
Journal of Eye Movement Research
16(4):2

 1

Introduction
The calibration of an eye tracker is the challenge of

mapping features extracted from an image of the eye onto
the scene camera's view to obtain the point of regard. An
established method is to derive two polynomials, one for
the x-coordinate and one for the y-coordinate pixel. Com-
monly used features are the pupil centre, the vector be-
tween pupil and corneal reflection or the eyeball orienta-
tion. The workflow is to collect correspondences between
eye features and a known target point that the person looks
at. From these associated features and gaze target coordi-
nates an estimation of the coefficients of a polynomial can

be performed. The estimation is done via least-squares-er-
ror fitting.

In a desktop eye tracking scenario, n-point calibration
is the state of the art because it is easy to visualise points
on the screen and get the subject to look at them. In a head-
mounted scenario, there is no screen available, so the sub-
ject must look at a marker that can be easily detected. The
marker is then moved over the scene field.

While both methods seem to produce similar data
correspondences, there are some major differences in
practice: In a desktop scenario, the recorded points are
evenly distributed over the screen. These points span the
entire screen and thereby the entire target area. False
measurements can be compensated by averaging over all
samples associated with a specific gaze target.

In the head-mounted scenario the distribution of sam-
ples over the scene field depends on how the subject per-
forms the calibration. The images in Figure 1 (a) and (b)

Received February 10, 2023; Published September 14, 2023.
Citation: Severitt, B., Kübler, T. & Kasneci, E. (2023). Testing dif-
ferent function fitting methods for mobile eye-tracker calibration
(JEMR). Journal of Eye Movement Research, 16(4):2.
Digital Object Identifier: 10.16910/jemr.16.4.2
ISSN: 1995-8692
This article is licensed under a Creative Commons Attribution 4.0
International license.

Testing different function fitting methods
for mobile eye-tracker calibration

Björn R. Severitt
Eberhard Karl University of Tübingen

Germany

Thomas C. Kübler
Look! ET
Germany

Enkelejda Kasneci
Human-Centered Technologies for

Learning,
Technical University of Munich

Germany

During calibration, an eye-tracker fits a mapping function from features to a target gaze
point. While there is research on which mapping function to use, little is known about how
to best estimate the function's parameters.
We investigate how different fitting methods impact accuracy under different noise factors,
such as mobile eye-tracker imprecision or detection errors in feature extraction during cali-
bration. For this purpose, a simulation of binocular gaze was developed for a) different cal-
ibration patterns and b) different noise characteristics.
We found the commonly used polynomial regression via least-squares-error fit often lacks
to find good mapping functions when compared to ridge regression. Especially as data be-
comes noisier, outlier-tolerant fitting methods are of importance. We demonstrate a reduc-
tion in mean MSE of 20% by simply using ridge over polynomial fit in a mobile eye-tracking
experiment.

Keywords: Gaze Estimation, Gaze vectors, Simulation, Regression, Calibration, Eye
Tracking

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Journal of Eye Movement Research Severitt, B., Kübler, T. & Kasneci, E. (2023)
16(4):2 Testing different function fitting methods for mobile eye-tracker calibration

 2

shows calibration paths of two subjects with identical in-
structions on how to perform the calibration. While the
first calibration was done over a large field of the scene but
also with a high density towards the centre, the second one
calibrated the centre only. We found that most often sam-
ple density is high towards the centre and low towards the
periphery. This is problematic when applying least-
squares-error fitting to the problem, as the central area will
likely dominate over the less important and consequently
less accurate periphery data.

Moreover, large gaze angles are often completely
avoided or performed with simultaneous head rotation.
The resulting implication for a calibration function is a
need to extrapolate gaze outside of the calibrated area.

Overall, the gaze signal in mobile eye-tracking suffers
from much less constrained conditions as in the desktop
case, often resulting in decreased quality of the gaze signal
and more false measurements - especially towards large
gaze angles, where the pupil or glints are harder to track.
In general, mismeasurements may be due to incorrect pupil
or glint detection, environmental influences such as bright-
ness or reflections in the pupil. There are a variety of
sources of mismeasurement. As we cannot always easily
exclude these samples from the calibration, the way we fit
the calibration function must be tolerant to outliers.

The image of Figure 1 (c) shows a heat map over seven
recorded calibration paths. Again, the problem of different
sample density is obvious. Fitting a calibration function
has to cope with unbalanced sample densities, areas that
are not covered, and outliers in the eye features data.

Figure 1. Smooth pursuit calibration of a mobile eye-tracking
device. A gaze target marker is followed by the eye and moved
in front of the scene camera. The first image is from Subject 1
and covers a large area. The second is the result of Subject 2 and
covers only the central area. The third is a density map over 7
subjects.

 A least-squares error fit of a high degree polynomial is
likely to yield unpredictable results for extrapolation of
gaze outside of the calibrated area, while a low degree
polynomial might lead to less accurate results within the
calibrated area.

 In order to investigate which fitting methodology is
well suited for which purpose, we need to investigate the
effect of different measurement error characteristics as
well as different calibration patterns on the resulting
calibration. To be able to vary their parameters in a
controlled and quantified way, we performed:

• A simulation of gaze vectors during simulated
calibration. Horizontal and vertical angles
between the optical axis and the line from the
centre of the eyeball to the eye camera are
simulated and enriched with controlled patterns
of measurement noise. We use these gaze angles
because they have proven to be relatively stable
in terms of device slippage (Santini et al., 2019).

• A simulation of different calibration patterns.
Different target patterns (e.g., circular pursuit, 9-
point calibration) are investigated in different
conditions. In particular, the difference in
performance for inter- and extrapolation is
addressed.

• To transfer the results of the simulation to the real
world, we created a real-world study where we
recorded calibration data of 7 subjects. So, we
obtain real calibration patterns, and it gives us the
opportunity to confirm that the simulated results
can be transferred to a real application. In this
case, we compare the performance of the
calibration method with the simulated data of the
real samples with the data from the experiment.

Related Work
 As essential building blocks of an eye-tracking device,
calibration functions have been studied in some detail -
even though other components such as pupil detection
have experienced much more attention by the community
(Fuhl et al., 2021).

 For example, Kasprowski et al. (Kasprowski et al.,
2014) analysed possible scenarios of different simulation
presentations and discussed the influence of different
regression functions and two different head-mounted eye
trackers on the results. Ultimately, however, they cannot
say which regression is the best, because the performance
is different across different eye trackers. Accordingly, they
advise that the regression function used should be
optimised for the eye tracker, raising thus the question on
which properties of the device make the difference.

Journal of Eye Movement Research Severitt, B., Kübler, T. & Kasneci, E. (2023)
16(4):2 Testing different function fitting methods for mobile eye-tracker calibration

 3

Using the pupil centre - corneal reflection vector as an
input feature was found to make the calibration somewhat
resilient to head movements. This approach is explored in
more detail by Blignaut (Blignaut, 2014). The author opti-
mised the calibration configuration of the hardware con-
figuration and tested several mapping functions.

