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Introduction 
Humans tend to direct both of their eyes at roughly 

the same point in 3D space. Binocular saccades and 
smooth pursuit between objects in a 3D scene often ex-
hibit vergence, which means that two eyes move in oppo-
site directions (Cassin et al., 1984) for fixation to coin-
cide with the intended object. In other words, vergence is 
the movement of both eyes towards or away from each 
other, depending on the relative change from the previous 
to the current target. It is often assumed that the fixation 
points of the two eyes are perfectly aligned but it has 
been shown that the eyes first diverge before they con-
verge at the gaze point during fixations (Collewijn et al., 

1995, 1997). Studies on binocular coordination of eye 
movements during reading show that fixation points of 
two eyes vary during reading and disparity in both hori-
zontal and vertical directions were observed (Liversedge 
et al., 2006b; Nuthmann and Kliegl, 2009). There is con-
siderable variation among participants ability to fixate the 
same point in depth, depending on their eye dominance 
and squinting, or even strabismus (when the weak eye is 
off-target). In addition, measurements of pupil positions 
with video-based eye-trackers are very sensitive to varia-
tions in pupil dilation (Hooge et al., 2019), which leads to 
uncertainty over measurements of vergence. 

Many approaches have been proposed to estimate the 
direction of gaze for each eye in physical space, based on 
recorded pupil positions by eye-tracking devices. Using 
these gaze vectors, it is possible to reconstruct the gaze 
point on real three-dimensional stimuli by intersecting 
one or both rays with the fixated object in space, assum-
ing its geometry is known (Hammer et al., 2013; Maurus 
et al., 2014; Wang et al., 2017b). Alternatively, we can 
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attempt to find the point where the two vectors intersect 
with each other in space (Hennessey and Lawrence, 
2009; Maggia et al., 2013; Pfeiffer and Renner, 2014; 
Gutierrez Mlot et al., 2016; Pfeiffer et al., 2016), but in 
3D space two gaze vectors typically do not intersect.  

However, even if the observer experiences looking at 
a point in space with both eyes, the eye rays provided by 
the eye-tracker contain error, for a variety of reasons: 
• data from eye-trackers have an inaccuracy (systemat-

ic error) and introduce imprecision (variable error, or 
noise) onto the signal (Holmqvist et al., 2011; Wang 
et al., 2017a; Niehorster et al., 2018).  

• the inaccuracy is not constant, but varies with pupil 
size (Drewes, 2014) and quantization of the CR in 
the eye camera (Holmqvist et al., 2019).  

• ideally, human gaze direction is controlled to bring 
the object into the fovea centrals (Atchison and 
Smith, 2000), which has a non-negligible extent of 
1.5−2°.  

• it is well-known that in binocular vision, many ob-
servers have a dominant eye which is more accurate-
ly directed towards the target (in about 70 % of the 
cases, the right eye) and a weaker eye, which may be 
considerably off-target (Erkelens et al., 1989; 
Collewijn et al., 1995, 1997), which is called binocu-
lar disparity (strabismus in extreme cases).  

• the resulting unknown and likely non-linear function 
mapping from tracked pupil and CR centers in the 
eye video to lines of sight is approximated using low 
order polynomials (Essig et al., 2006; Holmqvist et 
al., 2011; Cerrolaza et al., 2012).  

 
For these reasons, the two projected eye rays pro-

duced by eye-trackers are generally skewed and have no 
common intersection point in space. In order to calculate 
a point that approximates the expected intersection of the 
rays, the most natural and commonly employed solution 
is to compute the point that has the smallest distance to 
both rays in 3D. Here we call this point the vergence 
point. We derive the necessary equations for this compu-
tation next and then use it for simulating the reconstruc-
tion of vergence points in the presence of systematic 
(accuracy) and variable (precision) errors. We then de-
velop the mathematical description of inaccuracy and 
imprecision of gaze vectors, that are used to simulate the 
effect on estimated intersection point of inaccuracy (off-
sets) and imprecision (noise). Hooge et al. (2019) present 
human data of vergence error as an effect of inaccuracy 
from changes in pupil dilation. In this work, we focus on 
the effect of imprecision and present recorded human 
vergence data that validate the simulation on noise. Final-
ly, we present a method to better estimate the intersection 

of eye rays and reconstruct the position of the fixated 
object in 3D, given noisy vergence data. Note that the 
whole analysis applies to eye tracking not only in space 
but also on flat surface, as long as the underling projec-
tive mapping is used in the model. 

Part 1: Mathematical model and 
simulation  

When recording binocular gaze in 3D, the two gaze 
vectors can be thought of as originating in the centers of 
the two eyes of the observer. Two vectors in three-
dimensional space are generally skew, i.e. they have no 
common (intersection) point. For the reasons mentioned 
in the introduction, the two gaze vectors are commonly 
far from intersecting. In order to assign a point of interest 
given two gaze vectors that have no intersection point, 
the dominant strategy is to compute the point in 3D space 
that has the smallest sum of squared distances to the two 
gaze lines. Here we show how to compute distances of a 
point to a line by using the formulation of projector, and 
then how to find the point of interest.  

 

Figure 1 Geometric setup. 𝐩! and 𝐩! are the centers of the left 
and right eyes, and 𝐞! and 𝐞! are gaze vectors of unit length, 
i.e. the eye rays. We want to calculate the point z with the min-
imal distance to both rays.  

Choose the coordinate system such that centers of the 
eyes are displaced symmetrically from the origin along 
the first coordinate direction. The up direction defines the 
second coordinate direction and target is placed on the 
third direction pointing away from the observer. This 
means the centers of the left and right eyes are 
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Here, and in the following, boldface lower-case charac-
ters denote column vectors in Euclidean space. Define an 
up direction as 𝒖 = (0, 1,0)!. We refer to the first coor-
dinate axis as horizontal and the second one (i.e. along 
the up direction) as vertical. Objects of interest located at 
𝒛 ∈ ℝ𝟑 are displaced from the eyes mostly along the 
third coordinate axis, i.e. 𝒛 = (≈ 0,≈ 0, 𝑧) . Then the 
normalized (unit-length) vectors from eye to interest 
point are  

el =
z− pl
z− pl

, er =
z− pr
z− pr

,                 (2) 

where the subscripts 𝑙 and 𝑟 refer to the left and right 
eye. Normalization ensures that the vectors have unit 
length:  

1= el,r = el,r
2
= el,r,el,r = eTl,rel,r.         (3) 

Note that latter notation for the inner product follows 
from 𝐞!/! being a column vector and the usual conven-
tions for matrix multiplication; we use this notation in 
what follows.  

Given only the positions of the eyes and unit gaze 
vectors, we want to compute the point closest to both eye 
rays. One way to do so is measuring the squared distanc-
es to the rays and finding the point that minimizes them. 
Let’s first consider a ray through the origin. We define it 
by specifying a unit direction vector 𝒗 ∈ ℝ𝟑, 𝒗 =
𝒗𝑻𝒗 = 𝟏. Then the points on the ray in the direction 𝒗 
are given by 𝜆𝒗, where 𝜆 ∈ ℝ is a scalar parameterizing 
the ray.  

Consider the (symmetric) matrix 𝑽 = 𝑰 − 𝒗𝑻𝒗. Here 
𝑰 denotes the 3×3 identity matrix (we generally use 
uppercase bold-face letter for matrices) and 𝒗𝑻𝒗 is an 
outer product, following directly from the common rules 
for matrix multiplication:  

 

 

 

 

𝑽 = 𝑰 −
𝑣!
𝑣!
𝑣!

𝑣! 𝑣! 𝑣! =

1 − 𝑣!! −𝑣!𝑣! −𝑣!𝑣!
−𝑣!𝑣! 1 − 𝑣!! −𝑣!𝑣!
−𝑣!𝑣! −𝑣!𝑣! 1 − 𝑣!!

.                   (4) 

Multiplication of this matrix with any point 𝜆𝒗 on the 
ray yields  

𝑽𝜆𝒗 = 𝑰 − 𝒗𝒗𝑻 𝜆𝒗 = 𝜆 𝒗 − 𝒗𝒗𝑻𝒗 = 𝜆 𝒗 − 𝒗 = 0,  
(5) 

while multiplying with a vector 𝒘 ∈ ℝ𝟑  of arbitrary 
length but orthogonal to 𝒗, i.e. 𝒗𝑻𝒘 = 𝟎, yields  

𝑽𝒘 = 𝑰 − 𝒗𝒗𝑻 𝒘 = 𝒘 − 𝒗𝒗𝑻𝒘 = 𝒘.   (6) 

Notation Meaning 

𝐩!,! ∈ ℝ𝟑 the position of left/right eye  

a ∈ ℝ half of the distance between two eyes 

𝒖 ∈ ℝ𝟑 the up direction vector 

𝒛 ∈ ℝ𝟑 object of interest 

z ∈ ℝ third element of the object of interest 𝒛 

𝐞!,! ∈ ℝ𝟑 normalized eye ray directions 

𝑬𝒍,𝒓 ∈ ℝ𝟑×𝟑 projectors of the gaze vectors 

d ∈ ℝ Euclidean distance between two points 

𝛆!,! ∈ ℝ𝟑 variable error vector of each eye  

𝐞!,!! ∈ ℝ𝟑 noisy eye ray directions  

𝜂!,! ∈ ℝ horizontal noise 

𝜈!,! ∈ ℝ vertical noise 

𝑝 Gaussian distribution 

𝚺𝒍,𝒓 ∈ ℝ𝟑×𝟑 Covariance matrix 

𝜎 ∈ ℝ standard deviation  
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So the matrix  𝑽  annihilates components in 
tion 𝒗 and leaves directions orthogonal to 𝒗 unchanged. 
It is commonly called a projector for the direction 𝒗. 
Similarly define the projectors for the gaze vectors 
𝑬𝒍,𝑬𝒓.  

