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Introduction 
Driving is a complex dynamic task in which the driver 

must continuously process information from the environ-
ment. This is necessary to control the speed and direction 
of the vehicle; to gather information about other vehicles, 
road signs or potential hazards; and to make decisions 
about the route to be taken. Theoretical models of driving 
activity have been developed to account for this complex-

ity. Michon (1985), for example, proposed dividing driv-
ing activity into three hierarchically organised levels: the 
strategic level, the tactical level and the operational level. 
The strategic level corresponds to the definition of general 
driving goals, such as itinerary selection. At the tactical 
level, objects are recognised, danger is assessed and ac-
quired rules are used to make short-term decisions. These 
decisions are implemented at the operational level, which 
is underpinned by online perceptual-motor loops. 

During manual driving, drivers perform all the sub-
tasks associated with the three control levels. However, 
during automated driving, some tasks are transferred to the 
automation. Then, the driver's role depends on the level of 
automation, as defined by the Society of Automotive En-
gineers (SAE International, 2016). When lateral and lon-
gitudinal control are delegated to automation (SAE level 
2), drivers become system supervisors rather than actors. 
This transformation of the driver's role changes their visual 
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processing of the environment and their interaction with 
the vehicle (Mole et al., 2019). 

At SAE Level 2, drivers are required to maintain their 
attention on the road so that they can regain manual control 
of the vehicle without delay at all times. However, the 
visuo-motor coordination necessary for the online control 
of steering and braking is no longer required, which con-
stitutes a neutralization of the operational control loop. 
Land and Lee (1994) showed that eye movements typically 
preceded steering-wheel movements by 800 ms in manual 
driving. Once control of the steering wheel is delegated to 
the automaton, this perceptual-motor coupling is no longer 
necessary. This explains why even in the absence of a sec-
ondary task, and with the instruction to monitor the driving 
scene, changes in gaze behaviour were observed under 
such conditions. Drivers who no longer have active control 
of the steering wheel tend to neglect short-term anticipa-
tion of the road ahead; they produce more distant fixations, 
known as “look-ahead fixations” (Mars & Navarro, 2012; 
Schnebelen et al., 2019). 

At SAE Level 3, drivers might no longer actively mon-
itor the driving scene. When the system perceives that it 
can no longer provide autonomous driving, it issues a take-
over request, allowing the driver a time budget to restore 
situational awareness and regain control of the vehicle. 
Failure to monitor the driving scene for an extended period 
is tantamount to neutralizing both the tactical control loop 
and the operational loop. During this time, drivers can en-
gage in secondary tasks. The distraction generated by the 
secondary task results in less attention being directed to-
wards the road than in the case of manual driving (Barnard 
& Lai, 2010; Carsten et al., 2012; Merat et al., 2012). One 
possible way to measure this shift of attention is to com-
pute and compare the percentage of time spent in road cen-
tre (PRC; Victor et al., 2005). Low PRC is associated with 
drivers being out of the operational control loop (Carsten 
et al., 2012; Jamson et al., 2013). However, even without 
a secondary task, sampling of the driving environment is 
affected, with higher horizontal dispersion of gaze during 
automated driving compared to manual (Damböck et al., 
2013; Louw & Merat, 2017; Mackenzie & Harris, 2015). 
All previous studies point to the same idea: the gaze is di-
rected more towards the peripheral areas than the road dur-
ing automated driving. However, observations based on 
the angular distribution of gaze only capture an overall ef-
fect and do not consider the gaze dynamics. For this pur-
pose, a decomposition of the driving scene into areas of 

interest (AOIs) may be more appropriate. The decomposi-
tion into AOIs for the analysis of gaze while driving has 
been carried out in several studies (Carsten et al., 2012; 
Jamson et al., 2013; Navarro et al., 2019), but only a few 
studies have examined the transitions between the differ-
ent AOIs. Such a method was implemented by Underwood 
et al. (2003) to determine AOI fixation sequences as a 
function of driver experience and road type in manual driv-
ing. Gonçalves et al. (2019) similarly proposed analysing 
the fixation sequences during lane-change manoeuvres. 
The present study uses this approach to assess the driver’s 
gaze behaviour during an entire drive of either manual or 
automated driving.  

