹 = 103, 𝑝 <
0.001) and full (𝐹 = 352, 𝑝 < 0.001) calibration patterns. 
In the following, we will take a closer look at where the 
significant differences are.  

Degree 1 and 2 results are very similar for each cali-
bration (𝑝	 > 	0.05 except of 5-point calibration with 𝑝	 <
	0.001). Degree 3, 4, and 5 are usually better as the number 
of calibration points increases (𝑝	 < 	0.001), except for 
Degree 3 where no significant differences in performance 
between 9 point and centre calibration can be found (𝑝 >
0.05) and 9 point is slightly better than subject huge (𝑝 <
0.001). Calibration Subject small results in the largest er-
ror for each degree (𝑝	 < 	0.001). 

 

Figure 8. Ridge Regression accuracy with an exponential scale 
over 100 simulation runs. Results are relatively stable for 
different degrees with a possible optimum at degree three. The 
more complete the calibration, the less important is the choice of 
a good 𝛼. (a) Analysis of the polynomial degree over different 
calibration patterns, with the respective alpha that led to the best 
result. (b) Influence of the 𝛼 parameter. 

Since degree 3 is usually one of the best, Figure 8 (b) 
shows the different results of degree 3 with different 
weighting parameters. There are significant differences 
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between the chosen alphas in the 5-point (𝐹 = 189, 𝑝 <
0.001), 9-point (𝐹 = 209, 𝑝 < 0.001), subject small (𝐹 =
158, 𝑝 < 0.001), subject huge (𝐹 = 6.7, 𝑝 < 0.001) and 
centre (𝐹 = 23, 𝑝 < 0.001). No significant difference is 
found between alphas for the full calibration (𝐹 =
1.3, 𝑝	 > 	0.05). As the figure shows, a larger alpha lead to 
better results (𝑝	 < 	0.001) for a small number of calibra-
tion points (5- and 9-point calibration) or a small calibra-
tion area (subject small). Only in the 5-point calibration 
and subject small for alpha equal to 1 and 2 there is no 
statistically significant difference (𝑝	 > 	0.05). In the case 
of Subject huge and Centre calibration, there are no signif-
icant differences between 𝛼 = 0.0001,… ,0.1 (𝑝	 >
	0.05). Only the error for alpha equal to 1 or 2 is signifi-
cantly larger than for the lower alphas (𝑝	 < 	0.001).  

In summary, we can say that 𝛼 = 0.01 is a good choice 
in the most cases. 

Intra- and Extrapolation 
Figure 9 shows the average error occurring during in-

terpolation and extrapolation of the calibration range. 
While the large coverage calibration pattern (Figure 4 €) 
has only a few points outside this range, the small pattern 
(Figure 4 (f)) has many points outside. Shrinkage methods 
(ridge and lasso regression) work relatively well in both 
cases. Note that these methods have an 𝛼 parameter to pre-
vent overfitting. As a consequence, increasing the polyno-
mial’s degree does not have a negative impact. Figure 9 
shows the best results achieved for both cases. For the 
large range, a small alpha value such as 𝛼	 = 	0.1 and for 
the small range a large alpha value such as 𝛼	 = 	2 could 
be used instead of changing the degree. However, it seems 
better to decrease the degree instead of increasing the al-
pha, as shown in Table 4. 

The polynomial regression works as expected: If the 
degree is too high, the method adjusts too accurately to the 
calibration points and does not 12eneralize well for other 
data. The same problem occurs with the RANSACRegres-
sor. The SVR has the most parameters, but even if we use 
the one that leads to the smallest extrapolation error, it is 
only slightly better than the ridge regressor when calibrat-
ing only on a small area. Moreover, it performs worse on 
the large calibration pattern. 

 

 

Figure 9. Results for all methods with closer look at the different 
error inside and outside the calibration range depending on the 
use of the subject small or large calibration pattern. RANS stands 
for RANSAC, l for linear, p for poly and r for rbf. (a) Subject 
small (b) Subject huge. Note the exponential scale. 
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Table 4. Best extrapolation results of each method for the calibration patterns Subject small and huge with their corresponding param-
eters. The standard deviation is given in the parentheses. 