Multiplying a 
point  𝒙 ∈ ℝ𝟑  from 
the left and the 
right, i.e. 𝒙!𝑽𝒙 , 
results in taking the 
inner product of the 
compo-
nent orthogonal to 
the vector or, in 
other words, meas-
uring the squared 
distance of 𝒙  to 

the line along 𝒗 
through the origin. 
If the line is 
not through the 
origin, all we need to know is a point p on the line. 
Then we translate everything so that 𝒑  is in the 
origin, meaning we get the squared distance of 𝒙 to the 
line along 𝒗 through 𝒑 as  

(𝒙 − 𝒑)𝑻𝑽(𝒙 − 𝒑).     (7) 

With this way of measuring the distance to a ray, the 
sum of the squared distances to the eye rays for any point 
𝒙 in space can be written as:  

𝑑! 𝒙 = 𝒙 − 𝒑𝒍 𝑻𝑬𝒍 𝒙 − 𝒑𝒍 + 𝒙 − 𝒑𝒓 𝑻𝑬𝒓 𝒙 − 𝒑𝒓 .  
(8) 

To find the point in space that minimizes this sum of 
squared distances compute the gradient of this function 
(with respect to 𝒙)  

∇𝑑! = 2𝑬𝒍 𝒙 − 𝒑𝒍 + 2𝑬𝒓 𝒙 − 𝒑𝒓 ,   (9) 

and set it to zero:  

𝑬𝒍 + 𝑬𝒓 𝒙 = 𝑬𝒍𝒑𝒍 + 𝑬𝒓𝒑𝒓 = 𝑬𝒓 − 𝑬𝒍 𝒑𝒓.    (10) 

In this way the point of interest 𝒙 is defined as the solu-
tion of a 3×3 linear system. The system has a unique 
solution as long as the sum 𝑬𝒍 + 𝑬𝒓  is non-singular. 
Each of the two matrices 𝑬𝒍,𝒓  has a one-dimensional 
kernel: the ray direction 𝒆𝒍,𝒓 is an eigenvector with zero 
eigenvalue. If the two gaze vectors are parallel, then the 

projectors are identical and 𝑬𝒍 + 𝑬𝒓 = 𝟐𝑬𝒍 = 2𝑬𝒓  is 
singular. This is quite intuitive, as there is no unique 
point with smallest distance to two parallel lines.  

If the eye rays are not parallel, however, the sum 
𝑬𝒍 + 𝑬𝒓 is non-singular. This is also geometrically intui-
tive as there is a unique point minimizing the squared 
distances to the two lines; and this fact can be proven 
rigorously (Tian and Styan, 2001, Corollary 2.5). Thus, 
the point of interest is defined as  

𝒆𝒍 ≠ 𝜆𝒆𝒍, 𝜆 ∈ ℝ ⇒ 𝒙 = (𝑬𝒍 + 𝑬𝒓)!𝟏 𝑬𝒓 − 𝑬𝒍 𝒑𝒓.   (11) 

Eye ray errors 
Firstly, we introduce variable error (imprecision, 

noise) 𝛆!, 𝛆! into the eye rays, with separate horizontal 
(𝜂) and vertical 𝜈  noise as well as separate noise for 
left and right eyes:  

εl =

ηl

ν l
0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
, εr =

ηr

ν r

0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
.          (12) 

While errors are usually represented in terms of angu-
lar deviation (i.e. radians), for small enough values the 
linear approximation 𝑠𝑖𝑛 𝜑 ≈  𝜑 is very good and add-
ing the error vectors to the eye ray vectors has the same 
effect as rotating the eye rays. Including renormalization 
this yields:  

ʹel =
el +εl
el +εl

,   ʹer =
er +εr
er +εr

.          (13)  

With this model we simulate how noise affects the com-
putation of the vergence point. Following the results in 
Niehorster et al. (in prep) (which show that noise in eye 
trackers are mostly Gaussian distributed), we use a zero-
mean Gaussian distribution, i.e.  

p(εl,r ) = 2πΣl,r +

−1/2 exp(− 1
2
εTl,rΣ

−1
l,rεl,r ).

       
(14) 

with the horizontal and vertical deviations being uncorre-
lated (meaning noise distribution in each direction varies 
independently) 

Figure 2 Scalar variable d represents the 
distance from point 𝐱 to vector 𝐯 that 
lies in the plane perpendicular to 𝐯. 
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Σl,r =

σηl ,r

2 0 0

0 σνl ,r

2 0

0 0 0

⎛
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⎜
⎜
⎜
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⎠

⎟
⎟
⎟
⎟⎟

.          (15) 

In this setup, error vectors can be generated by simply 
drawing the components 𝜂!,! , 𝜈!,!  independently from 
univariate normal (Gaussian) distributions with zero 
mean and standard deviation 𝜎!!,!  ,𝜎!!,!. univariate nor-
mal (Gaussian) distributions with zero mean and standard 
deviation 𝜎!!,!  ,𝜎!!,!.  

A point of interest 𝒛 defines the unbiased eye rays 
𝒆!,! , which align with the lines of sight. To generate 
points of vergence in the presence of precision error, we 
draw error vectors 𝜀!,! (i.e. the added noise), modify the 
eye rays accordingly and reconstruct the vergence point 
using the linear system above. The python script given in 
the appendix does exactly this. It outputs the mean ver-
gence and offers graphical output, such as the one shown 
in Figure 3. We chose three standard deviations of 0.16°, 
0.5° and 1.5° for the Gaussian distributions of noise 
(which are motivated by experimental data described 
later). 0.5° is the commonly used threshold of the average 
calibration accuracy of each marker, 0.16° corresponds to 
the average precision of fixations and 1.5° corresponds to 
difficult eye tracking situations for example when ob-
servers wear glasses. The simulation shows a large error 
in direction of depth – this is quite intuitive given the 
short base line relative to the distance to the object. 

More severely, the mean vergence point appears to be 
biased systematically towards or away from the observer. 
This is clearly visible when the noise distribution has 
different variance in horizontal and vertical directions as 
shown in Figure 3: if variance is larger in the horizontal 
direction, the mean vergence points shifts away from the 
viewer; if variance is larger in the vertical direction, the 
mean vergence point shifts towards the viewer. Table 1 
shows detailed simulation results when the distance be-
tween observer and the fixation target is considered as 
another variable. We perform the simulation when the 
fixation target is placed at three different distances, 
namely 50 cm, 70 cm and 110 cm. The further away the 
target is, the larger the bias of the mean vergence point 
contains. Note that this bias is non-linear due to the un-
derlining projective relation. Within each condition, the  

   
Figure 3 Vergence points from eye rays distorted with zero-
mean normally distributed errors (i.e. noise). Distance between 
two eyes is 6 cm and the object is at the distance of 50cm. Top 
row: the noise distribution has standard deviation of 0.5 degrees 
in both horizontal and vertical direction. Despite the relatively 
small error, the variation in depth is quite large. Middle row: 
standard deviation in vertical direction is only 0.16, but in hori-
zontal direction it is 1.5. The noise in horizontal direction gets 
larger and the mean estimated point of vergence is shifted to-
wards larger depths. Bottom row: standard deviation is 1.5 
degrees in vertical direction and 0.16 in horizontal direction. 
Horizontal noise is small, but the mean estimated point of ver-
gence shifts significantly towards the viewer. Same number of 
samples is drawn in each simulation. 10,000 points are current 
shown in the figure.  

bias is mainly in depth but large variation in horizontal 
direction leads to large bias while the same amount of 
variation in vertical direction corresponds to smaller bias. 