In addition, Blignaut proposed a method for identifying
a set of polynomial expressions that provide the best pos-
sible accuracy for a specific individual (Blignaut, 2016).
Real-time recalculation of regression coefficients and real-
time gaze correction are also proposed. In the evaluation,
Blignut concludes that the choice of polynomial is very
important for accuracy when no correction is used. How-
ever, when real-time correction is used, the performance
of each polynomial improves, while the choice of polyno-
mials becomes less critical.

The influence of the placement of the eye camera on
the results was also investigated. Narcizo et al. showed that
the distribution of the features of the eyes is deformed
when the eye camera is far away from the optical axis of
the eye (Narcizo et al., 2021). To solve this problem, they
propose a geometric transformation method to reshape the
distribution of eye features based on the virtual alignment
of the eye camera at the centre of the optical axis of the
eye. That leads to a high gaze estimation accuracy of 0.5.

Recently. Hassoumi et al. improve the calibration ac-
curacy by a symbolic regression approach (Hassoumi et
al., 2019). Instead of making prior assumptions about the
polynomial transfer function between input and output
data sets, this approach seeks an optimal model from dif-
ferent types of functions and their combinations. The au-
thors achieved a substantial 30% improvement in calibra-
tion accuracy compared to previous approaches.

A similar work to ours is that of Drewes et al. (Drewes
et al., 2019). They tried two circular trajectories with dif-
ferent radii. Both were run on a display in front of which
the participants sat. In each calibration, an offset, a regres-
sion, and a homography calibration were tried, and it was
found that the accuracy of offset and regression was simi-
lar for the circular trajectory, and the precision of regres-
sion was better. The homography approach is the worst in
both cases.

Although there are several related works that have ad-
dressed calibration accuracy, but rather few have on gaze
vectors. Therefore, in this paper we have focused on

mapping these features onto the scene using well-known
methods such as polynomial regression.

Summarised, previous research underpins the im-
portance of research in how and which calibration func-
tions should be used. There is no clear consensus on the
optimal function and how that function is fitted is probably
of similar importance as the function itself. Likely, the
magnitude of measurement errors as well as the nature of
samples collected during the calibration process drive this
decision.

Dataset
Two data sets are used in this work. One of these data

sets is simulated, the other contains real-world recordings
of smooth pursuit calibration processes of a head-
mounted device.

Simulated Data
This dataset consists of simulated gaze vectors and the

associated targets. Gaze vectors are the horizontal and ver-
tical angle between the optical line and the line from the
centre of the eyeball to the eye camera. In a more formal
way: Let 𝑐!"! ∈ ℝ# be the centre of the eye and 𝑒$%& ∈ ℝ#
the position of the eye camera, than

𝑐𝑒 = 𝑒$%& − 𝑐!"! ∈ ℝ#

Is the direction vector from the centre of the eye to the eye
camera. Furthermore, let 𝑜 ∈ ℝ# be the direction vector of
the optical axis (see Figure 3). In our scenario, the z-axis
is the depth, the y-axis is the height, and the x-axis is the
width. The horizontal angle is therefore the rotation around
the y-axis, i.e., the angle in the x-z plane, and the vertical
angle is the rotation around the x-axis, i.e. the angle in the
y-z plane. So, the horizontal angle can be calculated as fol-
lows: Let 𝑐𝑒'()* , 𝑜'()* ∈ ℝ+ be the direction vectors with-
out the y-component. Then the horizontal angle 𝜙 can be
calculated as follows:

𝜙 = 𝑎𝑟𝑐𝑐𝑜𝑠 -
𝑐𝑒'()*, ⋅ 𝑜'()*

‖𝑐𝑒'()*‖ ⋅ ‖𝑜'()*‖
0

The vertical angle 𝜃 can be calculated in a similar way,
with 𝑐𝑒-!). , 𝑜-!). ∈ ℝ+ being the direction vectors without
the x-components. The gaze vector is thus defined as:

𝑔𝑣 ≔ 5𝜙𝜃6

Journal of Eye Movement Research Severitt, B., Kübler, T. & Kasneci, E. (2023)
16(4):2 Testing different function fitting methods for mobile eye-tracker calibration

 4

To simulate gaze vectors, we used Unity with the
scripting language C#, to cover all the heavy lifting with
3D geometry as well as visualization. A brief explanation
of the use of Unity in this work can be found in the appen-
dix. In contrast to eye image synthesis (Nair et al., 2020),
(Kim et al., 2019), (Wood et al., 2016), our purpose does
not necessitate a full eye model. The representation as a
simple sphere is fully sufficient and numerical output is
much faster to calculate than graphical renderings. We cre-
ated a scene with two spheres that represent the eyes, a
plane with a point that serves as a fixation point, and dum-
mies for the eye cameras. Figure 2 shows the scene.

Figure 2. Unity 3D scene that represents objects involved in the
simulation.

Additionally, there is a camera over the two spheres,
producing the cyclops image of an eye-tracker's field cam-
era.

To create the gaze vectors, we move a fixation target
on a plane in front of the eyes. The position is determined
via the field camera. To achieve this, we specify two val-
ues 𝑥, 𝑦 ∈ [0,1], which indicate the distance between the
left bottom edge of the image and the target point. Then
we rotate the two spheres so that the optical axes (the line
through pupil centre and cornea centre) are directed to-
wards the point.

To include an individual offset between optical and
visual axis (the line through pupil centre and fovea), we
need to simulate the 𝜅 angle. We simulate a horizontal and
vertical angle: 𝜅'()* , 𝜅-!).. Since the spheres can only be
rotated at their centre, we have to calculate this angle. Fig-
ure 3 shows a sketch of the situation.

Figure 3. Sketch for calculating the angle of rotation 𝛼 to
simulate a given 𝜅.

Given 𝜅 we search for the angle 𝛼. We know the radius
𝑟 of the sphere and the distance 𝑏 between the centre of the
sphere and the target. In addition, the 𝛽 angle can be rep-
resented as follows:

𝛽 = 180 − 𝜅

Thus follows:

𝛼 + 𝛽 + 𝛾 = 180 ⇒ 𝛼 + (180 − 𝜅) + 𝛾 = 180

⇒ 𝛾 = 𝜅 − 𝛼

With the law of sines, we get:

𝑟
sin 𝛾 =

𝑏
sin𝛽 ⇔

𝑟
sin(𝜅 − 𝛼) =

𝑏
sin(180 − 𝜅)

When this is transformed to 𝛼, it follows:

𝛼 = 𝜅 − arcsin 5
𝑟
𝑏 ⋅ sin

(180 − 𝜅)	6

With this formula and the given angles 𝜅'()* and 𝜅-!).
we create 𝛼'()* and 𝛼-!). to rotate the sphere. We apply
this transformation to both spheres.

To calculate the gaze vectors, a line is constructed from
the centre of the dummy eye camera to the centre of the
sphere. Then the horizontal (𝜙) and vertical (𝜃) angles be-
tween the constructed line and the optical line are calcu-
lated. These correspond to the gaze vectors.

