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Introduction 
The analysis of gaze behaviour yields critical insights 

into processes underlying visual attention, perception, and 
executive control, as well as their mechanistic underpin-
nings (Bahill et al., 1975; Engbert & Kliegl, 2003; Otero-
Millan et al., 2008). One prominent component of gaze be-
haviour is saccades, ballistic eye movements that rapidly 
re-orient the eye and thus the image impinging on the ret-
ina. Saccades typically last between 20 and 100 ms, de-
pending on the amplitude of the saccade (Bahill et al., 
1975; Bargary et al., 2017; Inchinglo, 1985). Because of 
their ballistic nature, saccades can be differentiated from 

other gaze events – such as fixations or smooth pursuits – 
by examining the eye velocity and/or acceleration (Chau, 
2011; Duchowski et al., 2002; Friedman et al., 2018; Kö-
nig & Buffalo, 2014; Larsson et al., 2013; Nyström & 
Holmqvist, 2010). A common approach is to apply a 
threshold in the velocity (e.g., Nyström & Holmqvist, 
2010) and/or acceleration domain (e.g., Duchowski et al., 
2002), on the basis of the known physiology of eye move-
ments. Threshold crossings mark the presence of saccades, 
and further analysis can then demarcate more precise on-
sets and offsets (Larsson et al., 2013; Nyström & 
Holmqvist, 2010). Although other, computationally more 
elaborate methods exist that may outperform thresholding 
algorithms under certain conditions (Andersson et al., 
2017; Komogortsev et al., 2010; König & Buffalo, 2014; 
Salvucci & Goldberg, 2000; Zemblys et al., 2018), thresh-
old algorithms have the advantage that they are relatively 
simple to implement, and are effective in experiments with 
rigorously defined, simple gaze behaviour. 

A critical and common step in algorithmic saccade de-
tection is thus the choice of the threshold. However, 
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variability in saccadic profiles, the presence of other gaze 
events such as fixations or smooth pursuits (Larsson et al., 
2013), measurement noise (Dai et al., 2016; Holmqvist et 
al., 2012), or sampling frequency (Leube et al., 2017; 
Mack et al., 2017), all make it difficult to reliably detect 
saccades algorithmically. Indeed, in the presence of these 
factors, event detection critically depends on the choice of 
threshold (Blignaut, 2009; Blignaut & Beelders, 2009; 
Inchinglo, 1985; Salvucci & Goldberg, 2000). To circum-
vent this problem, an alternative approach is to estimate a 
threshold from the data itself, which may adapt to chang-
ing conditions (Duchowski, 2003; Engbert & Kliegl, 2003; 
Nyström & Holmqvist, 2010; Tole, J. R. et al., 1981). 

Recently, Nyström and colleagues developed an algo-
rithm that iteratively calculates an adaptive velocity 
threshold, which has the benefit of setting the lowest pos-
sible threshold given changes in background noise and fix-
ation characteristics (Nyström & Holmqvist, 2010). This 
algorithm performs better than nine other recent algo-
rithms on data measured while participants viewed static 
stimuli (Andersson et al., 2017). It iteratively calculates 
the threshold as a function of the mean and standard devi-
ation. However, because these quantities are highly biased 
by the presence of outliers, the outliers may be undetected, 
a phenomenon called "masking” (Wilcox, 2012). For a 
given sampling frequency, saccades are by definition out-
liers in the velocity or acceleration domain, as they take up 
a far smaller number of gaze points than fixational inter-
vals, and they have much higher peak velocities and accel-
erations. This implies that the saccade detection threshold 
is modulated by the very signal it is trying to detect (Figure 
1). A robust estimation of the saccade threshold would ide-
ally be independent of saccades. 

The purpose of this work is to formally compare sac-
cade detection using statistically robust and non-robust 
threshold estimation. We have further set out two goals for 
threshold estimation; first, it should be robust and insensi-
tive to variations of maximum saccade amplitudes; and 
second, that it can be efficiently implemented. To this end, 
we modify the algorithm by Nyström and colleagues by 
using the median and median absolute deviation (MAD), 
which are robust to outliers in the data (Leys et al., 2013; 
Wilcox, 2012). The median absolute deviation is a robust 
estimate of dispersion, that, when properly scaled, can es-
timate the standard deviation of different distributions 
(Leys et al., 2013; Wilcox, 2012). Previous gaze research 
has used this measure to detect outliers and clean data 