Secondly, although it is not the focus of this paper, 
our noise formulation could also be used to investigate 
the effect of systematic errors (inaccuracy, offset) by 
introducing constant offset for the eye positions in Equa-
tion 12. As shown in the simulation results in Figure 4, 
unsurprisingly, the resulting errors, i.e. the distances 
between the estimated mean vergence point and the true 
target point, are larger when inaccuracy is introduced 
compared to when only noise is added to data. Further-
more, systematic offsets in the horizontal direction shift 
the mean of the estimation no matter whether the offsets 
in the two eyes converge or diverge. Meanwhile, vertical 
systematic offsets in the same direction lead to larger 
estimation errors without shifting the distribution mean 
much. Again, the estimated mean is biased towards the 
observer when systematic offsets in opposite vertical 
directions are introduced, similar to the bias we observed 
when only noise was introduced where the estimation of 
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Table 1. Simulation errors with target placed at three different distance 50 cm, 70 cm and 110 cm. σx and σy represents the stand-
ard deviation in horizontal and vertical directions measured in degrees. p! is the mean position of estimated vergence points in 
depth. Averaged distance errors and standard deviations are reported in cm with x represents the horizontal direction, y the vertical 
direction, and z in depth. Notice that the small baseline of distance between the eyes leads to large bias when the target point is 
further away. On average, the errors of the estimations are 27% (50 cm), 35% (70 cm), and 49% (110 cm) in percentage of the corre-
sponding distances.   

Target distance 
(cm) 

𝜎𝑥 
(deg) 

𝜎𝑦 
(deg) 

𝑝! 
(cm) 

𝑒𝑟𝑟𝑜𝑟   
(cm) 

𝑠𝑡𝑑 
(cm) 

𝑒𝑟𝑟𝑜𝑟! 
(cm) 

𝑒𝑟𝑟𝑜𝑟! 
(cm) 

𝑒𝑟𝑟𝑜𝑟! 
(cm) 

𝑠𝑡𝑑! 
(cm) 

𝑠𝑡𝑑! 
(cm) 

 

𝑠𝑡𝑑! 
(cm) 

 50 1.5 1.5 38.6 14.0 8.1 0.6 0.6 13.9 0.5 0.5 8.2 

50 1.5 0.16 41.3 12.8 8.6 0.6 0.6 12.8 0.5 0.6 8.7 

50 0.16 1.5 36.8 13.2 2.5 0.06 0.5 13.2 0.04 0.4 2.6 

70 1.5 1.5 49.5 25.4 17.1 0.7 0.7 25.4 0.7 0.7 17.1 

70 1.5 0.16 56.1 23.9 28.6 0.8 0.09 23.9 0.9 0.1 28.7 

70 0.16 1.5 45.8 24.2 4.7 0.1 0.7 24.2 0.05 0.5 4.7 

110 1.5 1.5 63.5 54.7 44.8 1.0 1.0 54.6 1.1 1.1 44.8 

110 1.5 0.16 82.9 58.4 101.4 1.3 0.1 58.4 2.1 0.2 101.4 

110 0.16 1.5 59.0 51.0 9.1 0.09 0.9 51.0 0.07 0.7 9.1 
 

   

Figure 4 Effects of systematic offsets (inaccuracy) on the distribution of the vergence estimations. The distance between the two eyes 
is 6 cm and the object is at a distance of 50 cm. Each eye ray is distorted with zero-mean Gaussian noise with standard deviation of 
0.16 degree. In the plots, we see the effects when a systematic offset (inaccuracy) of 1 degree is applied, not an uncommon effect size 
from a small change in pupil dilation. (a) Left eye is horizontally rotated by one degree outwards. (b) Left eye is horizontally rotated 
towards the right eye direction by one degree (similar distributions are obtained when right eye is horizontally rotated left by one 
degree). (c) Both left and right eyes are rotated in the same direction by one degree. Figures (d) and (e) show the distribution of 
vergence points when both eyes are systematically rotated inwards and outwards by one degree respectively. Systematic offsets in 
vertical direction lead to larger estimation errors without obvious shifts of the distribution mean, except when the offsets in opposite 
vertical directions are applied as shown in (f). Similar to the previous simulation of variable error (noise), vertical offsets lead to a 
bias towards the observer, i.e. the estimated mean vergence point is closer to the observer than the target. 
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the mean vergence point is always closer to the observer 
than the true target point. 

Qualitative analytical analysis of bias 
In the section above (and examples shown in Figure 

3), we use a simple numerical simulation to visualize the 
distribution of computed points of interest given an as-
sumption on the probability distribution of the noise. This 
simulation suggested that the mean vergence point is 
biased, shifted away from the true target point, depending 
on the standard deviation of the noise distribution in 
horizontal vs. vertical directions. We wish to analyze this 
behavior analytically. For this we attempt to compute the 
mean (or expected) vergence point for a given probability 
distribution of noise. As we will see, the general problem 
is difficult to approach. Yet, by assuming the geometric 
situation exhibits symmetry (see Appendix A for details) 
we are able to show that the trend we have observed in 
the numerical simulation holds qualitatively for wide 
classes of practically relevant scenarios.  

The expected value for a discrete noise distribution 
would be the sum of values multiplied with the respective 
probabilities for the input parameters. In the continuous 
case, this sum turns into an integral over the product of 
the computed value and the probability distribution for 
the input parameters.  

The projectors 𝑬!,!! (𝜀!,!)  are generated from the 
noisy eye rays 𝒆!,!! . Assuming a probability distribution 
𝑝!,!! 𝜀!,!  the expected intersection point is:  

 

(16) 

This integral, in general, cannot be treated analytically. 
However, note that the resulting mean is a linear function 
of the individual points of vergence. This means we can 
generate the mean of several instances of the distribution 
and then integrate over these local means. We will make 
use of this property in the following.  

From the perspective of applications, we are mostly in-
terested in understanding the bias with respect to different 
distances in depth. This allows us to concentrate on geo-
metric configurations that exhibit symmetry. First, we 
assume the fixated object is on the symmetry line and at 
unit distance, i.e. 𝒛 = (0, 0, 1)!. Note that by setting the 
interocular distance 𝒑! − 𝒑! = 2𝑎 this still considers 

 

Figure 5 Illustration of two intersection points with inverted pair 
of errors 𝛼,𝛽. Inverted pair of errors leads to an intersection 
point in the opposite directions; however, the mean vergence 
point is biased to be further away from the target point 𝒛. In 
this illustration, 𝛼 = 5° and 𝛽 = −3°, where positive angle 
corresponds to the clockwise direction.  

arbitrary distances because geometrically it makes no 
difference if we change the distance of the target or the 
distance between the eyes. Second, we assume the proba-
bility distributions for left and right eyes are identical. 
We denote this by dropping the subscript: 𝑝 = 𝒑! = 𝒑!. 
Third, we may additionally assume the probability distri-
butions are symmetric around the origin. Point symmetry 
of the distribution means the probabilities of the variable 
errors +𝜀 and −𝜀 are the same: 𝑝 +𝜀 = 𝑝(−𝜀 ). This 
would allow us to consider pairs of points based on the 
error vectors 𝜀! , 𝜀! and −𝜀! ,−𝜀!, which are symmetric 
around the line (0, 0, 1)!  (i.e. one error vector is the 
reflection of the other by the line). Since their probabili-
ties are the same, their mean is on this line. Pairing all 
instances of variable errors in this way shows that the 
mean would be on the symmetry line, for all probability 
distributions with point symmetry.  

Consider the pair of error vectors 𝜀! , 𝜀! and the re-
versed pair 𝜀! , 𝜀!. By our assumptions, these instances 
have the same probability. The two pairs give rise to two 
points of interest. Figure 5 illustrates the case of horizon-
tal error only. In this case, one of the two intersection 
points is closer to the observer then the target, while the 
other one further away. Their mean will never be closer 
then the real target, indicating that the mean over all 
instances with horizontal noise only will be biased to be 
further away than the target – as observed in the numeri-
cal simulations. We now prove that this intuitive reason-
ing is correct.  

To compute the expected depth value, we start by 
analytically solving the least squares estimation (LSE) in 
Eq. 10 for the last component. This can be done by ele-
mentary computations. In this way we can express the 
depth for a certain pair of error vectors 𝜀! , 𝜀!  as well as 

x = ( ʹEl (εl )+ ʹEr (εr ))∫∫
−1
( ʹEl (εl )pl + ʹEr (εr )pr )pl (εl )pr (εr )dεldεr
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for the reversed pair 𝜀! , 𝜀!. Then we take the mean of the 
two depth values. All computations can be carried out by 
a computer algebra system such as Maple or Mathemati-
ca. The resulting expression is lengthy and unsuitable for 
direct inspection. However, considering the case of hori-
zontal noise only leads to the following simple expres-
sion:  

ʹz
z
=

4a2

4a2 − (ηl −ηr )
2          (17) 

As defined in Equation 1 and 12, 2𝑎 equals to the inter-
ocular distance and 𝜂!/! represents the horizontal com-
ponent of variable error 𝜀!/!. It makes sense to assume 
that the distance between the displacements 𝜂!/!  is 
smaller than the interocular distance 2𝑎 (otherwise the 
intersection of the eye rays would be behind the observ-
er). In this case the denominator is positive but never 
larger than the numerator, so the depth is larger. Because 
this is true for any pair of instances (see more in Appen-
dix A), this is also true for the mean resulting from an 
arbitrary probability distribution (as long as they are they 
same for both eyes). This confirms our intuitive geomet-
ric conclusion from Figure 5.  