Journal of Eye Movement Research Severitt, B., Kübler, T. & Kasneci, E. (2023)
16(4):2 Testing different function fitting methods for mobile eye-tracker calibration

 5

We simulate these gaze vectors for all positions within
the calibration patterns shown in Figure 4.

Figure 4. Pattern. (a) 5-point calibration (b) 9-point calibration
(c) Centre calibration (d) Full calibration (e) Subject huge (f)
Subject small (g) 20 × 20 full field

We used the gaze vectors simulated on those patterns
to estimate an eye-tracker calibration. Afterwards, we test
the quality of the calibration on a test pattern that covers
the whole field of view.

Moreover, we also simulated gaze vectors for calibra-
tion patterns found in the real-world experiment. This way,
we can compare the simulation results directly to real-
world observations. Below is a brief description of the pat-
terns.

5-point calibration (5p) This is a normal 5-point calibra-
tion pattern with dots in the corners and one in the centre.
It is usually used to fit a homography for gaze mapping.
9-point calibration (9p) This is a normal 9-point calibra-
tion pattern with three points on three lines. Popular for
calibrating desktop eye-tracking devices.
Centre calibration (Centre) Snake pattern, simulating a
smooth pursuit calibration, in the centre of the seen field.
Full calibration (Full) Snake pattern across the entire
field of view.
Subject huge (huge) This pattern is extracted from the ex-
periment to compare the simulation with the real data. This
pattern covers almost the field.
Subject small (small) This pattern is extracted from the
experiment to compare the simulation with the real data.
This pattern covers only the centre field.
𝟐𝟎 × 𝟐𝟎 full field This is a pattern consisting of 20 × 20
dots evenly distributed over the entire field. It is used to
evaluate the performance of calibrations.

Normally, the n-point calibration points tend to be cen-
tered because that is where the corners of the stimulus re-
gion of interest are. Since we are looking at the perfor-
mance of the entire image, we placed the calibration points
very close to the edges.

After simulating the error-free gaze vectors, we use Py-
thon to simulate three types of measurement noise: system-
atic error, precision noise, and completely misidentified
samples.

The systematic error depends on the gaze vectors. The
eye-tracking system we used to compare our results shows
difficulties in determining reliable gaze vectors when the
person looks into or close to the eye cameras. The detected
pupil outline then becomes almost circular, making it dif-
ficult to tell where the person is looking at. For this reason,
we added an error that is larger when the gaze vectors are
small. For this purpose, we extracted the largest horizontal
𝜙&%/ and vertical 𝜃&%/ angle magnitude. With probability
𝑝!))(), we apply an error to the gaze vector. When an error
occurred the new gaze vector (𝜙0"0, 𝜃0"0) is created as fol-
lows:

𝜙0"0 = 𝜙 +T	
2 −	 |𝜙|𝜙&%/

−	 |𝜃|𝜃&%/
2 V

1

(𝑢 − 0.5)𝑟!))()𝜋	

𝜃0"0 = 𝜃 +T	
2 −	 |𝜙|𝜙&%/

−	 |𝜃|𝜃&%/
2 V

1

(𝑢 − 0.5)𝑟!))()𝜋

Where 𝑟!))() is a parameter for the maximum error and
𝑢 ∼ 𝑈(0,1) is a uniformly distributed random number. If
no error occurred, the gaze vectors remain unchanged.

The precision error is white noise 𝜖2)!$ ∼ 𝑁(0, 𝜎2)!$)
added to the gaze vectors (given in radians). The 𝜎2)!$ is a
parameter with which we can simulate different precisions.
This error can be considered a recording device specific.
The new gaze vector (𝜙2)!$, 𝜃2)!$) is created as follows.

𝜙2)!$ = 𝜙0"0 + 𝜖2)!$	
𝜃2)!$ = 𝜃0"0 + 𝜖2)!$

In Table 1, we provide some values on how 𝜎 and the
resulting magnitude of gaze angle deviation relate to each
other. We show the 95% confidence intervals of added er-
ror in radians and degree.

Journal of Eye Movement Research Severitt, B., Kübler, T. & Kasneci, E. (2023)
16(4):2 Testing different function fitting methods for mobile eye-tracker calibration

 6

Table 1. 95% confidence intervals for different 𝜎!"#$

𝜎!"#$ Radians Degree

0.001 ±0.002 ±0.112

0.005 ±0.01 ±0.561

0.01 ±0.02 ±1.123

0.05 ±0.098 ±5.615

The third type of error simulates when the pupil is de-
tected in the wrong place for a few frames. This can hap-
pen due to several reasons, e.g., when an object is reflected
in the eye, or the pupil is partially covered. For each gaze
vector and per eye, we decided with a probability 𝑝34 =
0.005 whether a false detection has happened. If so, we
choose a random number 𝑛 ∈ [1,9] ⊂ ℕ to determine how
many gaze vectors are corrupted. The final gaze vector
(𝜙3 , 𝜃3) is calculated as follow, when a false detection oc-
curred.

𝜙3 = 𝜙2)!$ + (𝑢 − 0.5) ⋅
𝜋
2	

𝜃3 = 𝜃2)!$ + (𝑢 − 0.5) ⋅
𝜋
2	

When no false detection occurred, the gaze vectors remain
unchanged.

An example of simulated gaze vectors with added
measurement noise as well as a real recording is shown in
Figure 5.

Figure 5. Example of real and simulated gaze vectors. The pa-
rameters for the simulated vectors are: 𝑝#""%" = 0.1, 𝑟#""%" =
0.5 and 𝜎!"#$ = 0.005. (a) and (b) are the left and right vectors
from a real experiment and (c) and (d) are the left and right sim-
ulated ones.

Data collected in real-world experiment
For the experimental data collection, we used a head

mounted eye-tracker by Look! (Kübler, 2021), which op-
erated at 30 Hz at an eye image resolution 320 × 240 px.
The scene is recorded at 30 Hz and at a resolution of
640 × 480 px. To get the gaze vectors, we used the Purest
pupil tracking method and the Get a Grip eye model
(Santini et al., 2017), as implemented in EyeRecToo
(Santini et al., 2017).

For the eye-tracking recording, subjects (2 females, 5
males, 16-36 years old, without glasses) were instructed to
direct their gaze at a target marker. Subjects were in-
structed to keep their heads still and move only their eyes
while following the 15 × 15 cm target aruco-marker. In
the appendix you will find an example of an aruco-marker.
They were instructed to move the marker in a large spiral
from the centre outwards. This procedure is repeated once
so that we have different data for estimating and evaluating
the calibration.

Not all subjects followed the instructions as intended.
Since this dataset is mainly intended to test the transfera-
bility of the simulated results to the real world, we allowed
them to deviate slightly from the protocol to match the re-
alistic expected calibration data.

This dataset is created to extract realistic calibration
patterns (Subject small and huge see Figure 4e and f) and
to provide proof of concept for the transferability of the
results produced with the simulation to the real world. The
number of subjects is too small to make statistically signif-
icant statements.