(Rütsche et al., 2006), while other research has recom-
mended using a median filtering to reduce the influence of 
noise in general (Daye & Optican, 2014; Liston et al., 
2013). We propose using MAD as a threshold estimator in 
and of itself. We find that robust threshold estimation leads 
to improved saccade detection, particularly at higher noise 
levels, and is robust to varying threshold confidence levels. 
It also improves the performance of the original algorithm 
as proposed by Nyström and colleagues. We conclude that 
threshold estimation based on MAD can be widely and 
easily applied in other saccade detection algorithms where 
the threshold should be robustly estimated (e.g., Larsson et 
al., 2013). 

Methods 
All analyses were performed in MATLAB 2015b 

(Mathworks) using custom code. Implementation code for 
the robust estimation and saccade simulation is available 
at: https://github.com/att-circ-contrl/mad_saccade 

We first provide a brief overview of the study. We mo-
tivate our study by simulating saccades of varying ampli-
tudes and under different levels of noise. We then modify 
an existing saccade detection adaptive-threshold algorithm 
using robust statistics, and go on to show how our modi-
fied algorithm performs under different levels of noise and 
choices of free parameters. We further validate our results 
in human participants performing a task under head-free 
viewing conditions.   

Saccade Simulation 
We simulated saccades to create ground truth scan 

paths in order to objectively compare algorithms. Simula-
tions were based on the procedure proposed by (Dai et al., 
2016). Two dimensional saccades were generated using a 
parametric model of saccades that reproduces the saccadic 
main sequence. The parametric model generates a saccade 
waveform from the sum of a soft ramp function and a 
shifted negated soft ramp function (Equation 2. (Dai et al., 
2016)). We used the following parameter values for Equa-
tion 2 selected from uniform distributions ranging between 
these listed values : η= 0.45-0.65, c = 4.5-7.5, and τ = 2-6. 
Importantly, τ represents saccade amplitude. We used sac-
cade amplitudes ranging from 2-6 degrees of visual angle 
(dva), representing ranges that are prevalent in experi-
ments with static images in humans. Noise-free scanpaths 
were generated at a sampling rate of 500 Hz. Ground-truth 
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onset/offsets for each saccade were defined as the first 
point where the velocity dropped below 5 deg/s in the 
noise-free simulation. Measurement noise was simulated 
by adding white noise (standard deviation range, [0 1]). 

Adaptive Algorithm for Saccade Detection 
Nyström and colleagues (2010) proposed an innovative 

method to determine the saccade threshold in an adaptive, 
iterative way (Figure 1A) ((Nyström & Holmqvist, 2010); 
see also (Friedman et al., 2018) for a complementary de-
scription). It first determines a global velocity threshold 
for saccade detection on the basis of putative fixational pe-
riods, and then local, flanking velocity subthresholds that 
are the basis for onset/offset estimation. We obtained code 
for the adaptive algorithm from the personal website of 
Marcus Nyström (http://www.humlab.lu.se/en/per-
son/MarcusNystrom/ , link: “Source code for the algo-
rithm described in Nyström, M., & Holmqvist, K. (2010). 
An adaptive algorithm for fixation, saccade, and glissade 
detection in eyetracking data. Behavior research methods, 
42(1), 188-204.”). This code was slightly modified from 
its published version to allow for parameter testing. We 
refer interested readers to the original publication for the 
full details of the algorithm, but describe here the relevant 
details for the adaptive threshold calculation.  

Velocities were calculated via the Savitsky-Galoy fil-
ter (order=2, span=40 ms) (Nyström & Holmqvist, 2010). 
The determination of the saccade peak velocity threshold 
qPT can be broken down into the following steps (Figure 
1A). First, qPT is set to an initial value in the range 100-300 
deg/s. Second, for all velocity samples x lower than qPT, a 
new threshold is calculated as: 

𝜃!" = 𝜇 + 	𝜆 ∗ 𝜎																		(1) 
where µ and s is the mean and standard deviation over 
samples x, and the parameter l (lambda) is a scale factor 
equal to 6. This procedure is then repeated until the error 
between iterations is less than 1 deg/s. The block of sam-
ples above 𝜃!" are a putative saccade. To determine sac-
cade onsets, the algorithm first looks back in time from the 
putative saccade to the first point that crosses the saccade 
onset threshold 𝜃#"$%&'(:  