Next we consider only vertical noise 𝜈!/!. In this case 
it is convenient to consider the pair of error vectors 𝜀! , 𝜀! 
and −𝜀! ,−𝜀!. Note that compared to the former case we 
now also reverse the signs, which is admissible if the 
probability distribution is symmetric. Using computer 
algebra as before, we find that the relative mean depth for 
the two intersection points is  

ʹz
z
=

4a2 + a2 (vl + vr )
2

(vl − vr )
2 + 4a2 + a2 (vl + vr )

2 .
   

       (18) 

Comparing numerator and denominator reveals that 
𝑧′ ≤  𝑧 with equality only for 𝜈! = 𝜈! regardless of the 
probability distribution and without any restrictions on 
the vertical noise.  

Together, these two results confirm our observations 
that noise in horizontal direction biases the mean depth 
towards larger values, while noise in vertical direction 
biases it towards the observer. This result holds for all 
probability distributions, as long as they are identical for 
both eyes (and exhibit symmetry in the vertical direc-
tion).  

In any realistic scenario, however, noise errors have 
horizontal and vertical components. The resulting bias 
will depend on the relative magnitude of these errors. If 
the magnitude of horizontal and vertical noise error is 
equal, then the bias is toward smaller depth and the mag-
nitude of this effect is dominated by the squared differ-
ence (𝜈! − 𝜈!)!. In general, however, the variance along 
the horizontal versus vertical axes in the probability dis-
tribution determines the bias in depth. If the variance is 
higher in horizontal direction, the depth will be biased 
towards greater values; if the variance is higher in verti-
cal direction, depth will be biased closer to the viewer. As 
before, this result holds for probability distributions as 
long as they are identical for both eyes and the point 
closest to any two eye rays in the distributions is in front 
of the viewer (not behind).  

 

Part 2: Human data 

The numerical simulations above show that variable 
and systematic errors in eye rays have a significant influ-
ence on the estimated mean point of vergence under pro-
jection. In this section, we collect human vergence data to 
study the real noise distributions when using a video-
based eye-tracker. Eye-trackers primarily output mapped 
gaze positions, which in 2D are points on a screen, de-
scribed in pixel coordinates. This mapping is established 
using a calibration routine, where participants are asked 
to look at several targets on the screen while features of 
their eyes are tracked in the camera image. These pre-
calibrated features - the pupil centre and the centre of the 
reflection in the cornea - are mapped to gaze positions on 
the monitor during calibration. With an established map-
ping, any eye positions can be mapped into the target 
space, which corresponds to the gaze point.  

Several sources of errors are known to interfere in this 
procedure, in particular when both eyes are being cali-
brated. Despite existing research on vergence eye move-
ments (Collewijn et al., 1995, 1997; Erkelens et al., 
1989), there is no established consensus on how to cali-
brate binocularly. Nuthmann and Kliegl (2009) have 
brought up the question whether binocular calibration 
(i.e. calibrating both eyes at the same time) or monocular 
calibration (i.e. calibrate one eye at one time while the 
view of the other eye is occluded) is better suited for 
binocular eye movements study. Besides the intrinsic 
properties of eye movements in binocular viewing, the 



Journal of Eye Movement Research Wang, X., Holmqvist, K., & Alexa, M. (2019) 
12(4):2 The mean point of vergence is biased under projection 
 

  9 

estimated mapping function in calibration also introduces 
errors in the estimated point of interest. The estimation of 
parameters in the mapping function is a minimization 
procedure. In practice, low order polynomials are often 
used to map pupil and corneal reflection positions onto 
screen coordinates, and the mapping parameters are ap-
proximated through an optimization procedure (e.g. least 
squares), which inevitably contains modeling errors.  

Therefore, we designed a data collection including 
both binocular and monocular viewing conditions and 
analyzed the detected raw pupil and corneal reflection 
positions without mapping them to the target space. Two 
depth variations were included and we used symmetric 
presentation of stimuli to counterbalance any potential 
behavioral differences due to spatial dependency.  

Participants 
25 participants from TU Berlin (students and staff) 

joined our experiment (mean age = 27, SD = 7, 4 fe-
males). They all had normal or corrected to normal vision 
and provided informed consent. Participants with glasses 
were excluded from the experiment due to concerns over 
eye tracking accuracy. Five of them had previous experi-
ence with eye tracking experiments. Their time was com-
pensated. Additionally we performed a monocular eye 
examination for each participants and the averaged acuity 
is 0.93 (SD=0.26) measured in the decimal system. We 
also measured the eye dominance of observers following 
the standard sighting eye dominance test, as our experi-
ment does not involve any interocular conflict. Observers 
were asked to look at a distant point though a small hole 
placed at arm length, and then to close their eye one after 
another. Only the dominant eye supposes to see the point 
while viewing monocularly. Among all 25 observers, 
only 7 of them has a left dominant eye while 18 of them 
reported to have a right dominant eye. We discuss on the 
eye dominance test in the discussion section.   

Apparatus and recording setup 
 The data collection was conducted in a quiet and 

dark room. We used an EyeLink 1000 desktop mount 
system in the experiment and binocular eye movements 
were tracked at a sampling rate of 1000 Hz. A chin-
forehead rest was used to stabilize observers’ head posi-
tions. A 24-inch display (0.52 m ×0.32 m, 1920 × 1200 
pixels) was placed at two distances of 0.7 m and 1.1 m 
from the eyes. Stimulus presentation was controlled using 

PyLink provided by SR Re-
search. Note that any eye 
trackers can be used for the 
recordings as our analysis is 
based on detected eye posi-
tions in the camera frames.   

Two custom-built eye co-
vers fabricated by 3D printing 
were mounted on the chin-
forehead rest (see Figure on 
the right). Each of them can 
be rotated by 180° to open or 
block the view of one eye. 

Design and procedure 
In order to familiarize observers with fixational eye 

movements, and to verify the setup that observers’ eyes 
were clearly tracked, we ran a default 9-point calibration 
routine before the data collection started. A calibration is 
followed by a validation to verify its accuracy. Experi-
ment was continued only when the achieved validation 
accuracy is on average smaller than 1.0° of visual angle. 
Otherwise we either repeated the calibration and valida-
tion routine immediately or after a short break. However, 
the resulting gaze data are not used. All further analyses 
are purely based on the pre-calibrated pupil minus CR 
(corneal reflection) data, to minimize influence from the 
calibration mathematics of the EyeLink.  

The data collection consisted of two distances and 
each distance had five repetitions. In each repetition, we 
presented three viewing conditions, namely monocular 
viewing with left eye, monocular viewing with right eye, 
and binocular viewing. Eye covers were rotated by the 
instructor to occlude/reveal the eyes in different viewing 
conditions. Meanwhile, the EyeLink was continuously 
tracking in binocular mode throughout.  

For each distance, repetition and condition, the partic-
ipant was asked to fixate each one out of 12 targets in the 
form of a ring with an addition central point (Figure 6). 
Participants were instructed to follow the marker and 
fixate the white dot at the center as accurately as possible. 
Black circles with their center marked by a white dot 
were used as the target. The radius of the ring corre-
sponded to 7° of visual angle. Each marker was presented 
for 1.5 s and a beep sound was used to signal the start. 
Between each fixation trial, participants refixated the 
center point. In total, there were 12 targets fixations on 
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the periphery targets and 12 at the center target.  

Each block of five repetitions for a distance took 
about 20 minutes and participants were asked to take a 
break before the second block. In total it lasted about one 
hour including a simple trial run at the beginning.  

Analysis Methods and Results 

Our analysis was based on raw samples of detected 
eye positions, i.e., the pupil minus CR positions, repre-
sented as pixel coordinates in the eye camera. The only 
use of calibrated gaze was our use of the built-in velocity-
based algorithm of the EyeLink software to detect fixa-
tions. In order to find fixations on targets, we filtered out 
all short fixations that are less than 100ms in a prepro-
cessing step as short fixations very often are the result of 
undershoots (Holmqvist and Andersson 2017, p.222-223) 
and are quickly followed by a correction saccade onto 
targets. Conservatively, among fixations on the same 
target, we considered those that are two standard devia-
tions away from the cluster center as outliers. The re-
maining fixations were from then on only processed as 
uncalibrated pupil minus CR.  

For each dataset of one observer, we aggregated all 
fixations (pupil-CR) in the five repetitions for each target 
in the same viewing condition. On average there are 56 
fixations in each such block (SD = 20), and each target 
has 2.3 fixations as we have 24 fixation targets in each 
repetition. Here fixations from individual eye are consid-
ered independently. The averaged duration of fixations is 
821ms (SD = 494ms). There is no significant difference 
among different viewing conditions at two distances.  