Previous documented studies have examined the con-
sequences of automated driving for drivers' visual strate-
gies. For example, PRC has been shown to be low during 
automated rides. The present study uses the opposite meth-
odological approach, aiming to determine the state of au-
tomation (i.e., manual or automated) based on the driver's 
spontaneous visual strategies. Of course, in a real driving 
situation, the state of automation of the vehicle is known 
and does not need to be estimated. Estimating the state of 
automation is therefore not an objective in itself, or at least 
not an objective with a direct applicative aim. Predicting 
the state of automation must be considered here as an orig-
inal methodological approach that aims above all to iden-
tify the most critical oculometric indicators to estimate the 
consequences of automation on visual strategies. This 
methodology, if conclusive, could be useful for monitoring 
other driver states and understanding the underlying visual 
behaviour. 

Driver visual strategies were considered in several 
ways. The analysis was performed by first considering 
only the PRC, and then a set of static indicators (percent-
age of time spent in the different AOIs) and/or dynamic 
indicators (transitions between AOIs). Partial Least Square 
(PLS) regressions were used to estimate a score between -
1 (automated driving) and 1 (manual driving). This esti-
mate of the state of automation from the visual indicators 
considered was used to classify the trials, with a calcula-
tion of the quality of the estimate in each case.  

The objective was to determine whether considering 
the PRC was sufficient to discriminate between automated 
and manual driving. The extent to which the inclusion of 
other static and dynamic indicators would improve the 
driver-state estimation was also assessed. We hypothe-
sised that considering the gaze dynamics would improve 



Journal of Eye Movement Research Schnebelen, D., Charron, C., & Mars, F. (2021) 
12(3):10 Estimation of vehicle automation state from visual strategies 

  3 

the ability to distinguish between manual and automated 
driving.  

Methods 
Participants 
The study sample included 12 participants (9 male; 3 

female) who had a mean age of 21.4 years (SD = 5.34). 
They all had normal or corrected vision (with contact 
lenses only). All participants held a French driver’s li-
cence, with mean driving experience of 9950 km/year (SD 
= 5500). A signed written informed consent form, sent by 
e-mail one week before the experiment and printed for the 
day of experimentation, was required to participate in the 
study.  

Materials 
The study used a fixed-base simulator consisting of an 

adjustable seat, a digital dashboard, a steering wheel with 
force feedback, a gear lever, a clutch, an accelerator and 
brake pedals (see figure 1). The driving scene was gener-
ated with SCANeR Studio (v1.6) and displayed on three 
large screens in front of the driver (field of view ~= 120°). 
An additional screen, simulating a central console, pro-
vided information about the vehicle automation mode. 

 
Figure 1: Driving simulator environment 

Gaze data were recorded using a Smart Eye Pro (V5.9) 
eye-tracker with four cameras (two below the central 
screen and one below each peripheral screen). The calibra-
tion of the eye-tracker occurred at the start of the experi-
ment and required two steps. In the first step, a 3D model 
of the driver’s head was computed. In the second step, the 
gaze was computed using a 12-point procedure. The over-
all accuracy of calibration was 1.2° for the central screen 

and 2.1° for peripheral areas. Gaze data and vehicle data 
were directly synchronised at 20 Hz by the driving simu-
lator software. 

Procedure 
After adjusting the seat and performing the eye-tracker 

calibration, participants were familiarised with the simula-
tor by driving manually along a training track. Once this 
task was completed, instructions for automated driving 
were given orally. These were as follows: when the auton-
omous mode was activated, vehicle speed and position on 
the road would be automatically controlled, taking into ac-
count traffic, speed limits and overtaking other cars if nec-
essary. To fit with SAE level 3 requirements, drivers were 
told that the automated function would only be available 
for a portion of the road, with the distance and time re-
maining in the autonomous mode displayed on the left side 
of the human-machine interface (HMI). When automation 
conditions were not met, the system would request the 
driver to regain control of the vehicle.  