𝜃#"$%&'( = 𝜇 + 	3 ∗ 𝜎																		(2) 
If this threshold is crossed, the algorithm continues back 
in time to the nearest local velocity minimum, which is de-
fined as the saccade onset. The procedure is similar for 
saccade offsets, with the exception that the saccade offset 
threshold 𝜃#"

$))&'(is defined as: 

	𝜃#"
$))&'( = 0.7 ∗ 𝜃#"$%&'( + 	0.3 ∗ 𝐿𝑜𝑐𝑎𝑙𝑁𝑜𝑖𝑠𝑒									(3) 

Where LocalNoise was defined as the mean and 3 times 
the standard deviation of the velocity signals in the 40 ms 
preceding the saccade start. The saccade offset was de-
fined as a local minimum after the last crossing of 𝜃#"

$))&'( 
(see (Nyström & Holmqvist, 2010) for details). 

In our tests, we compare two versions of this original 
algorithm. First, we use the algorithm as presented on the 
website. However, in the current implementation (1.0), the 
algorithm does not (re-)calculate the threshold over all re-
maining data samples at each iteration. Instead, for each 
putative inter-saccadic interval (i.e. between threshold 
crossings), a number of samples are removed at the start 
and end of the inter-saccadic interval, defined as the mini-
mum fixation duration (40 ms) * sampling frequency (500 
Hz) / 6, which comes out to 3 samples removed at the 
flanks of each inter-saccadic intervals. In our simulations, 
this amounts to the removal of ~1% of the data. Thus, a 
second version of the algorithm does not excise any parts 
of the data, which is the algorithm as originally proposed 
in the publication. We refer to the first version – the adap-
tive threshold algorithm with excised data - as “AT-ex-
cise”, and the second one using all data as “AT”. 

Robust estimation of mean and deviation 
To get a robust estimate of the central tendency and 

variability of the data, we instead propose to use the me-
dian and median absolute deviation (MAD) (Leys et al., 
2013; Wilcox, 2012). In this framework, we treat saccades 
as outliers to be detected (Engbert & Kliegl, 2003). A ro-
bust measure of variability s’ is defined as: 

s′ = 𝑏 ∗ 𝑀𝐴𝐷(𝑥)										(4) 
𝑀𝐴𝐷(𝑥) = 𝑚𝑒𝑑𝑖𝑎𝑛(	|𝑥* −𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)|)								(5) 

MAD on its own tends to underestimate the standard devi-
ation, and thus must be scaled by the factor b. The factor b 
is equal to 1.4826 assuming the underlying distribution 
(i.e. ignoring outliers) is normal (Leys et al., 2013; Wilcox, 
2012). The distribution of velocities can differ based on 
the type of gaze behaviour (Bargary et al., 2017; Friedman 
et al., 2018), and this can be accounted for by setting b to 
the inverse of the 75th percentile (Leys et al., 2013; Wilcox, 
2012). Thus, we proposed to calculate the peak velocity 
and saccade onset/offset thresholds as:   

𝜃!" = 𝜇′ + 	𝜆′ ∗ 𝜎′																(6) 
𝜃#" = 𝜇′ + 	3 ∗ 𝜎′																	(7) 

where µ’ is the median. We refer to this algorithm as 
“AT-MAD”, and also compare it to one where we excise 
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data (as described above), referred to as “AT-MAD-ex-
cise”. We will use the term “robust” to refer to algorithms 
using robust statistics (AT-MAD and AT-MAD-excise).  

Previous research has suggested that adaptive thresh-
olds perform better than fixed threshold under certain con-
ditions (Dai et al., 2016; Engbert & Kliegl, 2003; Nyström 
& Holmqvist, 2010), though a recent study has shown the 
inverse to be true (Friedman et al., 2018). To this end, we 
also compared our modified algorithm to a fixed threshold 
version, where the velocity threshold was set at 55  deg/sec 
and the saccade onset/offset threshold was set at 45 
deg/sec. (Friedman et al., 2018). 