 

Comparing sets of covariance matrices 
In the previous simulation (see Section “Ray Errors”), 

fixation positions have independent zero-mean Gaussian 
distributions for variable errors in horizontal and vertical 
directions, which can be represented by a 2×2 diagonal 
covariance matrix 𝛴. Diagonal elements in 𝛴 describe 
the variances in horizontal and vertical directions sepa-
rately and off-diagonal elements show the correlation 
between them. Therefore, 𝛴 is a positive semi-definite 
symmetric matrix, and it can be visualized as an error 
ellipse with its axes pointing into the directions of its 
eigenvectors. The lengths of the semi-axes are propor-
tional to the square roots of the corresponding eigenval-
ues 𝜆! . We used 5.991 𝜆!  as the semi-axis length 
(derived from a Chi-Square distribution), which gave us 
the ellipse that covers a 95% confidence interval. We 
continued using covariance matrices to analyze the error 
distributions and visualized them as ellipses in the fol-
lowing. Essentially covariance matrix measures the preci-
sion in two dimensions, as we are interested in its special 
distribution. 

In our data collection, we had a set of markers on 
screen and a covariance matrix represented fixation dis-
tribution at each marker position. To model the variabil-
ity among different covariance matrices and to compare 
the differences among sets of covariance matrices, we 
computed distances between all pairs of covariance   
matrices in a set and then compared the resulting distribu-
tions. Despite the raising amount of applications of ana-
lyzing the variance among covariance matrices, there is 
still no consensus on how to analyze the covariance struc-
tures (Rencher, 2003). We settled on a logarithm-based 
distance estimator (Förstner and Moonen, 2003), a Riem 
annian metric, defined as 

            (19) 

where the logarithm is given by 
𝑙𝑜𝑔 𝛴 =  𝑼 𝑙𝑜𝑔 (𝑺)𝑽  and 𝑼, 𝑺,𝑽  can be factorized 
from singular-value decomposition (SVD) as 𝛴 =  𝑼𝑺𝑽. 
𝑺 is a diagonal matrix of singular values of 𝛴. ∥ 𝑿 ∥ is 
the Euclidean norm (also called Frobenius norm) and it 
can be computed by the matrix trace 
∥ 𝑿 ∥ =  𝑇𝑟(𝑿!𝑿). In case of covariance matrix, the 

d(Σ1,Σ2 ) = log(Σ
1

−
1
2Σ2Σ1

−
1
2 ) ,

Figure 6 An exemplary trial. The center was always presented 
at the beginning of each trial. A randomly selected marker on 
the ring was then presented for 1.5s followed by the presenta-
tion of the center marker for another 1.5s. Then another random 
selected marker on the ring was presented. The presentation 
continues in such way until all markers on the ring were pre-
sented once. Gray markers are drawn here for illustration pur-
pose and were invisible during experiment. 
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trace measures the total variation in each dimension 
without considering the correlations among variables. As 
shown in Förstner and Moonen (2003), this distance 
measure is symmetric and non-negative, and it is invari-
ant under affine transformation and inversion. 

Intuitively speaking, by multiplying with Σ!
!!!  in bilinear 

form, we transform 𝛴! into a new basis Σ!
!!! 𝛴! Σ!

!!!  is a 
perfect circle. The distance measures the relative ratio of 
eigenvalues in the new basis and the largest eigenvalue of 

Σ!
!!! 𝛴! Σ!

!!! corresponds to the ratio of maximum variance 
between two groups (Rencher, 2003). To aggregate a set 
of covariance matrices, we used the arithmetic average as 
the mean covariance matrix. Dryden et al. (2009) com-
pared many covariance distance measures especially in 
the context of shape interpolation; however, it is not clear 
which one suits best in our case. Here we only want to be 
able to compare sets of covariance matrices.  

In the next step, the distance distributions of two sets 
of covariance matrices were compared using the Kolmo-
gorov-Smirnov test (KS-test) (Sachs, 2012) and a p-value 
was computed to determine whether the two distributions 
differ significantly. The KS-test computes the vertical 
distance between two cumulative fraction functions that 

are used to represent two distributions and takes the larg-
est distance as the statistic. Therefore, it is robust with 
respect to variance types of distributions.  

Results 
Below, we examined whether the bias was present al-

so in the human data. We first compared the distributions 
of variable errors among all individual observers. Then 
we aggregated all datasets to examine whether the distri-
butions has any spatial dependency. In the last step, we 
used the averaged variable error distribution to sample 
eye positions following the procedure in the previous 
simulation (see Section Ray Error) to investigate whether 
there is a bias in the direction of the observer in human 
data as there was in simulated data.  

Eye dominance and acuity do not seem to matter  

Each dataset (of one observer) had five repetitions of 
each viewing condition. Each eye had two viewing condi-
tions, namely monocular viewing and binocular viewing. 
Targets were presented at two different distances. We 
first aligned the five repetitions in the same condition and 
computed the covariance matrix of fixations at each 
marker position. Following Equation 18, each covariance  

Figure 7 Example of one-dataset samples at the distance of 70 cm. In the first row, fixations at each marker position collected over 
five repeats are scattered and corresponding covariance matrices are visualized as ellipses. Second row shows the histograms of 
distances between all pairs of ellipses in each condition (summed over five repeats). Observer of this dataset has right dominant eye 
and eye acuity is 0.9 for left eye and 1.0 for right eye.  
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Figure 8 Statistics of KS-test on individual differences. Upper plot shows the statistics of data with a display placed at a distance 
of 70 cm and the lower one shows the result when the display was at a distance of 110 cm. Red lines mark the 0.05 significance 
level. ML stands for the condition of monocular viewing of left eye, MR monocular viewing of right eye, BL binocular viewing 
of left eye and BR binocular viewing of right eye.  

 

Figure 9 Visualization of mean covariance matrices at each marker position. First row shows error distributions of data collected at a 
distance of 70 cm and second row shows data collected at a distance of 110 cm. In each viewing condition at one distance, data from 
all observers were aggregated together and covariances at each marker position are visualized as ellipses. For instance, a left-tilted 
ellipse means that vertical noise is larger than horizontal noise. The size of the ellipse thus corresponds to the total variation while 
orientation indicates the correlation between horizontal and vertical directions.  
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matrix was compared to the other eleven covariance ma-
trices. Note that we discarded all fixations at the center 
marker. One exemplar dataset is shown in Figure 7. Co-
variance matrices are visualized as ellipses and distribu-
tions of all pair-wise distances are plotted as histograms. 

Using the KS-test, we compared histograms of the 
distance distributions of each individual dataset to the 
others and results are shown in Figure 8. Red line marks 
the significance level of 0.05. Note that any statistic value 
larger than the level (i.e. above the line) corresponds to a 
significantly different distribution. Considering each eye 
separately, we had four viewing conditions in one dataset, 
namely monocular viewing of left eye (ML), monocular 
viewing of right eye (MR), binocular viewing of left eye 
(BL) and binocular viewing of right eye (BR). At the 
distance of 70 cm, 13 out of 25 datasets have significant-
ly different fixation distributions in ML, 4 in MR, 5 in 
BL and 1 in BR. According to the categorization of eye 
dominance, we have 8 significantly different distributions 
of dominant eye in monocular viewing and 12 signifi-
cantly different distributions of nondominant eye. In 

binocular viewing condition, 2 distributions of dominant 
eye significantly differ from the others and 6 of nondom-
inant eye. At the distance of 110 cm, the numbers of 
datasets, which are significantly different from the others, 
are 10 (ML), 1 (MR), 6 (BL), and 7 (BR). In monocular 
viewing, 3 and 9 datasets are significantly different for 
distributions of dominant eye and nondominant eye re-
spectively. In binocular viewing condition, the number of 
different datasets is 9 for dominant eye and 6 for non-
dominant eye. Note that this counting is based on the 
mean statistic value. And we do observer large variances 
in each dataset as shown in Figure 8.  

In conclusion, the differences between dominant and 
non-dominant eye are so small and varied that we cannot 
conclude that eye dominance matters. Neither did we 
observe any correlation between the distribution differ-
ences and eye acuity, which indicates that eye acuity does 
not contribute to the differences in distributions. It is 
likely that other factors, such as eye colour, may explain 
part of the noise.  