Methods
Since Drewes et al. show in their paper (Drewes et al.,

2019) that regression works very well for circular calibra-
tion, we tested different ways to fit a calibration. All of
them were implemented in the Python module scikit-learn
(Pedregosa et al., 2011) are briefly summarised in the fol-
lowing.
The methods find a polynomial of degree n

𝑝(𝑥, 𝛾) =g𝛾* ⋅ 𝑥*
5

*67

by minimising a loss function. The most trivial (and most
often used) method is polynomial regression, which mini-
mises the residual sum of squares

Journal of Eye Movement Research Severitt, B., Kübler, T. & Kasneci, E. (2023)
16(4):2 Testing different function fitting methods for mobile eye-tracker calibration

 7

𝑠𝑠𝑒(𝛾) =g(𝑝(𝑥8 , 𝛾) − 𝑦8)+
&

869

Where 𝑥8 are the features and 𝑦8 the true value. In this
method we have one parameter, namely the degree (𝑑 =
1, 2, 3, 4, 5) of the estimated polynomial. We have also
tried Lasso (Tibshirani, 1996) and Ridge (Hoerl &
Kennard, 1970) regression. They are very similar to poly-
nomial regression, with the only difference being that the
sum of the coefficients is added to the loss function, as
shown below.

𝑙𝑜𝑠𝑠:%00((𝛾) = 𝑠𝑠𝑒(𝛾) + 𝛼g|𝛾*|
5

*69

	

𝑙𝑜𝑠𝑠;*4<!(𝛾) = 𝑠𝑠𝑒(𝛾) + 𝛼g𝛾*+
5

*69

𝛼 > 0	is a weight parameter of the additional loss term.
We performed a grid search over the degree of the polyno-
mial and 𝛼 = 10=1, 10=#, 10=+, 0.1, 1, 2.

The above methods however do not explicitly cover
outliers (such as false pupil detections). RANSAC (ran-
dom sample consensus) (Fischler & Bolles, 1981) is an it-
erative algorithm that randomly splits the dataset into inli-
ers and outliers and fits the model, in our case a polynomial
regression, to the inlier dataset. Here we have only used
the degree 𝑑 = 1, 2, 3. Since only a subset of the data
points is used to estimate the polynomial, a larger data set
is needed for the estimation. The patterns with 5 and 9
points (Figure 4 (a) and 4 (b)) do not have enough data
points for a higher degree.

Support Vector Regression (SVR) (Drucker et al.,
1997) is an extension of the Support Vector Machine
(SVM) (Cortes & Vapnik, 1995). While the SVM looks
for a hyperplane 𝑓(𝑥) = 𝑤,	𝜙(𝑥) + 𝑏 that separates the
classes in such a way that no point lies within a given mar-
gin, the SVR looks for a hyperplane where all points lie
within the margin. In this case 𝜙:	ℝ4! → ℝ4" , 𝑑9 < 𝑑+ is
a function that transforms a point into a higher dimensional
space where the classes are linearly separable. To find this
hyperplane, the optimization problem

min
>,@,A,A∗

 1
2𝑤

,𝑤 + 𝐶g(𝜉* +	𝜉*∗)
5

*69

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜 𝑦* − 𝑓(𝑥*) ≤ 𝜖 + 𝜉* ,	
𝑓(𝑥*) −	𝑦* ≤ 𝜖 + 𝜉*∗,	
𝜉* , 𝜉*∗ ≥ 0, 𝑖 = 1,… , 𝑛

is solved. Here 𝜖 is the margin, 𝐶 is a weighting parameter
for the penalty if a point is not within the margin and 𝑛 is
the count of training vectors. Since the optimisation prob-
lem is solved by the dual form, the hyperplane can be given
as 𝑓(𝑥) = 	∑ 𝑎*𝑦*〈𝜙(𝑥*), 𝜙(𝑥)〉 + 𝑏5

*69 , where
〈𝜙(𝑥*), 𝜙(𝑥)〉 is the scalar product of the higher dimen-
sional transformation of 𝑥* and 𝑥 and 𝑎* are the associated
Lagrangian variables of the dual problem. Because of the
high computational cost of this scalar product, a positive
definite kernel function 𝐾(𝑥* , 𝑥) = 	 〈𝜙(𝑥*), 𝜙(𝑥)〉 is used.
In this work we tried three different kernel functions:

linear: 𝐾(𝑥C, 𝑥) = 	 〈𝑥C, 𝑥〉

polynomial: 𝐾(𝑥C, 𝑥) = 	 (𝑐〈𝑥C, 𝑥〉)4

rbf: 𝐾(𝑥C, 𝑥) = exp	(−𝑐‖𝑥C − 𝑥‖)

Here 𝑐 = 1/(4 ⋅ 𝑉𝑎𝑟(𝑋)), where 4 is the number of differ-
ent features and 𝑉𝑎𝑟(𝑋) is the variance of the feature ma-
trix. This is the default of the scikit-learn module. For the
degree 𝑑, we tried 1, 2, 3, 4 and 5. In addition, we used for
𝐶 the values 10=D, 10=1, 10=#, 10=+, 0.1, 0.5, 1, 2, 5 and
for 𝜖 the values 10=1, 10=#, 10=+, 0.1, 0.2, 0.5, 1, respec-
tively. Table 2 shows a summary of the methods used and
their corresponding parameters, for which we also used
different values.

Table 2. Methods used for fitting a calibration function as well
as their parameters investigated.

Method Full Name Parameter

Poly Polynomial Regres-
sion

(degree,)

Lasso Lasso Regression (degree, alpha)

Ridge Ridge Regression (degree, alpha)

RANSAC Random Sample Co-
sensus Regression

(degree,)

SVR Support Vector Re-
gression

(kernel, degree,
C, 𝜖)

In summary, all proposed methods have a different ap-
proach to estimate the function. Lasso and Ridge penalize
the sum of the estimated coefficients, so smaller coeffi-
cients are preferred by these methods, which leads to the

Journal of Eye Movement Research Severitt, B., Kübler, T. & Kasneci, E. (2023)
16(4):2 Testing different function fitting methods for mobile eye-tracker calibration

 8

fact that fluctuations in the input values lead to less large
fluctuations in the result, so the possibility to overfit
should be smaller. Whereby Ridge penalizes coefficients
smaller than one less and greater than one more than Lasso,
because Ridge uses the sum of squares and Lasso the sum
of magnitudes as penalty term. In both cases it is possible
to control the importance of the penalty with the alpha-pa-
rameter.

RANSAC tries to identify outliers by dividing the input
values several times and not to include them in the estima-
tion of the polynomial. Therefore, this method should han-
dle false measurements like missmatches well and identify
that as outlier and not include them to the estimation.