 
Figure 1. Example where adaptive thresholding detects saccades in a 
data-driven manner, but can fail with non-robust statistics (A) Schematic 
of AT algorithm. The threshold for detection is initialized at qPT1 (dashed 
line). All points below this (thick line segments of the curve) are then 
used to calculate qPT2 (solid horizontal line), a new threshold used on the 
next iteration to determine the next threshold This algorithm proceeds 
until it converges to a solution. (B) Velocity of simulated scanpath with 
20 low amplitude saccades. Horizontal lines depict the final threshold qend 
as determined by the AT algorithm (red) and AT-MAD algorithm (black). 
The AT-MAD algorithm finds a lower bound than AT, though still well 
above the background noise. (C-D) Example saccade that was not 
detected by the AT algorithm (C) but was detected by the AT-MAD 
algorithm (D), corresponding to the arrow in (B). (see Figure 5E-J for 
examples from human data). The initial threshold is depicted as a dashed 
line. Solid, red horizontal lines represent the threshold on successive 
iterations, with darker (lighter) lines showing earlier (later) iterations. 
Notice that it increases beyond the initial threshold, but the AT-MAD 
algorithm successfully stops iterating, whereas AT does not.  

Algorithm Comparison 
To compare the performance of different algorithms, 

we used event-based comparison to match true  and de-
tected saccades (Dai et al., 2016; Warby et al., 2014) . True 
saccades were extracted from simulated, or later, manually 
annotated experimental data (see below). A match is 
logged if there is sufficient sample overlap (>20%) be-
tween a true and detected saccade (Dai et al., 2016; Warby 
et al., 2014). All matched saccades are true positives (TP), 
unmatched true saccades are false negatives (FN), and un-
matched detected saccades are false positives (FP). From 
these, we further calculate the precision (=TP/TP+FP) and 
recall (=TP/(TP+FN)) (Dai et al., 2016; Warby et al., 
2014). These are used to compute the F1 score (=2*preci-
sion*recall/(precision+recall)), an aggregate performance 
measure. 

To determine the timing characteristics of onsets and 
offsets, we take their difference between the (matched) 
true and detected saccades. Onset/offset lags were defined 
as the average of the difference within a simulation. On-
set/offset jitters were defined as the standard deviation of 
the differences within a simulation.  

To determine the difference in performance between 
algorithms, we perform a pair-wise t-test by taking the dif-
ference in F1 scores between algorithms for each simula-
tion. P-values were multiple-comparison corrected using 
the Bonferroni procedure. 

Experiment and Data 
The York University Office of Research Ethics ap-

proved the present study as confirming to the standards of 
the Canadian Tri-Council Research Ethics guidelines (Cer-
tificate # 2016-214) We analyzed gaze data from perfor-
mance during a feature-based rule-learning task (n=12) in 
a three-dimensional environment presented on a computer 
monitor, controlled using our laboratory’s publicly availa-
ble USE software suite for active, video-game-like exper-
iments (Watson, Voloh, Thomas, et al., 2019). The task 
was similar to that described in the paper detailing this 
software (Watson, Voloh, Thomas, et al., 2019), with the 
important differences that stimuli did not move, and re-
sponses were made using a combination of fixations and 
button presses instead of a joystick. We present the details 
of the task below, but note that since we simply required a 
large enough dataset of eyetracking data, the details are not 
relevant to the presented conclusions. 
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On each trial, participants selected one of two “Quad-
dle” objects (Watson, Voloh, Naghizadeh, et al., 2019), 
and received feedback on the accuracy of this choice. 
Through trial and error, they attempted to learn the rules 
governing reward. These objects had four feature dimen-
sions (shape, surface colour, surface pattern, and arm type) 
with two different possible values each (i.e. the shape 
could be pyramidal or oblong, the colour could be red or 
orange, etc). Rules were always based on a single feature 
value, for example red objects might be rewarded and or-
ange objects unrewarded, and each trial contained one re-
warded and one unrewarded object. In each block there 
were two different rules, each operating in a different con-
text (determined by the colour of the floor the objects were 
placed on). Once participants had made 10/12 correct 
choices, a new block began, and participants had to learn 
new randomly-selected rules. 

At the beginning of each trial, participants were pre-
sented with a blank white screen and a fixation point that 
they needed to fixate for one second before they could 
begin a trial. Upon fixation, this central point would turn 
from blinking red to solid black, before disappearing. The 
blank white screen persisted for another 600ms before the 
subjects were presented with a 3D rendered arena with two 
objects placed at random positions. If participants broke 
this fixation too early, then the trial would be aborted. 