 

Figure 10 Estimation of mean vergence point based on distributions formed from real human data. Left column shows the mean co-
variance matrices of left eye (l) and right eye (r) in monocular viewing (m) and binocular viewing (b). First two rows show results 
when target is placed at a distance of 70 cm and last two rows show results at a distance of 110 cm. Right column shows the distribu-
tion of estimated vergence points in space where variance (visualized in the left column) was converted to 1° and 2° of visual angle 
respectively. See Table 2 for more detailed statistics.  
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Noise does not vary depending on where participants 
look  

It is known that noise varies across the measurement 
space (Holmqvist and Andersson, 2017, p.182). To test 
whether there is any such spatial dependency of noise 
distributions of fixations, we computed the distance dis-
tribution at each marker position by comparing each pair 
of covariance matrices from 25 datasets. Similarly, we 
applied the KS-test to compare the distance distributions. 
Only one distribution from monocular viewing of right 
eye when screen was at a distance of 70 cm is significant-
ly different. To visualize the variance at each marker 
position, we computed the mean of 25 covariance matri-
ces for each marker in one viewing condition and plotted 
corresponding ellipses in Figure 9. Note that comparing 
two distances, covariance ellipses are similar in both 
sizes and orientations. But ellipses in binocular viewing 
condition have smaller sizes but still similar orientations. 
In conclusion, the amount of noise does not seem to dif-
fer between the conditions, nor between positions. There 
is however a tendency that vertical noise is larger than 
horizontal noise.  

But there is bias in the human data 

After we have established that noise does not vary 
across eye dominance, acuity and fixation position, we 
can now aggregate the covariance matrices at all marker 
positions, which gives us an overall representation of 
noise distribution of fixations in each condition. Using 
the distributions - a covariance matrix for each of the 12 
fixation point in each condition - rather than the data 
themselves introduces no bias, but is computationally 
easier, since it allows us to calculate the mean easily 
without being biased by unevenly taken data (i.e. uneven 
contribution of individual observers because of fixations 
of differing lengths).  

We used the arithmetic mean of the 12 covariance 
matrices (of 12 targets) to represent the fixation distribu-
tion in each viewing condition and obtained two covari-
ance matrices, one for each eye in either monocular or 
binocular viewing condition at one distance. As shown 
inFigure 10, an ellipse is used to represent a covariance 
matrix. Errors seem to be larger when targets move from 
70 cm to 110 cm with increased sizes of ellipses. Noise in 
binocular viewing condition is smaller comparing to that 
in monocular viewing condition, evidenced by smaller 

ellipses in most positions in all conditions. The radius of 
the ring corresponds to 7° of visual angle and opposite 
sample positions span a visual angle of 14°. Following 
this ratio, we converted sample units (measured in pixel) 
into degrees of visual angle and applied the analysis 
framework used in the simulation above. Variances of 
error distributions shown in Figure 10 approximate to 1° 
of visual angle, which is commonly used as a calibration 
threshold in 2D eye tracking experiment. Additionally we 
also experiment with 2° of visual angle, which is equiva-
lent to the start-of-art eye tracking accuracy in 3D space 
(Pfeiffer and Renner, 2014; Gutierrez Mlot et al., 2016; 
Wang et al., 2017b). Simulated results based on sampling 
from real error distributions are plotted in Figure 10. On 
the left side we have spatial distributions of vergence 
points when variance was converted to 1° of visual angle 
and on the right side we see the results after converting to 
2° of visual angle. Detailed statistic results are given in 
Table 2. Although the error in estimated mean vergence 
point is acceptable when everything is perfect within 1° 
of visual angle, however, achieving such accuracy in 3D 
is rather challenging. Even with an acceptable accuracy 
of 2°, there exists a strong bias towards the viewer in the 
estimated mean point of vergence. 

Minimizing the uncertainty in vergence 
point estimation 

When researching vergence using a video-based pupil 
and corneal reflection eye-tracker such as the Eyelink, 
what can you do to minimize biases and errors? We 
assume that the human participant has a negligible 
difference in gaze directions between left and right eye, 
that luminance conditions are fixed and no other effects 
on pupil dilation are present, and that the only remaining 
issue is to minimize the bias from the noise in the signal.  

As this bias is an effect of the projective mapping, the 
non-linear mapping that is commonly used to estimate the 
vergence point in space, there is not much you can do if 
you use the calibration routine shipped with the eye- 
tracker. The single fixation per calibration point will have 
an inaccuracy and noise that increases the bias. However, 
it is possible to instead record multiple fixations on each 
point in your own set of calibration targets. Then take the 
average of the data samples in the several fixations per 
fixation target and use that average to calibrate the eye- 
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tracker. The key is to use many fixations per calibration 
point. The same principle applies to real experiment after 
calibration: collect many fixations if possible. For each 
point of interest, taking the average of fixation samples in 
the camera space leads to better estimation in space. In 
practice, this could mean a repetition of the same experi-
mental condition, for example, where observers are asked 
to refixate on the same targets in a vergence study. 

The reason this method works is that for geometrical 
reasons, it is better to average in the calibration data than 
in the depth data of the intersection points. Assume that 
noise in the eye samples are Gaussian distributed, taking 
the average in the calibration data leads to better 
approximation to the noise-free eye samples. However, 
due to the non-linearity of the mapping, averaging in the 
depth data only leads to a bias as we see before. Figure 
11 shows for simulated data how the offset in depth 
decreases with an increasing number of fixations per 
calibration point.  

   This solution works on the DPI, the EyeLink and the 
SMI eye-trackers, which all provide access to the center 
point of the corneal reflection and the pupil (for EyeLink 

target 
distance 

(cm) 

𝜎 
(deg) condition 𝑝! 

(cm) 
𝑒𝑟𝑟𝑜𝑟 
(cm) 

𝑠𝑡𝑑 
(cm) 

𝑒𝑟𝑟𝑜𝑟! 
(cm) 

𝑒𝑟𝑟𝑜𝑟! 
(cm) 

𝑒𝑟𝑟𝑜𝑟! 
(cm) 

𝑠𝑡𝑑! 
(cm) 

𝑠𝑡𝑑! 
(cm) 

𝑠𝑡𝑑! 
(cm) 

70 

1.0 
monocular 69.1 22.4 32.0 0.88 0.86 22.3 0.88 0.90 32.0 

binocular 70.4 18.9 27.8 0.76 0.74 18.8 0.79 0.77 27.8 

2.0 
monocular 60.0 35.1 82.6 1.2 1.2 34.9 2.8 2.1 82.6 

binocular 64.3 28.6 53.7 1.1 1.0 28.5 1.3 1.3 53.8 

110 

1.0 
monocular 98.5 49.9 102.3 1.2 1.1 49.8 1.5 1.7 102.3 

binocular 104.4 41.6 88.8 9.9 9.5 41.5 1.4 1.2 88.8 

2.0 
monocular 73.3 70.1 141.2 1.5 1.3 70.0 2.5 2.8 141.2 

binocular 86.7 60.2 171.7 1.3 1.3 60.1 2.3 2.7 171.7 

            

Table 2. Vergence errors sampled from real noise distributions. σ represents converted standard deviation in degree of visual angle. 
p!! represents the mean point of vergence in depth measured in cm. Averaged errors and standard deviations are reported in cm with x 
represents the horizontal direction, y the vertical direction, and z in depth. On average, the errors in percentage of the corresponding 
distance are 30% (σ = 1) and 46% (𝜎 = 2) when target distance is 70 cm, and 41% (𝜎 = 1) and 50% (𝜎 = 2) when target dis-
tance is 110 cm. 
 

Figure 11 More fixations per target leads to better estimation 
of mean vergence point. At the top of the figure, offset error is 
plotted as a function of number of fixations per calibration 
point. Three color-coded crosses mark the offset errors when 
number of fixations equal to 2, 5, and 10. These three offsets 
are visualized in a top view plot at the bottom. We used stand-
ard deviation of 1.5 in horizontal direction and 0.16 in vertical 
direction.  
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and SMI) or the 4th Purkinje (for the DPI) in the data. 
Note that the recipe works with raw positions of the eyes 
and does not depend on specific calibration model given 
by any eye trackers. 

Discussion 
The major finding in this paper is that vergence data 

from eye-trackers exhibit a bias, depending on the noise 
level in horizontal vs. vertical directions. This applies to 
the estimation of the point of vergence in three-
dimensional space, as well as to the vergence estimation 
on planar surface in two-dimensional space. As long as a 
projective model is used in the mapping, the estimated 
mean vergence point will be biased.    

Reading research and calibration algorithms 

The bias we have found is in line with Nuthmann and 
Kliegl (2009), who reported that the fixations during 
reading were almost always crossed, peaking 2.6 cm in 
front of the plane of text, which is very much in line with 
the error reported in Table 2. However, instead of result-
ing in a discussion about potential biases from the meas-
urement technology itself, the subsequent papers instead 
investigated whether monocular vs. binocular calibration 
could cause the crossing of fixations.  

Liversedge et al. (2006a) had found that “When the 
points of fixation were disparate, the lines of gaze were 
generally diverged (uncrossed) relative to the text (93% 
of fixations),..., but occasionally converged (crossed) (7% 
of fixations).” using a monocular calibration. Later study 
by Kirkby et al. (2013) replicated the finding that - after 
monocular calibration - the majority of fixations are un-
crossed, both with the EyeLink and the DPI.  