Two use cases were presented to the participants. In the 
first case, the vehicle was approaching the end of the auto-
mated road section. The drivers received mild auditory and 
visual warning signals and had 45 s to regain control. The 
second use case was an unexpected event, such as the loss 
of sensors. In this case, a more intense auditory alarm and 
a different pictogram were displayed, and drivers had only 
8 s to resume control. All the pictograms (figure 2) and 
sounds used by the HMI were presented to participants at 
the end, before they started a second training session.  

 
Figure 2: Pictograms displayed on the HMI. A: autonomous 
driving available; B: autonomous driving activated; C: take-

over request (8 s); D: take-over request (45 s) 
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During the second training session, participants first 
experienced manual driving (with cruise control, 
corresponding to SAE level 1) and then automated driving 
(SAE level 3: conditional automation). At level 3, drivers 
experienced four transitions from automated to manual 
driving, two in each use case presented in the instructions. 
All takeovers were properly carried out during the training 
session. 

Then, after a short break, the experimental phase 
started. All participants experienced the manual and 
automated conditions and the order of presentation was 
counter-balanced. The scenario was similar in the two 
driving conditions and comprised an 18-min drive in a 
highway context. Most of the road was a 40-km two-lane 
dual carriageway, with a speed limit of 130 km/h, in 
accordance with French regulations. Occasional changes 
in road geometry (temporary three-lane traffic flow, 
highway exits and slope variation) and speed limits (130 
km/h to 110 km/h) were included to make the driving less 
monotonous. In both directions on the highway, traffic was 
fluid, with eight overtaking situations.  

A critical incident occurred at the 18th minute of 
automated driving. Thereafter, a questionnaire was 
administered. However, these results are not reported as 
they are beyond the scope of this paper, which merely aims 
to characterise differences in gaze behaviour for manual 
versus automated conditions. Therefore, only the data 
common to both conditions is considered here; that is, 17 
min of driving time, during which no major events 
occurred.  

Data Structure and Annotations 
The driving environment was divided into 13 AOIs as 
shown in figure 3. These were as follows: 

- The central screen contained six areas: the central 
mirror (area CM); the road centre (RC), defined as a circu-
lar area of 8° radius in front of the driver (Victor et al., 
2005); and four additional areas defined relative to the 
road centre (Up, Left, Down and Right; Carsten et al., 
2012).  

- Each peripheral screen contained two areas: the lat-
eral mirror (LM, RM) and the remaining peripheral scene 
(LS, RS). 

- The dashboard (D). 

-  The HMI.  

- All gaze data directed outside of the stipulated areas 
were grouped as an area called “Others”. 

 
Figure 3: Division of the driving environment in 13 areas of in-

terest 

The percentage of time spent in each AOI was com-
puted, as was a matrix of transitions between AOIs. The 
transition matrix indicated the probability to shift from one 
AOI to another or to remain in the same AOI. Probabilities 
were estimated by the observations made on the partici-
pants. As there were 13 AOIs that defined the entire world, 
the transition matrix was a 13*13 matrix.  

24 statistical units were considered (= 12 participants * 
2 driving conditions). For each of them, 182 visual indica-
tors (= 13*13 transitions + 13 percentage of time on each 
AOI) were calculated, forming a complete set of data in-
cluding both static and dynamic gaze indicators. The com-
plete matrix was therefore 24*182 and was denoted as XDS. 
When only the transitions were considered, the matrix was 
denoted as XD and its size was 24*169. When only the per-
centages of time spent on each AOI were considered, the 
matrix was 24*13 and was denoted as XS. Another vector, 
constituted of only the PRC, was also computed (size: 
24*1) and was labelled XPRC.  

All the matrices were centred and reduced for the next step 
of the analysis. As described below, this entailed PLS re-
gressions. 

The data were structured according to the aim of pre-
dicting the automation state (Y) from either XPRC, XS, XD 
or XDS. The automation state was defined as follows: it was 
valued 1 for manual driving and -1 for automated driving.  