Method Calibration Parameter Inside (°) Outside (°) 

Lasso Subject small (2, 0.0001) 0.879	(±0.401) 7.112	(±4.348) 

PolyReg Subject small (2,) 0.657(±0.306) 5.849	(±4.054) 

RANSAC Subject small (1,) 𝟎. 𝟒𝟓𝟐	(±0.126) 4.270	(±2.960) 

Ridge Subject small (2, 0.0001) 0.562	(±0.302) 5.930	(±3.918) 

SVR Subject small (‘poly’, 1, 0.01, 0.001) 0.596	(±0.310) 𝟒. 𝟏𝟕𝟕	(±2.886) 

Lasso Subject huge (5, 0.001) 𝟎. 𝟖𝟖𝟖	(±0.480) 2.537	(±1.716) 

PolyReg Subject huge (3,) 1.112	(±0.847) 2.070	(±1.275) 

RANSAC Subject huge (2,) 0.904	(±0.468) 3.588	(±1.964) 

Ridge Subject huge (3, 0.0001) 0.900	(±0.641) 𝟏. 𝟕𝟖𝟗	(±0.985) 

SVR Subject huge (‘poly’, 1, 1, 0.0001) 1.320	(±0.707) 2.770	(±1.572) 

Experimental Results 
Figure 10 shows the results of the experiment (bottom) 

and the simulation with the same calibration and test pat-
terns as the experiment (top). Note that in the case of the 
simulation, 100 iterations were performed for each method 
and subject sample, while in the real experiment the sub-
ject only performs one calibration and one validation. For 
this reason, we can see the error bars created only for the 
simulation. In both scenarios, the methods have similar re-
sults for the different subjects. The most striking observa-
tion on the real data is that the mean squared error (MSE) 
for Subjects S5 and S6 is clearly lower than for the other 
subjects. There are two possible explanations for this. The 
first is that the measurement errors in the extracted gaze 
vectors are lower than for the others. The second is that the 
calibration and test patterns are more like each other. Since 
this effect does not occur in the simulation scenario, the 
first reason is more likely because a minor error rate in in-
dividual participants is possible, while it is very unlikely 
that only small errors occur in 100 simulations.  

Furthermore, the performance of the SVR seems to be 
better than that of the other methods, this can be seen 

especially in the simulation (𝑝	 < 	0.001 except of Ridge 
for Subject 2 with 𝑝	 = 	0.004). This is a different result 
than in the previous analyses. One possible reason for this 
is that the calibration patterns are very similar to the test 
patterns due to the design of the experiment.  

Figure 10. Comparison of the results of the simulation and the 
real-world experiment with an exponential scale of the MSE. 
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With the exception of SVR, ridge regression seems to 
outperform the other methods mostly (𝑝	 < 	0.001). In 
terms of numbers, the mean MSE of the ridge regression 
is for the simulation about 20% better than that of the usu-
ally used polynomial regression which is a significance 
improvement (𝑝	 < 	0.001). In the real-world experiment, 
it is on average about 15% better. The differences are quite 
small in S1 and S3, but they are clearly visible in the 
others. 

Limitations 
In this work, we compared the simulated Gaze Vectors 

with Look's system. Accordingly, the systematic error was 
also created. If a different system is used, the systematic 
error may also change. This must then be added to the error 
free Gaze Vectors like the systematic error used in this 
work. In addition, we compared the simulated gaze vectors 
with real gaze vectors recorded in calibration sessions in a 
room. This way, erroneous measurements that can occur, 
for example, due to lighting conditions or because the par-
ticipants do not follow the target properly, are not taken 
into account. Only the systematical, mismatching and the 
noise error are relevant in our simulation, which we found 
in our real data. 

Another limitation is that the real-world study has only 
seven participants. This is too few to be able to make sta-
tistical statements, which is why in this work they only 
serve as a proof of concept for the transferability of the 
simulation results to the real world. 

Conclusions 
In this paper, the focus is on looking at different meth-

ods for mapping measured gaze vectors onto the scene 
video of a mobile eye tracker. For a simulation of gaze 
vectors, we proposed different types of noise and measure-
ment errors, such as decreased overall precision, location 
dependent precision loss as well as false pupil detection. 
This allowed us to examine the four methods of polyno-
mial, lasso, ridge and support vector regression to see how 
well they perform under different mixtures of noise. 