Our results using the collected human data show a 
significant bias towards observers for both monocular 
and binocular calibration, corresponding to crossed fixa-
tions in reading. This bias must have existed also for the 
studies by Liversedge et al. (2006a) and Kirkby et al. 
(2013), so it is surprising that they found crossing result 
in the opposite direction of the bias.  

Švede et al. (2015) argued that monocular calibration 
is the only physiologically correct form in the sense that 
it preserves the difference in gaze direction between the 
two eyes. It could be the case that the average gaze dif-
ferences between left and right eye after monocular cali-

bration are so large that they consume the whole bias and 
nevertheless can remain uncrossed.  

Despite the fact that the bias in the estimated gaze po-
sitions in binocular viewing is smaller than the bias in 
monocular viewing condition, the ratio in depth between 
target position and the estimated mean vergence point is 
around 1.2.  

Eye dominance, interpupillary distance and fixation 
disparity  

The collected human data show a large variance 
among individual observers. However, neither eye domi-
nance nor acuity leads to significantly different noise 
distribution and where participants look also doesn’t 
seem to matter. Nevertheless we should be aware that eye 
dominance information is based on observer’s self-report. 
Moreover, the eye dominance is determined by the so-
called sighting eye dominance test. A recent study (Ding 
et al. 2018) brought up the question whether one type of 
eye dominance exists and their results indicate disagree-
ments among different eye dominance test methods, 
especially the difference between sighting eye dominance 
test and binocular rivalry based test. Even though our 
experiment does not involve any interocular conflict, the 
actual dominant eye during the experiment might still be 
different from the measured one, which might further 
explain the observed no-impact findings.  

Interpupillary distances may also influence the bias, 
as it changes the geometry, i.e. the short edge of the tri-
angle formed by the two eyes and a target. How the bias 
is correlated to the interpupillary distance is not studied 
in this work.   

It is not clear so far how fixation disparity may con-
tribute to our observations. Liversedge et al. (2006b) 
reported that fixation disparity decreased over time dur-
ing reading, and it is tightly linked to vergence eye 
movements (Saladin JJ. 1986, Jaschinski et al. 2008, 
Švede et al. 2011) as well as binocular vision (Jaschinski 
et al. 2008). Additionally, vision training may improve 
stereo perception and eliminate fixation disparity (Dalziel 
CC. 1981). We neither performed any fixation disparity 
test nor measured the binocular version in our study, 
although how to accurately measure fixation disparity 
seems to be an on-going effort (de Meij et al. 2017). 
Future studies should include measurements such as the 
near point of convergence, positive and negative fusional 
range, dissociated phoria at near and far, stereopsis and 
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amplitude of accommodation. It would also be interesting 
to test whether there exists a correlation between fixation 
disparity and the bias in individual’s dataset.  

Limitations of our study  

Independent Gaussian distributions were used for 
each dimension. It would be interesting to study the de-
pendency between noise in horizontal and vertical direc-
tions and to see how a multivariate distribution influences 
the bias.  

In our experiment targets were displayed on a flat 
plane without the need of focus change. But noise distri-
bution might be different due to the dynamic changes of 
focus in 3D. For example we might need to take into 
account the changes of pupil size. How to collect enough 
fixation data in 3D while maintaining the same precision 
is another practical but challenging problem.  

To minimize the bias from the signal noise, we sug-
gest to collect many fixations per calibration target, and 
then use the mean fixation point to calculate the mapping. 
Future work should validate this proposal with real hu-
man data. Note that this proposed recipe does not account 
for fixation disparity, i.e. the alignment difference be-
tween the dominant eye and the weak eye.  

Suggestion for future experiments 

There seems to be no good reason to prefer one view-
ing condition to the other in calibration. In monocular 
calibration, each individual eye is forced to fixate on 
targets without the interference of binocular fusion and 
eye dominance. However, visual acuity is also limited in 
monocular viewing and possibly decreases over distanc-
es. Precision of eye movements in binocular viewing 
condition seems to be higher.  

We believe it is important to be aware that the propa-
gation of noise may lead to a bias in the estimated mean 
vergence point in space. It is also very important for 
future eye movement studies, especially for vergence 
studies, to provide the validation error of calibration not 
just as a single scalar, but also in the form of a spatial 
distribution (i.e. an error ellipse). It provides a confidence 
level of the observed data and puts their interpretation 
into perspective. It is not even clear if the error distribu-
tion would be roughly similar for all types of tracking 
devices and experiments, or if the distribution changed 
with the type of experimental task. If so, resulting mean 
vergence depth would vary with experimental setup.  

Moreover, our results suggest that, for researchers us-
ing eye-tracking devices, it is good to think about the 
procedure, instead of being only concerned about the data 
after calibration. The mathematical models behind cali-
bration might provide additional information as being 
part of the experiment. 

Conclusions 
The estimated point of interest from intersection of 

eye rays has large error in depth. The mean of the linearly 
estimated points of vergence is biased and depends on the 
horizontal vs. vertical noise distribution of the fixation 
positions. It is generally hard to interpret results for depth 
from binocular vision and our suggestion is to take the 
average of fixations of the same target to minimize the 
uncertainty, in both calibration and experiment phase.  
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Appendix A: Analytical analysis of bias 

Our variable errors contain independent horizontal and 
vertical components. Each of them follows the zero-mean 
Gaussian distribution, which is a symmetric function around 0, 
i.e. 𝑝(𝑎)  =  𝑝(−𝑎).  

To simplify the scenario, we set vertical errors to zero and 
only consider errors in the horizontal direction. Assume left eye 
and right eye have identical Gaussian distributions, we have 
𝑝(𝜂!  , 𝜂!) = 𝑝(𝜂! , 𝜂!). The probability of observing one pair of 
errors is the same when it corresponds to left and right eyes or 
vice versa.  

Based on previous two symmetries, we have the same prob-
ability for 8 error pairs as shown in Figure 12. As 𝜂! and 𝜂! 
follow two independent Gaussian distribution of the same vari-
ance, we have a joint normal distribution. Each circle centered 
at origin is a contour line where samples have the same proba-
bility. Given an error vector (𝜂!  , 𝜂!), we can find the other 
seven pairs by the following operations using symmetry:  

– 𝑝 𝜂!  , 𝜂! = 𝑝 −𝜂! , 𝜂!  by changing the sign of left eye,   
– 𝑝 𝜂!  , 𝜂! = 𝑝 𝜂! ,−𝜂!  by changing the sign of right eye,   
– 𝑝 𝜂!  , 𝜂! = 𝑝 −𝜂! ,−𝜂!  by changing the sign of both 

eyes,   
– 𝑝(𝜂!  , 𝜂!) = 𝑝(𝜂! , 𝜂!) by swapping between left and right 

eyes, 
– 𝑝(𝜂!  , 𝜂!) = 𝑝(−𝜂! , 𝜂!) by swapping and changing one 

sign, 
– 𝑝(𝜂!  , 𝜂!) = 𝑝(𝜂! ,− 𝜂!) by swapping and changing one 

sign, 
– 𝑝(𝜂!  , 𝜂!) = 𝑝(−𝜂! ,− 𝜂!) by swapping and changing both 

signs. 

Eight samples are symmetric across four lines which are 
𝜂! = 0 , 𝜂! = 0, 𝜂! = 𝜂! , 𝜂! = −𝜂! .  Together these four lines 
divide the whole variable domain into eight domains {𝐷!  , 𝑖 =
 0,· · · , 7}. We define function 𝛷! that maps samples from 𝐷! 
to 𝐷!. For example Φ! 𝜂!  , 𝜂! ∶= (𝜂! , 𝜂!) which maps sam-
ple in 𝐷! to 𝐷! as shown in Figure 12. As 𝛷! is a linear map, 
we know 𝑑𝑒𝑡(𝑑𝛷!)  =  𝑑𝑒𝑡(𝛷!)  =  1.  

Given a pair of horizontal errors (𝜂!  , 𝜂!), we know the in-
tersection point x can be computed as  

xηl ,ηr = ( ʹEl (ηl )+ ʹEr (ηr ))
−1( ʹEl (ηl )pl + ʹEr (ηr )pr )    (20) 

and its probability is 𝑝(𝜂!  , 𝜂!) Let us define a function 𝑓 that 
𝑓 𝜂!  , 𝜂! ∶= 𝑥!! ,!! , 𝜂!  , 𝜂! ∈ 𝐷!  and 𝑓! = 𝑓 ∘ 𝛷! . The ex-
pected value of 𝑥 in the whole domain is  

x = f (ηl,ηr )p(ηl,ηr )dηl dηr∫∫   

= f (ηl,ηr )pDi
∫∫

i=0

7

∑ (ηl,ηr )dηldηr  

= f (ηl,ηr )pΦi (D0 )
∫∫

i=0

7

∑ (ηl,ηr )dηldηr  

= ( f !Φi )(p !Φi )det(dΦi )D0
∫∫

i=0

7

∑ dηldηr  

= fi pD0
∫∫

i=0

7

∑ dηldηr           (21) 

= 8 1
8i=0

7

∑D0
∫∫ fi pdηldηr  

Since probability on the same contour line is the same, 
𝑝 ∘ 𝛷! = 𝑝. The expected intersection point 𝑥 can be computed 
by computing the average of 𝑓!. Therefore, we only show the 
simplified computation of one pair of error vectors in Section 
Qualitative analytical analysis of bias.  