The appropriate model of prediction was chosen with 
respect to certain constraints. First, the number of visual 
indicators (max 182 for XDS) available to explain Y was 
notably higher than the number of observations (n=24). 
Second, the visual indicators were correlated. Indeed, with 
the driving environment divided into 13 AOIs, the percent-
age of time spent on 12 AOIs enabled calculating the per-
centage of time spent on the 13th AOI. In mathematical 
terms, X might not be full rank. Given this correlation be-
tween variables, a simple linear model was not appropri-
ate.  
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Considering these constraints, the PLS regression 
model was selected. PLS regression yields the best estima-
tion of Y available with a linear model given the matrix X 
(Abdi, 2010). All PLS regressions performed in this study 
used the PLS regression package on R (R Core Team, 
2018).  

PLS regression is based on a simultaneous decomposi-
tion of both X and Y on orthogonal components. Once the 
optimal decomposition is found, the number of visual in-
dicators is systematically reduced to consider only relevant 
visual indicators for the prediction. Ultimately, the most 
accurate model – involving optimal decomposition and 
only the most relevant visual indicators – is set up to pro-
vide the estimation of Y, based on a linear combination of 
the relevant visual indicators. Validation was performed 
using a leave-one-out procedure.  For more details, see the 
Appendix section. 

Data Analysis 
Three sequential stages composed the analysis:  

- The first step only considered the percentage of time 
spent on each AOI individually. The difference between 
manual and automated driving was evaluated using paired 
t-tests, corrected with the Holm-Bonferroni procedure to 
control the family-wise error rate. 

- In the second step, prediction models of the automa-
tion state were developed using PLS regression. Several 
models were developed, depending on the nature of visual 
indicators that served as input: PRC only (XPRC), static in-
dicators only (XS), dynamic indicators (XD) or a combina-
tion of static and dynamic indicators (XDS).  

- In the final step, a binary classification of the predic-
tion was performed. A given statistical individual was 
classified as “automated” if its prediction was negative and 
as “manual” in the opposite case. The number of errors was 
then considered. 

Results 
Distribution of visual attention as a function 

of the automation state 

The percentage of time spent in each of the 13 AOIs during 
the entire drive is presented in table 1. 

Table 1: Distribution of visual attention for manual and auto-
mated drives.  

Percentage of 
time spent on 

each AOI 

Manual 
Driving 

Automated 
Driving 

Auto - Manu 
Difference  

Road Centre 67.45 40.76  -26.69 
Right Mirror 0.01 0.07 0.06 
Left Mirror 0.137 0.31 0.173 
HMI  0.01 0.31 0.3 
Down Area 0.32 0.67 0.35 
Left Area 1.561 2.09 0.529 
Right Area 2.91 4.46 1.55 
Dashboard 2.08 4.45 2.37 
Central Mirror 4.084 6.9 2.816 
Up Area 14.74 17.99 3.25 
Right Screen  2.679 6.78 4.101 
Left Screen 2.6 7.14 4.54 
Others Area 1.48 8.03 6.55 

 

During manual driving, participants spent about 27% 
more time in the Road Centre area than during automated 
driving (p<.001). Conversely, automated driving was as-
sociated with more gazing directed all other areas, in par-
ticular to the left and right peripheral screens, the down 
area and the central mirror, although these differences 
failed to reach statistical significance (p<.10). 

Predictions of the automated state with PLS 
regression 

Several predictions were performed with PLS predic-
tions, depending on the input matrix. These were as fol-
lows: XPRC (PRC only), XS (static indicators only), XD (dy-
namic indicators) or the combination of dynamic and static 
indicators (XDS). Estimations obtained with the PLS re-
gression method are presented in figure 4. 
 

Results showed that considering PRC alone provided a 
rough estimation of the automation state, with a mean 
square error of prediction (MSEP) of 0.42. It gave rise to 
three classification errors (figure 4-A). When all static in-
dicators were considered as input, seven were selected for 
PLS regression (table 2, column 1). This analysis yielded 
a more accurate estimation of the automation state than 
prediction based on PRC alone; the MSEP was halved and 
there was no classification error. However, four statistical 
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individuals (1, 3, 8 and 17) remained close to the classifi-
cation threshold (figure 4-B). 
 