SVR is the only method in this paper that estimates a
hyperplane rather than a polynomial. This hyperplane is
estimated in such a way that it tries to match all points as
closely as possible. To prevent overfitting, the method has
two hyperparameters. The first is 𝜖, which specifies how
far the estimated hyperplane is allowed to miss the points,
and the second is 𝐶, which specifies the weighting of the
penalty if a point is missed further than the allowed 𝜖.

To evaluate the performance of the different methods,
we created 100 different 𝜅-angles with horizontal
𝜅'()*~𝑁(3.9, 2.2) and vertical 𝜅-!). ∼ 𝑁(0.2, 1.7)
(Atchison, 2017) for both eyes. With each 𝜅-angle, we

create a simulation for each pattern. Now the following
steps are carried out for each calibration pattern:

1. Calculate the error for each simulation:

a. Fit the method with the gaze vectors to
the target points of the calibration pattern
used.

b. Estimate the gaze points with the gaze
vectors of the full field pattern (Figure 4
(g))

c. Calculate the angle between the vector
from the camera to the estimated point
and the vector from the camera to the true
point.

d. Calculate the mean of the amount of the
angles. This is the mean angle error of the
simulation.

2. Calculate the mean of the mean error angles of all
simulations.

Note that the true and estimated points are within the
camera image. They indicate the proportion of the vertical
and horizontal axis of the image. To calculate the angle,
the points must be transformed into the scene coordinates.
The formula used can be found in the appendix.

Journal of Eye Movement Research Severitt, B., Kübler, T. & Kasneci, E. (2023)
16(4):2 Testing different function fitting methods for mobile eye-tracker calibration

 9

Table 3. Best results for different precision qualities with the different calibration methods with the simulated gaze vectors. The
standard deviation is given in the parentheses.

Precision Error Calibration Method Parameter Mean Error (°)

0.001 5-point Lasso (3, 0.001) 2.718	(±1.184)

 9-point Ridge (3, 2) 2.439	(±0.570)

 Centre Ridge (3, 0.001) 2.188	(±0.755)

 Full Ridge (4, 0.1) 1.479	(±0.580)

 Subject huge Ridge (3, 0.001) 2.523	(±0.771)

 Subject small SVR (‘linear’, 1, 0.01, 0.0001) 4.678(±0.430)

0.005 5-point Lasso (3, 0.001) 2.908	(±1.104)

 9-point Ridge (3, 1) 2.215	(±0.841)

 Centre Ridge (4, 0.01) 2.297	(±0.674)

 Full Ridge (5, 1) 1.490	(±0.508)

 Subject huge Ridge (3, 0.01) 2.555	(±0.687)

 Subject small SVR (‘linear’, 1, 0.01, 0.0001) 4.806	(±0.441)

0.010 5-point Lasso (3, 0.001) 2.979	(±1.286)

 9-point Ridge (3, 1) 2.379	(±0.667)

 Centre Ridge (3, 0.001) 2.478	(±0.901)

 Full Ridge (5, 0.1) 1.731	(±0.622)

 Subject huge Ridge (3, 0.01) 2.791	(±0.822)

 Subject small SVR (‘poly’, 1, 0.01, 0.001) 5.048	(±0.378)

0.050 5-point SVR (‘linear’, 1, 0.1, 0.1) 4.346	(±0.502)

 9-point Ridge (4, 2) 3.943	(±0.566)

 Centre SVR (‘poly’, 1, 0.1, 0.001) 4.370	(±0.312)

 Full SVR (‘rbf’, 1, 0.1, 0.001) 3.285	(±0.357)

 Subject huge SVR (‘linear’, 1, 0.01, 0.001) 4.361	(±0.311)

 Subject small RANSAC (1,) 8.313	(±0.727)

Journal of Eye Movement Research
16(4):2

 10

Evaluations
In this section we discuss our results with the simulated

gaze vectors and start with an overview of all methods
used, followed by a closer look at the polynomial and ridge
regression (as polynomial approaches are commonly used
for calibration). More specifically, we look at the error
within and outside the calibration range is considered and
at the end the results of the experiment and the correspond-
ing simulation are shown. For all statements, we report the
p-value of the t-test or the F-value with corresponding p-
value to determine if the difference is statistically signifi-
cant.

Comparative view on all methods
Before assessing the performance of individual meth-

ods in more detail, we compared all methods against each
other. For each method, several parameters (such as the
degree for the estimated polynomial) are tested in a grid-
search based approach. The best results for each calibra-
tion pattern are shown in Figure 6 (a), where the parame-
ters of the simulation are set to: 𝑝!))() = 0.1, 𝑟!))() =
0.5, 𝜎2)!$ = 0.005 (we found these to match our real-
world data). It can be seen that the choice of calibration
pattern has a significant impact on the performance of the
method. To prove this, we perform ANOVA for each
method: polynomial regression (𝐹 = 434, 𝑝 < 0.001),
ridge regression (𝐹 = 610, 𝑝 < 0.001), lasso regression
(𝐹 = 569, 𝑝 < 0.001), RANSACRegressor (𝐹 = 76, 𝑝 <
0.001) and SVR (𝐹 = 445, 𝑝 < 0.001). In the following,
these differences are examined in more detail.

The calibration with 5 and 9 points works equally well
for the polynomial regression, RANSACRegressor, Lasso
and SVR (𝑝	 > 	0.05). But for the Ridge method, the extra
4 points seem to improve performance significantly (𝑝	 <
	0.001). The centre calibration seems to lead to slightly
better results than the 9-point calibration (𝑝	 < 	0.001 for
all methods expect Lasso and Ridge with 𝑝	 > 	0.05). It
can be assumed that the estimation within the calibrated
range works better with the central calibration, but outside
of this range the 9-point calibration is less likely to lead to
overfitted polynomials that explode when leaving the cal-
ibrated area. This explains why the full calibration works
better then centre (𝑝	 < 	0.001 for all methods except
RANSAC with 𝑝 = 0.011), because in the small range
where the centre calibration does not fit, the full calibration
gives much better results and compared to the 9-point

calibration (𝑝 < 0.001 for all methods) there is much
more data for a better estimate.

The problem with extrapolation is also evident in the
small calibration pattern, for which all methods lead to a
rather poor result. Even the 5-point calibration gives better
results (𝑝	 < 	0.001) for each method. The huge subject
pattern, on the other hand, seems to lead to similar results
as the centre pattern for the most methods (𝑝	 > 	0.05 for
all methods except of Ridge with 𝑝 = 0.008). Only Ridge
performs slightly better on with the centre pattern (𝑝 =
0.004).	Since it covers almost the same part of the field,
this was to be expected.

Figure 6. Results over 100 Simulations with the parameters:
𝑝#""%" = 0.1, 𝑟#""%" = 0.5. (a) Best Results with fixed 𝜎!"#$ =
0.005. (b) Best Results for polynomial (top) and ridge (bottom)
regression for different precision errors and the centre calibration
(Figure 4 (c)).