Overall, ridge regression robustly showed good results 
over a broad spectrum of parameters, especially if the pre-
cision error of the eye tracker is not too large and the cali-
brated area not too small. In addition, we observed that the 
ridge regression does not suffer in accuracy when the de-
gree of the polynomial is increased, as can be observed for 
normal polynomial regression. 

By adjusting the simulation parameters to match the 
expected real-world data characteristics, the optimal map-
ping function for a specific device or specific recording 
conditions can be determined. 

In this work, we focus on head-mounted eye trackers, 
so the evaluation mainly discusses the results of Smooth 
Pursuit calibration patterns. However, this simulation ap-
proach could also work for remote eye trackers, which of-
ten use n-point calibrations. For example, Figure 6 shows 
that the results for Ridge and Lasso are also good. 
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Appendix 
Calculation of the error in degrees 
The target and estimate points 𝑝.)E! , 𝑝!0. ∈ 	 [0, 1]+ 

give the proportion of the horizontal and vertical axis to 
determine where the point is in the camera's image. The 
following describes how to calculate the angle between the 
true point and the estimated point. The coordinates of the 
camera 𝑐 ∈ 	ℝ#, the distance 𝑑 ∈ 	ℝ to the plane in which 
the viewpoint moves, the x-coordinates on the plane of the 
left and right image edge 𝑥F , 𝑥) ∈ 	ℝ and the y-coordinates 
on the plane of the top and bottom image edge 𝑦. , 𝑦@ 	 ∈ 	ℝ 
are also known. The formula 𝑡 is now given as: 

𝑡(𝑝) = 	�
𝑝/ ⋅ 𝑑' + 𝑥F
𝑝" ⋅ 𝑑- + 𝑦@
𝑑 + 𝑐G

� 

Here 𝑑' 	= 	 𝑥) 	−	𝑥F is the distance between the left and 
right edge of the image on the plane, 𝑑- 	= 	𝑦. 	−	𝑦@ is the 
distance between the bottom and the top, 𝑐G is the z-coor-
dinate of the camera and 𝑝/ and 𝑝" are the x- and y-coor-
dinates of the point to be transformed. 

With this, the direction vectors 𝑑.)E! , 𝑑!0. ∈ ℝ# from 
the camera position to the points 𝑝.)E! and 𝑝!0. can be cal-
culated: 

𝑑.)E! = 𝑡(𝑝.)E!) − 𝑐	
𝑑!0. = 𝑡(𝑝!0.) − 𝑐 

And now the angle 𝛼!))() between the true and the esti-
mated point is given: 

𝛼!))() = 𝑎𝑟𝑐𝑐𝑜𝑠 -
𝑑.)E!, ⋅ 𝑑!0.

‖𝑑.)E!‖+ ⋅ ‖𝑑!0.‖+
0 

 

 

 

 

 

 

 

Unity 
Unity is a cross-platform game engine and develop-

ment environment. It provides a large toolkit for 2D and 
3D simulation and game programming. In each scene of 
the project, there is usually a camera object that defines the 
player's point of view. In the case of this work, this is the 
scene camera, which we need to define where the view-
point must be positioned to match the desired pattern from 
the scene camera's point of view. In contrast, the view of 
the eye cameras are not needed, so we use cubes as dum-
mies to calculate the necessary angles for the gaze vectors 
using functions from Unity. In content of this work the im-
portant things are: 

- Create a scene by drag-and-drop of game objects 
like spheres and cubes. 

- Manipulate the scene using C#-scripts. 

- Easily switch between the world coordinate sys-
tem and the camera’s point of view. 

- Efficient calculation and extraction of data with 
unity's integrated functions. 
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Aruco-marker 
An Aruco marker is an easy to detect image with a 

black border. The inner consists of black and white 
squares. The black border facilitates its fast detection in 
the image. Figure 11 shows an example of an aruco-
marker. 
 

 
Figure 11. Example of an aruco-marker. 

 

 

 

 

 

 

 

 

 

 

 

 

Influence of the precision error to the Meth-
ods 

Here are diagrams for all methods used, showing the 
influence of the precision error on the mean error. 

 
Figure 12. The diagrams show the course of the error with in-
creasing precision error. Except for the parameters indicated in 
the legend, the parameters with the best results are used. 