When dynamic indicators alone were considered, 32 
(out of 169) indicators were selected by the PLS regres-
sion. The prediction results were greatly improved, with an 
MSEP of 0.04. Moreover, the manual and automated driv-
ing conditions could be more clearly discriminated (figure 
4-C). Considering static and dynamic indicators together 
yielded the lowest prediction error (MSEP = 0.02), alt-
hough the pattern of results was quite similar to those ob-
tained for dynamic PLS (figure 4-D). It should be noted 

that the indicators selected by the combined static and dy-
namic PLS were the same as those selected for static PLS 
and for dynamic PLS. 
 

The PLS regression coefficients for each visual indica-
tor retained in the different predictions are presented in ta-
ble 2. The sign of the coefficients indicates the direction of 
their contribution to the estimate. A positive coefficient 
tends to increase the estimated score and is therefore a fea-
ture of manual driving. A negative coefficient decreases 
the estimated score, which corresponds to automated driv-
ing. A coefficient’s absolute value indicates its importance 
for the prediction, with large coefficients contributing 
strongly to the estimation.

 

 
Figure 4: Estimations (markers) of the automation state from: A, PRC only; B, static indicators only; C, dynamic indicators only; D, 
static and dynamic indicators. The marker type indicates the real automation state: circle for automated driving, star for manual driv-
ing. The MSEP and number of visual indicators retained during the PLS process (N) are annotated in text. Errors of classifications 
(relative to the classification threshold in black) are indicated in red. 
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Table 2: PLS regression coefficients per visual indicator. A positive coefficient corresponds to a visual indicator characteristic of 
manual driving. A negative coefficient is associated with automated driving  

Visual Indicator Static Dynamic Static  
 Dynamic 

Percentage of time spent in the Road Centre 0.257   0.058 
Percentage of time spent in the Dashboard Area -0.149   -0.034 
Percentage of time spent in the Others Area -0.171   -0.039 
Percentage of time spent in the Left Screen -0.191   -0.043 
Percentage of time spent in the Right Screen -0.194   -0.044 
Percentage of time spent on the Central Mirror -0.203   -0.046 
Percentage of time spent in the Down Area -0.202   -0.046 
Transition from the Left Area to the Road Centre   0.064 0.051 
Transition from the Up Area to the Road Centre   0.058 0.047 
Transition from the Right Screen to the Road Centre    0.057 0.045 
Transition from the Down Area to the Road Centre   0.055 0.044 
Transition from the Right Area to the Road Centre   0.052 0.042 
Transition from the Left Screen to the Road Centre    0.052 0.041 
Transition from the Dashboard Area to the Left Screen    0.048 0.039 
Transition from the Right Mirror to the Left Mirror   0.046 0.037 
Transition from the Right Screen to the Down Area    0.046 0.037 
Transition from the Others Area to the Road Centre   0.046 0.037 
Transition from the Road Centre to the Down Area   0.045 0.036 
Transition from the HMI to the Central Mirror    0.044 0.035 
Transition from the Dashboard to the Road Centre   0.041 0.033 
Transition from the Others Area to the Dashboard    0.042 0.033 
Transition from the HMI to the Others Area   -0.033 -0.025 
Transition from the Right Area to the Dashboard   -0.040 -0.032 
Transition from the Central Mirror to the Dashboard   -0.040 -0.032 
Transition from the Down Area to the HMI   -0.044 -0.035 
Transition from the Left Area to the Central Mirror   -0.046 -0.036 
Transition from the Road Centre to the HMI   -0.046 -0.037 
Transition from the Central Mirror to the Left Mirror   -0.047 -0.037 
Transition from the Others Area to the Others Area   -0.046 -0.037 
Transition from the Up Area to the Up Area   -0.048 -0.039 
Transition from the Road Centre to the Others Area   -0.049 -0.039 
Transition from the Down Area to the Down Area   -0.052 -0.042 
Transition from the Central Mirror to the Right Screen   -0.056 -0.044 
Transition from the Others Area to the Left Screen   -0.057 -0.044 
Transition from the Left Area to the Right Area   -0.059 -0.047 
Transition from the Left Area to the Left Area   -0.057 -0.05 
Transition from the Down Area to the Central Mirror    -0.067 -0.052 
Transition from the Road Centre to the Central Mirror    -0.069 -0.055 
Transition from the HMI to the HMI    -0.081 -0.065 
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In accordance with the analysis presented in table 1, the 
only static indicator selected by the PLS analyses as a fea-
ture of manual driving was the percentage of time spent 
looking at road centre. By contrast, automated driving was 
characterised by a combination of looking at the peripheral 
areas (left and right screen), the dashboard, Others, central 
mirror and the down area. 
 