The best results for different precision qualities are
shown in Table 3. As expected, the error increases as the
precision decreases. In most cases, however, the ridge re-
gression gives the best results, except for the small subject
pattern, which seems to cover too small a range to estimate
a good polynomial. This could explain why the only
method that does not estimate a polynomial, usually leads
to the best results. Furthermore, Figure 6 (b) shows the
course of the polynomial and ridge regression for increas-
ing precision errors in the centre calibration. In addition,
graphics for the other methods can be found in the appen-
dix. As shown in the figure, the higher degrees of ridge

Journal of Eye Movement Research Severitt, B., Kübler, T. & Kasneci, E. (2023)
16(4):2 Testing different function fitting methods for mobile eye-tracker calibration

 11

regression work better for very small errors, while they are
still slightly better for high errors.

In summary, most methods work well, with a slight ad-
vantage for ridge regression. Only when the calibration fits
a very small range do the SVR and the RANSACRegressor
outperform the other methods. However, the RAN-
SACRegressor seems to perform worst in all other cases.

Polynomial Regression
Since polynomial regression is often used in calibration

scenarios, we will examine this method in more detail as
shown in Figure 7.

Figure 7. Polynomial Regression accuracy with an exponential
scale averaged over 100 simulation runs for the different calibra-
tion patterns. Clearly, higher polynomial degrees require a more
complex and complete calibration procedure, while degrees
above three are unlikely to yield good results due to overfitting
the calibration data.

There are significant differences in the performance of
the degree used for the estimated polynomial in the 5-point
(𝐹 = 658, 𝑝 < 0.001), 9-point (𝐹 = 429, 𝑝 < 0.001),
subject small (𝐹 = 1847, 𝑝 < 0.001), subject huge (𝐹 =
200, 𝑝 < 0.001), centre (𝐹 = 442, 𝑝 < 0.001) and full
(𝐹 = 57, 𝑝 < 0.001) calibration patterns.

When the calibration range is large, such as the centre,
full and subject huge pattern, the polynomial with degree
3 seems to be the best choice (𝑝	 < 	0.001 except full cal-
ibration with degree 3 and 4 with 𝑝	 = 	0.046). However,
if there is only one viewpoint or the calibration is only in
the middle (Subject small), degree 3 or higher seem to
overfit, so grade 1 and 2 are better (𝑝	 < 	0.001). However,
there is no significant difference in the subject small cali-
bration between degree 1 and 2 (𝑝	 > 	0.05).

Ridge Regression
Since the ridge regression leads to the best results for

most calibration patterns (see Table 3) we will take a closer
look at it. Figure 8 (a) shows the best results of the differ-
ent degrees of the polynomials. Like polynomial regres-
sion there are significant differences between the chosen

degree in the 5-point (𝐹 = 403, 𝑝 < 0.001), 9-point (𝐹 =
101, 𝑝 < 0.001), subject small (𝐹 = 37, 𝑝 < 0.178), sub-
ject huge (𝐹 = 73, 𝑝 < 0.001), centre (𝐹 = 103, 𝑝 <
0.001) and full (𝐹 = 352, 𝑝 < 0.001) calibration patterns.
In the following, we will take a closer look at where the
significant differences are.

Degree 1 and 2 results are very similar for each cali-
bration (𝑝	 > 	0.05 except of 5-point calibration with 𝑝	 <
	0.001). Degree 3, 4, and 5 are usually better as the number
of calibration points increases (𝑝	 < 	0.001), except for
Degree 3 where no significant differences in performance
between 9 point and centre calibration can be found (𝑝 >
0.05) and 9 point is slightly better than subject huge (𝑝 <
0.001). Calibration Subject small results in the largest er-
ror for each degree (𝑝	 < 	0.001).

Figure 8. Ridge Regression accuracy with an exponential scale
over 100 simulation runs. Results are relatively stable for
different degrees with a possible optimum at degree three. The
more complete the calibration, the less important is the choice of
a good 𝛼. (a) Analysis of the polynomial degree over different
calibration patterns, with the respective alpha that led to the best
result. (b) Influence of the 𝛼 parameter.

Since degree 3 is usually one of the best, Figure 8 (b)
shows the different results of degree 3 with different
weighting parameters. There are significant differences

Journal of Eye Movement Research Severitt, B., Kübler, T. & Kasneci, E. (2023)
16(4):2 Testing different function fitting methods for mobile eye-tracker calibration

 12

between the chosen alphas in the 5-point (𝐹 = 189, 𝑝 <
0.001), 9-point (𝐹 = 209, 𝑝 < 0.001), subject small (𝐹 =
158, 𝑝 < 0.001), subject huge (𝐹 = 6.7, 𝑝 < 0.001) and
centre (𝐹 = 23, 𝑝 < 0.001). No significant difference is
found between alphas for the full calibration (𝐹 =
1.3, 𝑝	 > 	0.05). As the figure shows, a larger alpha lead to
better results (𝑝	 < 	0.001) for a small number of calibra-
tion points (5- and 9-point calibration) or a small calibra-
tion area (subject small). Only in the 5-point calibration
and subject small for alpha equal to 1 and 2 there is no
statistically significant difference (𝑝	 > 	0.05). In the case
of Subject huge and Centre calibration, there are no signif-
icant differences between 𝛼 = 0.0001,… ,0.1 (𝑝	 >
	0.05). Only the error for alpha equal to 1 or 2 is signifi-
cantly larger than for the lower alphas (𝑝	 < 	0.001).

In summary, we can say that 𝛼 = 0.01 is a good choice
in the most cases.

Intra- and Extrapolation
Figure 9 shows the average error occurring during in-

terpolation and extrapolation of the calibration range.
While the large coverage calibration pattern (Figure 4 €)
has only a few points outside this range, the small pattern
(Figure 4 (f)) has many points outside. Shrinkage methods
(ridge and lasso regression) work relatively well in both
cases. Note that these methods have an 𝛼 parameter to pre-
vent overfitting. As a consequence, increasing the polyno-
mial’s degree does not have a negative impact. Figure 9
shows the best results achieved for both cases. For the
large range, a small alpha value such as 𝛼	 = 	0.1 and for
the small range a large alpha value such as 𝛼	 = 	2 could
be used instead of changing the degree. However, it seems
better to decrease the degree instead of increasing the al-
pha, as shown in Table 4.

The polynomial regression works as expected: If the
degree is too high, the method adjusts too accurately to the
calibration points and does not 12eneralize well for other
data. The same problem occurs with the RANSACRegres-
sor. The SVR has the most parameters, but even if we use
the one that leads to the smallest extrapolation error, it is
only slightly better than the ridge regressor when calibrat-
ing only on a small area. Moreover, it performs worse on
the large calibration pattern.

Figure 9. Results for all methods with closer look at the different
error inside and outside the calibration range depending on the
use of the subject small or large calibration pattern. RANS stands
for RANSAC, l for linear, p for poly and r for rbf. (a) Subject
small (b) Subject huge. Note the exponential scale.