 

Figure 12 Symmetry of error pairs. x and y axes correspond to 
the horizontal errors of left eye 𝜂!  and right eye 𝜂! . Eight 
crosses on the circle have the same probability.  
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Appendix B: Python script for simulation  

import math  

import numpy as np  

# little helper to generate normed vectors 

# not safe to use with vanishing vectors!  

def normed(v):  

l = np. linalg .norm(v)  

return v/l  

 

def closestpoint(p0,p1,ray0,ray1): � 

# Generate projectors from rays 

�R0 = np.identity(3) − np.outer(ray0,ray0)  

R1 = np.identity(3) − np.outer(ray1,ray1)  

# Solve linear system  

return np.linalg.solve(R0+R1,np.dot(R0,p0)+np.dot(R1,p1))  

 

# graphical output requires matplotlib  

graphical_output = True  

# we assume units are mm � 

# positions of left and right eye in the plane  

eye_l = np. array ((0.0 , −30.0 ,0.0)) � 

eye_r = np. array ((0.0 ,30.0 ,0.0))  

# position of object  

lookat = np. array ((500.0 ,0.0 ,0.0))  
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# direction between eyes  

eye_base = normed(eye_r – eye_l)  

# up direction � 

# should be orthogonal to eye_base  

up = np. array ((0.0 ,0.0 ,1.0))  

# normalized rays from eyes to object  

ray_l = normed(lookat – eye_l)  

ray_r = normed( lookat – eye_r )  

# normalized horizontal and vertical direction per eye  

hor_l = normed(np.cross(ray_l ,up))  

ver_l = np.cross(hor_l,ray_l)  

hor_r = normed(np.cross(ray_r ,up))  

ver_r = np.cross(hor_r,ray_r)  

# variance of the angular deviation � 

# we sample angular deviation on a tangent plane  

# and then project back to the sphere  

variance_l = np. radians ([1.5 ,0.16])  

variance_r = np. radians ([1.5 ,0.16])  

#print eyes and object  

print(”Eyes at ”,eye_l ,” , ”,eye_r)  

# containers to store x and y positions of  

# intersection of left and right eye ray  

if graphical_output :  

x=[]  

y=[]  
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min_psi=[] 

�max_psi = [] � 

max_s = 0.0 � 

min_s = np.linalg.norm(0.5∗eye_r + 0.5∗eye_l-lookat)  

# number of random measurements  

trials = 10000  

# center of interest , i .e. average position  

coi = np.zeros(3)  

for i in range(trials): � 

# change of angles 

�# using normal distribution  

psi_l = np.random.normal(0.0,variance_l)  

psi_r = np.random.normal(0.0,variance_r)  

# using uniform distribution � 

#psi_l = np.random.uniform(−2.0∗variance ,2.0∗variance)  

#psi_r = np.random.uniform(−2.0∗variance ,2.0∗variance)  

# using laplace distribution � 

#psi_l = np.random.laplace(0.0,variance) � 

#psi_r = np.random.laplace(0.0,variance)  

# generate the slightly rotated eye rays 

�# simply by adding the components along eye and up direction  

vray_l = normed(ray_l + psi_l[0] ∗ hor_l + psi_l[1] ∗ ver_l)  

vray_r = normed(ray_r + psi_r[0] ∗ hor_r + psi_r[1] ∗ ver_r)  

v = closestpoint(eye_l ,eye_r ,vray_l ,vray_r)  

# keep track of centroid of estimated object positions  
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coi += v  

# keep track of smallest and largest distance 

 # we simply judge distance by length of s  

ls = np.linalg.norm(0.5∗eye_r + 0.5∗eye_l − v)  

if (ls>max_s):  

max_s = ls  

max_psi = [psi_l ,psi_r]  

if (ls<min_s):  

min_s = ls  

min_psi=[psi_l,psi_r]  

# add to container for drawing � 

# projection is onto the plane spanned by the first two comp.  

if graphical_output :  

x . append ( v [ 0 ] ) 

�y . append ( v [ 1 ] )  

print(”Largest distance:”, max_s) � 

print(”resulting from angle variations:”, np.degrees(max_psi))  

print(”Smallest distance:”, min_s) � 

print(”resulting from angle variations:”, np.degrees(min_psi))  

coi /= float(trials) 

�print(”Centroid of estimated object positions: ”, coi)  

print (”Compared to object at ” , lookat )  

if graphical_output : � 

import matplotlib . pyplot as plt  

# draw eyes and object  
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circle = plt.Circle(eye l , 10.0, fill=False)  

plt.gca().add_patch(circle) � 

iris_l = eye_l + 10.0 ∗ ray_l / np.sqrt(ray_l.dot(ray_l))  

circle = plt.Circle(iris_l , 3.0, fill=True, color=’b’)  

plt.gca().add_patch(circle)  

circle = plt.Circle(eye_r , 10.0, fill=False)  

plt.gca().add_patch(circle) 

�iris_r = eye_r + 10.0 ∗ ray_r / np.sqrt(ray_r.dot(ray_r))  

circle = plt.Circle(iris_r , 3.0, fill=True, color=’b’)  

plt.gca().add_patch(circle)  

 

circle = plt.Circle(lookat , 5.0, fill=True, color=’g’)  

plt.gca().add patch(circle)  

plt . scatter (x,y,marker=’. ’ ,color=’r ’ ,alpha=0.02)  

plt.axis(’scaled’)  

plt .xlim([−50,750])  

plt .ylim([−50,50])  

plt . margins (0.2 ,0.2)  

plt.savefig(’vergence.pdf’, bbox_inches=’tight’) 

plt .show()  
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Appendix B: Mathematica notebook for analytical analysis  

(*Horizontal errors only*)  

pl = {−a, 0, 0};  

pr = {a, 0, 0};  

target = {0, 0, 1};  

el = target − pl;  

er = target − pr;  

epsilonl = {hl , 0, 0};  

epsilonr = {hr, 0, 0};  

el1= (el + epsilonl)/Sqrt[1+(a+hl)ˆ2];  

er1=(er + epsilonr)/Sqrt[1+(−a+hr)ˆ2];  

el2 = (el + epsilonr)/Sqrt[1+(a+hr)ˆ2];  

er2 = (er + epsilonl)/Sqrt[1+(−a+hl)ˆ2];  

El1 = IdentityMatrix[3]−Transpose[{el1}].{el1};  

Er1 = IdentityMatrix[3]−Transpose[{er1}].{er1};  

El2 = IdentityMatrix[3]−Transpose[{el2}].{el2};  

Er2 = IdentityMatrix[3]−Transpose[{er2}].{er2};  

p1 = Inverse[El1+Er1].(Er1−El1).pr;  

p2 = Inverse[El2+Er2].(Er2−El2).pr;  

FullSimplify [0.5*( p1+p2 ) , Assumptions −>{}][[−1]]  

Out[1]= (4. aˆ2)/((2. a+hl−1. hr) (2. a−1. hl+hr))  

(*Vertical errors only*)  

pl = {−a, 0, 0};  

pr = {a, 0, 0};  

target = {0, 0, 1};  
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el = target − pl;  

er = target − pr;  

epsilonl = {0, vl , 0};  

epsilonr = {0, vr, 0};  

el1= (el + epsilonl)/Sqrt[1+aˆ2+vlˆ2];  

er1=(er + epsilonr )/ Sqrt[1+aˆ2+vr ˆ2];  

el2 = ( el − epsilonr )/ Sqrt[1+aˆ2+vr ˆ2];  

er2 = (er − epsilonl)/Sqrt[1+aˆ2+vlˆ2];  

El1 = IdentityMatrix[3]−Transpose[{el1}].{el1};  

Er1 = IdentityMatrix[3]−Transpose[{er1}].{er1};  

El2 = IdentityMatrix[3]−Transpose[{el2}].{el2};  

Er2 = IdentityMatrix[3]−Transpose[{er2}].{er2};  

p1 = Inverse[El1+Er1].(Er1−El1).pr;  

p2 = Inverse[El2+Er2].(Er2−El2).pr;  

FullSimplify [0.5�( p1+p2 ) , Assumptions −>{}][[−1]]  

Out[2]= (1. aˆ2 (4. +vlˆ2+2. vl vr+vrˆ2))/(vlˆ2−2. vl vr+vrˆ2+aˆ2 (4. +vlˆ2+2. vl vr+vrˆ2))  

 