Both dynamic PLS and the combined static and dy-
namic PLS selected 32 AOI transitions, 14 related to man-
ual driving and 18 related to automated driving. To facili-
tate the identification of dynamic visual patterns character-
istic of manual or automated driving, we performed a final 
analysis of the AOI transitions. We examined whether the 
gaze mostly entered or exited each AOI. The difference 
between the number of transitions entering the AOI and 
the number of transitions exiting the AOI was calculated. 
If the resulting value was positive, the AOI was classed as 
an entering AOI; if the value was negative, the AOI was 
classed as an existing AOI. The results are presented in 
figures 5 and 6. 

 

 
Figure 5: Visualisation of exiting AOIs (blue) and AOIs (or-

ange) for manual driving 

 
Figure 6: Visualisation of exiting AOIs (blue) and entering 

AOIs (orange) for automated driving. 

The analysis of gaze dynamics during manual driving 
showed that many more glances were coming in than go-
ing out the road centre area. To a lesser extent, the area 
just below (down area) and the left and central mirror 
also received more glances in than out. All other AOIs 
had more exiting glances, apart from the left screen, 
which was at equilibrium. 
 

Automated driving was characterised by many 
glances moving away from the road (road centre, left area 
and down area), and a favouring of areas that provided 
information about the vehicle’s status (dashboard, HMI) 
and the adjacent lane (left mirror, left screen). More 
glances entered the areas not related to the driving task 
(Others, right screen) than exited. 

Discussion 
The aim of this work was to try to predict, on the basis 

of drivers' visual strategies, whether they were driving 
manually or in autonomous mode. This estimation allowed 
the identification of the most important visual indicators in 
both driving modes. To do this, we analysed how drivers 
distributed their attention over a set of AOIs that composed 
the driving environment. We considered both static indi-
cators (percentage of time spent on AOIs) and indicators 
of gaze dynamics (matrices of transitions between AOIs). 
The indicators that best predicted the driving mode were 
selected using PLS regression. The quality of the predic-
tion was then evaluated by examining the ability of the 
models to distinguish between the two driving modes with-
out error. 
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The results confirm a recurrent observation in studies 
of visual strategies in autonomous driving situations. That 
is, drivers spend less time looking at the road and more 
time looking at the periphery (Barnard & Lai, 2010; 
Damböck et al., 2013; Louw & Merat, 2017; Mackenzie & 
Harris, 2015). Under the experimental conditions in this 
study, the diversion of the gaze from the road centre area 
was partly in favour of the lateral visual scene, the central 
rear-view mirror, the dashboard and the down area. The 
results can be interpreted in relation to the concept of situ-
ation awareness (Endsley, 1995). Situational awareness is 
built at three levels. First, drivers must perceive (level 1, 
perception) and understand visual information (level 2, 
comprehension). Drivers must also anticipate future driv-
ing situations (level 3, projection). During automated driv-
ing, in the absence of strong sources of distraction, drivers 
were freed from vehicle control and could therefore take 
information about the driving environment and the state of 
the vehicle at leisure. The dispersed gaze observed could 
thus have contributed to maintaining better situational 
awareness. However, an increase in the number of glances 
directed at places not relevant to the driving task (Other 
area) was also reported. Hence, even in the absence of a 
major source of distraction or secondary task, some disen-
gagement was observed.  