Journal of Eye Movement Research Severitt, B., Kübler, T. & Kasneci, E. (2023)
16(4):2 Testing different function fitting methods for mobile eye-tracker calibration

 13

Table 4. Best extrapolation results of each method for the calibration patterns Subject small and huge with their corresponding param-
eters. The standard deviation is given in the parentheses.

Method Calibration Parameter Inside (°) Outside (°)

Lasso Subject small (2, 0.0001) 0.879	(±0.401) 7.112	(±4.348)

PolyReg Subject small (2,) 0.657(±0.306) 5.849	(±4.054)

RANSAC Subject small (1,) 𝟎. 𝟒𝟓𝟐	(±0.126) 4.270	(±2.960)

Ridge Subject small (2, 0.0001) 0.562	(±0.302) 5.930	(±3.918)

SVR Subject small (‘poly’, 1, 0.01, 0.001) 0.596	(±0.310) 𝟒. 𝟏𝟕𝟕	(±2.886)

Lasso Subject huge (5, 0.001) 𝟎. 𝟖𝟖𝟖	(±0.480) 2.537	(±1.716)

PolyReg Subject huge (3,) 1.112	(±0.847) 2.070	(±1.275)

RANSAC Subject huge (2,) 0.904	(±0.468) 3.588	(±1.964)

Ridge Subject huge (3, 0.0001) 0.900	(±0.641) 𝟏. 𝟕𝟖𝟗	(±0.985)

SVR Subject huge (‘poly’, 1, 1, 0.0001) 1.320	(±0.707) 2.770	(±1.572)

Experimental Results
Figure 10 shows the results of the experiment (bottom)

and the simulation with the same calibration and test pat-
terns as the experiment (top). Note that in the case of the
simulation, 100 iterations were performed for each method
and subject sample, while in the real experiment the sub-
ject only performs one calibration and one validation. For
this reason, we can see the error bars created only for the
simulation. In both scenarios, the methods have similar re-
sults for the different subjects. The most striking observa-
tion on the real data is that the mean squared error (MSE)
for Subjects S5 and S6 is clearly lower than for the other
subjects. There are two possible explanations for this. The
first is that the measurement errors in the extracted gaze
vectors are lower than for the others. The second is that the
calibration and test patterns are more like each other. Since
this effect does not occur in the simulation scenario, the
first reason is more likely because a minor error rate in in-
dividual participants is possible, while it is very unlikely
that only small errors occur in 100 simulations.

Furthermore, the performance of the SVR seems to be
better than that of the other methods, this can be seen

especially in the simulation (𝑝	 < 	0.001 except of Ridge
for Subject 2 with 𝑝	 = 	0.004). This is a different result
than in the previous analyses. One possible reason for this
is that the calibration patterns are very similar to the test
patterns due to the design of the experiment.

Figure 10. Comparison of the results of the simulation and the
real-world experiment with an exponential scale of the MSE.

Journal of Eye Movement Research Severitt, B., Kübler, T. & Kasneci, E. (2023)
16(4):2 Testing different function fitting methods for mobile eye-tracker calibration

 14

With the exception of SVR, ridge regression seems to
outperform the other methods mostly (𝑝	 < 	0.001). In
terms of numbers, the mean MSE of the ridge regression
is for the simulation about 20% better than that of the usu-
ally used polynomial regression which is a significance
improvement (𝑝	 < 	0.001). In the real-world experiment,
it is on average about 15% better. The differences are quite
small in S1 and S3, but they are clearly visible in the
others.

Limitations
In this work, we compared the simulated Gaze Vectors

with Look's system. Accordingly, the systematic error was
also created. If a different system is used, the systematic
error may also change. This must then be added to the error
free Gaze Vectors like the systematic error used in this
work. In addition, we compared the simulated gaze vectors
with real gaze vectors recorded in calibration sessions in a
room. This way, erroneous measurements that can occur,
for example, due to lighting conditions or because the par-
ticipants do not follow the target properly, are not taken
into account. Only the systematical, mismatching and the
noise error are relevant in our simulation, which we found
in our real data.

Another limitation is that the real-world study has only
seven participants. This is too few to be able to make sta-
tistical statements, which is why in this work they only
serve as a proof of concept for the transferability of the
simulation results to the real world.

Conclusions
In this paper, the focus is on looking at different meth-

ods for mapping measured gaze vectors onto the scene
video of a mobile eye tracker. For a simulation of gaze
vectors, we proposed different types of noise and measure-
ment errors, such as decreased overall precision, location
dependent precision loss as well as false pupil detection.
This allowed us to examine the four methods of polyno-
mial, lasso, ridge and support vector regression to see how
well they perform under different mixtures of noise.

Overall, ridge regression robustly showed good results
over a broad spectrum of parameters, especially if the pre-
cision error of the eye tracker is not too large and the cali-
brated area not too small. In addition, we observed that the
ridge regression does not suffer in accuracy when the de-
gree of the polynomial is increased, as can be observed for
normal polynomial regression.

By adjusting the simulation parameters to match the
expected real-world data characteristics, the optimal map-
ping function for a specific device or specific recording
conditions can be determined.

In this work, we focus on head-mounted eye trackers,
so the evaluation mainly discusses the results of Smooth
Pursuit calibration patterns. However, this simulation ap-
proach could also work for remote eye trackers, which of-
ten use n-point calibrations. For example, Figure 6 shows
that the results for Ridge and Lasso are also good.

Acknowledgments
We acknowledge support from the Open Access Pub-

lication Fund of the University of Tübingen.

References

Atchison, D. A. (2017). Axes and angles of the eye,

volume one. In P. Artal, Handbook of visual
optics (S. 455-467). CRC Press.
https://doi.org/10.1201/9781315373034

Blignaut, P. (January 2014). Mapping the Pupil-Glint

Vector to Gaze Coordinates in a Simple Video-
Based Eye Tracker. Journal of Eye Movement
Research, 7. https://doi.org/10.16910/jemr.7.1.4

Blignaut, P. (2016). Idiosyncratic feature-based gaze

mapping. Journal of Eye Movement Research, 9.
https://doi.org/10.16910/jemr.9.3.2

Cortes, C., & Vapnik, V. (1995). Support-vector

networks. Machine learning, 20, 273–297.
https://doi.org/10.1007/BF00994018

Drewes, H., Pfeuffer, K., & Alt, F. (2019). Time- and

Space-Efficient Eye Tracker Calibration.
Proceedings of the 11th ACM Symposium on
Eye Tracking Research & Applications. New
York, NY, USA: Association for Computing
Machinery.
https://doi.org/10.1145/3314111.3319818

Drucker, H., Burges, C. J., Kaufman, L., Smola, A., &

Vapnik, V. (1997). Support vector regression
machines. Advances in neural information
processing systems, 9, 155–161.