In comparison, manual driving appeared stereotypical, 
with more than two thirds of the driving time spent looking 
at the road ahead. There were also many transitions back 
to this area once the gaze had been turned away from it. 
During manual driving, visuomotor coordination is essen-
tial: gaze allows the anticipation of the future path and 
leads steering actions (Land & Lee, 1994; Mars, 2008; 
Wilkie et al., 2008). It has been shown that autonomous 
driving makes visuomotor coordination inoperative, which 
can have deleterious consequences in the event of an un-
planned takeover request (Mars & Navarro, 2012; Mole et 
al., 2019; Navarro et al., 2016; Schnebelen et al., 2019).  

Previous work has shown that automation of driving is 
associated with reduced PRC (Carsten et al., 2012; Jamson 
et al., 2013). Here, we examined the corollary by attempt-
ing to predict the state of driving automation based on the 
observed PRC. The results showed that PRC was indeed a 
relevant indicator. Categorising drivers on this criterion 
showed fairly accurate results, although with some error. 
By considering all areas of potential interest in driving, the 
quality of prediction increased significantly. The improve-
ment in prediction notably depended on the nature of the 

indicators. Although it was possible to categorise – with-
out error – the mode of driving according to the percentage 
of time spent on all AOIs, the quality of prediction was far 
higher when we also considered the dynamics of transi-
tions between AOIs. The MSEP was reduced 6-fold using 
the dynamic approach compared to the static approach. 
Moreover, adding static indicators to dynamic indicators 
yielded the same pattern of results as that obtained from 
dynamic indicators alone, with slightly less prediction er-
ror.  

These results confirm the hypothesis that gaze dynam-
ics are strongly impacted by automation of the vehicle. 
Specifically, gaze dynamics appear to explain the essence 
of the distinction between manual and autonomous driv-
ing.  

As mentioned, considering the transitions between 
AOIs improved the prediction of the driving mode. It also 
enabled refining the visual patterns characteristic of man-
ual or automated driving. For example, during manual 
driving, static indicators highlighted the predominance of 
information obtained from the road centre area. Account-
ing for the gaze dynamics confirmed this observation but 
also revealed a subtle imbalance in terms of reception ver-
sus emission for the left and central rear-view mirrors. 
Even if glances at the mirrors do not account for substan-
tial visual processing time, they might be essential for the 
driver to create a mental model of the driving environment. 

This study developed a methodology to analyse the in-
fluence of the level of automation based on a large set of 
visual indicators. This methodology is based on PLS re-
gression. Other modeling approaches, such as Long Short-
Term Memory (LSTM) networks or Hidden Markov Mod-
els (HMMs), could lead to comparable results in terms of 
prediction quality. However, non-parametric approaches 
such as those using neural networks might prove less use-
ful to achieve the objective of our study, which was to de-
termine the most relevant visual indicators to discriminate 
driving conditions. This problem of interpretation may not 
arise with HMMs, which are quite common in the analysis 
of visual exploration of natural scenes (Coutrot et al., 
2018). Nevertheless, to train an HMM requires to set prior 
probabilities, which is not the case with PLS regression.  

The approach developed in this study could potentially be 
used to detect other driver states. For example, it could be 
a useful tool for detecting driver activity during automated 
conditional driving (Braunagel et al., 2015). In the event 
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of a takeover request, the method could also be used to as-
sess driver readiness (Braunagel et al., 2017).  During au-
tonomous driving, the driver may also gradually get out of 
the loop, which may lead to a decrease in the quality of 
takeover when it is requested (Merat et al., 2019). Re-
cently, we have shown that PLS modelling can discrimi-
nate between drivers who supervise the driving scene cor-
rectly and drivers who are out of the loop with a high level 
of mind wandering (Schnebelen et al., 2020). The ap-
proach could also be transposed to other areas such as the 
evaluation of the out-of-the-loop phenomenon in aero-
nautics, for example (Gouraud et al., 2017). 

Conclusions 
This study predicted a person’s driving mode from vis-

ual strategies, using PLS regression. The quality of this 
prediction depended essentially on gaze dynamics, alt-
hough the optimal prediction was achieved by examining 
a combination of static and dynamic characteristics. This 
study helps to pave the way for developing algorithms to 
estimate the driver's state in an autonomous vehicle based 
on oculometric data (Gonçalves et al., 2019; Miyajima et 
al., 2015). Driver monitoring is a challenge in the develop-
ment of new generations of these vehicles as it may be es-
sential to assess whether the driver is in the loop or out of 
it, in terms of vehicle control and environmental supervi-
sion (Louw & Merat, 2017). 
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Appendix 
This appendix develops step-by-step the procedure to 

predict the automation state (Y) from a matrix of gaze be-
haviour (X) using PLS regressions. In the experiment, four 
matrixes of gaze behaviour were considered, so this proce-
dure was applied four times.  
 

Step A: Calculating the optimal number of 
components 

Principle: PLS models are based on several orthogonal 
components, which constitute the underlying structure of 
the prediction model. With many components, the model 
is complex and highly accurate but also highly specific to 
the data. By contrast, few components mean a simpler 
model structure; the model may lose accuracy but can be 
more generalizable to other datasets. Thus, an optimal 
compromise in the number of components can prevent data 
overfitting while maintaining high accuracy.  

Application: This compromise was sought by testing 
several numbers of components – from one to 10 compo-
nents. The optimal number would minimize the mean 
square error of prediction (MSEP) with a leave-one-out 
procedure.  

 

Step B: Reducing the number of visual indi-
cators 

In the previous step, an optimal structure of the predic-
tion model was found, considering certain visual indicators 
(depending on the matrix of gaze behaviour) to predict the 
automation state. The aim of this next step was to increase 
the predictive power – that is, the percentage of variance 
in Y that was explained – by selecting fewer indicators that 
were relevant for the prediction. 

Principle: The PLS regression is a linear statistical 
model. Therefore, the relationship between the input ma-
trix (X) and the dependent variable to estimate 𝐘" was lin-
ear: 

𝐘" = 	𝐗 ∗ 𝐂 
where C is the matrix of the regression coefficients. 

Coefficients can be interpreted as follows:  

- Coefficient signs indicate the direction in which a 
visual indicator (from	𝐗) influenced the estimation 
of the automation state (𝐘"). If positive, the score 
increased, meaning that this indicator featured 
mainly in manual driving. By contrast, a negative 
coefficient meant that this indicator featured 
mainly in automated driving. 

- A coefficient’s magnitude (absolute value) indi-
cates the relative importance of each indicator. If 
the magnitude of a coefficient was close to zero, 
the contribution of the visual indicator to the pre-
diction was negligible. By contrast, a large magni-
tude indicated a crucial indicator in the prediction.  

Application: To reduce the number of visual indicators 
of X, coefficient magnitudes were compared with an in-
creasing threshold value, which ranged from 0.01 to 0.2. A 
new PLS regression was computed for each partial matrix 
– that is, a matrix comprising only the indicators whose 
coefficient magnitude exceeded the threshold value. The 
threshold was increased by steps of 0.005 until the percent-
age of variance in Y that was explained by the partial 
model no longer increased. 

At the end of this step, a partial matrix of gaze behavior 
that included only the selected visual indicators was com-
puted. This partial matrix was denoted 𝑿𝒑. 

Step C: Computing the mean square error of 
prediction 

The previous steps found the most appropriate param-
eters for PLS regression models. A new model that consid-
ered those parameters was set up, with its coefficients de-
noted 𝑪𝒑. Then, the estimations (𝒀𝒑() and the MSEP were 
calculated as follows:  

 

(
𝒀𝒑* = 𝑿𝒑 ∗ 𝑪𝒑

	MSEP	 = 1𝐘 − 𝒀𝒑*3"4444444444444	
 

 

 

 