Journal of Eye Movement Research Severitt, B., Kübler, T. & Kasneci, E. (2023)
16(4):2 Testing different function fitting methods for mobile eye-tracker calibration

 15

Fischler, M. A., & Bolles, R. C. (June 1981). Random

Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and
Automated Cartography. Commun. ACM, 24,
381–395.
https://doi.org/10.1145/358669.358692

Fuhl, W., Schneider, J., & Kasneci, E. (2021). 1000 Pupil

Segmentations in a Second using Haar Like
Features and Statistical Learning. International
Conference on Computer Vision Workshops,
ICCVW.
https://doi.org/10.1109/ICCVW54120.2021.003
86

Hassoumi, A., Peysakhovich, V., & Hurter, C. (2019).

Improving eye-tracking calibration accuracy
using symbolic regression. Plos one, 14,
e0213675.
https://doi.org/10.1371/journal.pone.0213675

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression:

Biased estimation for nonorthogonal problems.
Technometrics, 12, 55–67.

Kasprowski, P., Harezlak, K., & Stasch, M. (June 2014).

Guidelines for eye tracker calibration using
points of regard., 284.
https://doi.org/10.1007/978-3-319-06596-0_21

Kim, J., Stengel, M., Majercik, A., De Mello, S., Dunn,

D., Laine, S., . . . Luebke, D. (2019). Nvgaze:
An anatomically-informed dataset for low-
latency, near-eye gaze estimation. Proceedings
of the 2019 CHI Conference on Human Factors
in Computing Systems, (S. 1–12).
https://doi.org/10.1145/3290605.3300780

Kübler, T. C. (December 2021). Look!

Blickschulungsbrille: Technical specifications.
Tech. rep., Look! ET.

Nair, N., Kothari, R., Chaudhary, A. K., Yang, Z., Diaz,

G. J., Pelz, J. B., & Bailey, R. J. (2020). RIT-
Eyes: Rendering of near-eye images for eye-
tracking applications. ACM Symposium on
Applied Perception 2020, (S. 1–9).
https://doi.org/10.1145/3385955.3407935

Narcizo, F. B., dos Santos, F. E., & Hansen, D. W.
(2021). High-Accuracy Gaze Estimation for
Interpolation-Based Eye-Tracking Methods.
Vision, 5. https://doi.org/10.3390/vision5030041

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., . . . Duchesnay, E.
(2011). Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research,
12, 2825–2830.

Santini, T., Fuhl, W., Geisler, D., & Kasneci, E.

(February 2017). EyeRecToo: Open-Source
Software for Real-Time Pervasive Head-
Mounted Eye-Tracking. 12th Joint Conference
on Computer Vision, Imaging and Computer
Graphics Theory and Applications (VISIGRAPP
2017).
https://doi.org/10.5220/0006224700960101

Santini, T., Niehorster, D. C., & Kasneci, E. (June 2019).
Get a Grip: Slippage-Robust and Glint-Free
Gaze Estimation for Real-Time Pervasive Head-
Mounted Eye Tracking. Proceedings of the 2019
ACM Symposium on Eye Tracking Research &
Applications (ETRA).
https://doi.org/10.1145/3314111.3319835

Tibshirani, R. (1996). Regression Shrinkage and

Selection via the Lasso. Journal of the Royal
Statistical Society. Series B (Methodological),
58, 267–288. https://doi.org/10.1111/j.2517-
6161.1996.tb02080.x

Wood, E., Baltrušaitis, T., Morency, L.-P., Robinson, P.,

& Bulling, A. (2016). Learning an appearance-
based gaze estimator from one million
synthesised images. Proceedings of the Ninth
Biennial ACM Symposium on Eye Tracking
Research & Applications, (S. 131–138).
https://doi.org/10.1145/2857491.2857492

Journal of Eye Movement Research Severitt, B., Kübler, T. & Kasneci, E. (2023)
16(4):2 Testing different function fitting methods for mobile eye-tracker calibration

 16

Appendix
Calculation of the error in degrees
The target and estimate points 𝑝.)E! , 𝑝!0. ∈ 	 [0, 1]+

give the proportion of the horizontal and vertical axis to
determine where the point is in the camera's image. The
following describes how to calculate the angle between the
true point and the estimated point. The coordinates of the
camera 𝑐 ∈ 	ℝ#, the distance 𝑑 ∈ 	ℝ to the plane in which
the viewpoint moves, the x-coordinates on the plane of the
left and right image edge 𝑥F , 𝑥) ∈ 	ℝ and the y-coordinates
on the plane of the top and bottom image edge 𝑦. , 𝑦@ 	 ∈ 	ℝ
are also known. The formula 𝑡 is now given as:

𝑡(𝑝) = 	�
𝑝/ ⋅ 𝑑' + 𝑥F
𝑝" ⋅ 𝑑- + 𝑦@
𝑑 + 𝑐G

�

Here 𝑑' 	= 	 𝑥) 	−	𝑥F is the distance between the left and
right edge of the image on the plane, 𝑑- 	= 	𝑦. 	−	𝑦@ is the
distance between the bottom and the top, 𝑐G is the z-coor-
dinate of the camera and 𝑝/ and 𝑝" are the x- and y-coor-
dinates of the point to be transformed.

With this, the direction vectors 𝑑.)E! , 𝑑!0. ∈ ℝ# from
the camera position to the points 𝑝.)E! and 𝑝!0. can be cal-
culated:

𝑑.)E! = 𝑡(𝑝.)E!) − 𝑐	
𝑑!0. = 𝑡(𝑝!0.) − 𝑐

And now the angle 𝛼!))() between the true and the esti-
mated point is given:

𝛼!))() = 𝑎𝑟𝑐𝑐𝑜𝑠 -
𝑑.)E!, ⋅ 𝑑!0.

‖𝑑.)E!‖+ ⋅ ‖𝑑!0.‖+
0

Unity
Unity is a cross-platform game engine and develop-

ment environment. It provides a large toolkit for 2D and
3D simulation and game programming. In each scene of
the project, there is usually a camera object that defines the
player's point of view. In the case of this work, this is the
scene camera, which we need to define where the view-
point must be positioned to match the desired pattern from
the scene camera's point of view. In contrast, the view of
the eye cameras are not needed, so we use cubes as dum-
mies to calculate the necessary angles for the gaze vectors
using functions from Unity. In content of this work the im-
portant things are:

- Create a scene by drag-and-drop of game objects
like spheres and cubes.

- Manipulate the scene using C#-scripts.

- Easily switch between the world coordinate sys-
tem and the camera’s point of view.

- Efficient calculation and extraction of data with
unity's integrated functions.

Journal of Eye Movement Research Severitt, B., Kübler, T. & Kasneci, E. (2023)
16(4):2 Testing different function fitting methods for mobile eye-tracker calibration

 17

Aruco-marker
An Aruco marker is an easy to detect image with a

black border. The inner consists of black and white
squares. The black border facilitates its fast detection in
the image. Figure 11 shows an example of an aruco-
marker.

Figure 11. Example of an aruco-marker.

Influence of the precision error to the Meth-
ods

Here are diagrams for all methods used, showing the
influence of the precision error on the mean error.

Figure 12. The diagrams show the course of the error with in-
creasing precision error. Except for the parameters indicated in
the legend, the parameters with the best results are used.