Subjects had to fixate one of the two objects for 300 ms 
before receiving a cue that let them know that they were 
able to choose that object (the cue consisted of a translu-
cent dot superimposed on stimulus). Participants were then 
able to choose that object by pressing down the spacebar 
and continuing to fixate the object for another 100 ms. Au-
ditory feedback in the form of a low or high pitched beep, 
and visual feedback in the form of a red dot superimposed 
on the stimulus or a yellow dot superimposed on the stim-
ulus for 300 ms, were used to indicate incorrect and correct 
responses respectively. After feedback, the objects disap-
peared, and an inter-trial interval consisting of the empty 
arena was displayed for 800ms. Participants had 30 sec-
onds to make a response in a trial, otherwise the trial would 
be aborted, and they would be presented with instructions 
letting them know to respond faster. 

The experiment was run using custom code for the 
Unity3D game engine. Gaze data was collected using a 
desktop mounted eyetracker situated well below eye-level 
(Tobii TX300; sampling frequency, 300 Hz), in a similar, 
low light environment. Participants were seated 50-60cm 

away from the monitor. Although they were seated, they 
were otherwise unrestrained. 

We randomly selected 120 seconds of data from each 
participant at least 10 minutes into the session. Noise lev-
els for each participant were defined as RMS of the x- and 
y-gaze positions during the inter-saccadic (i.e. fixational) 
periods (Holmqvist et al., 2012). Manual classification was 
done with a custom GUI that had four displays; x-position, 
y-position, velocity, and (x,y) gaze. Classification was per-
formed by four trained members of the lab with instruc-
tions to demarcate saccade and fixation onsets/offsets. 

We compared algorithm performance as outlined 
above. To determine the effects of sampling rate, we 
resampled the data to a lower rate of 150 Hz (using the 
Matlab function resample). This was performed using the 
lambda for individual algorithms that gave the best over-
all performance (lambda=6 for AT, lambda=9 for AT-
MAD). We then determined if the difference in F1 scores 
significantly varied with the sampling rate. 

To test for the effects of noise, we correlated subjects’ 
fixational noise (average of x and y RMS) with the differ-
ence in F1 scores. 

Results 
To illustrate the strength of robust statistics, we show 

an example simulation with moderate noise where AT 
failed to detect the saccade (Figure 1C) but AT-MAD 
succeeded in doing so (Figure 1D; see also Figure 5E-F). 
In this example, the relatively high velocity values (Figure 
1B) push the threshold higher than its initial starting value 
(Figure 1C). After many iterations, the threshold is too 
high to detect this saccade. However, because robust 
threshold estimation is relatively insensitive to outlier 
values, the AT-MAD algorithm successfully exits after 
one iteration, and is thus able to detect the saccade (Figure 
1D). The average number of iterations across all 
algorithms and simulations ranged from 2 – 6, with robust 
algorithms exiting earlier than their non-robust 
counterparts at all noise levels.  

We compared the detection performance (F1 score) of 
four different versions of the algorithm as a function of 
noise level (Figure 2A,B). We found that using the AT al-
gorithm as originally proposed had the lowest perfor-
mance. Performance improved if some data flanking the 
saccades was removed (AT-excise), as in the version 
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published on Nyström’s website, suggesting that the orig-
inal algorithm remains sensitive to the relatively high ve-
locities just below threshold. However, AT-MAD and AT-
MAD-excise had similar performance over all noise levels, 
showcasing the insensitivity of detected thresholds to out-
liers when using robust statistics. Robust threshold estima-
tion consistently and significantly improved F1 scores by 
~0.02-0.1 for noise levels equal to or greater than 0.4 (Fig-
ure 2B; p<0.05, multiple comparison corrected). If some 
data in the inter-saccadic intervals was excised (AT-excise 
vs AT-MAD-excise), the improvement peaked at 0.056, 
whereas the improvement was greatest (0.096) if all data 
was considered (AT vs AT-MAD). Improvements could 
be traced to both a higher true positive (Figure 2C) and a 
lower false negative rate (Figure 2D). 

 
Figure 2. Robust estimation of threshold parameters results in improved 
detection performance (A) Mean and standard error of F1 score as a 
function of noise for two versions of the original algorithm (orange, AT 
and AT-excise) and two versions using the robust estimator (blue, AT-
MAD and AT-MAD-excise). Versions using MAD consistently 
outperform (compare orange vs blue). Using the original data, excising 
some data improves detection performance (compare triangles and 
circles, orange lines), whereas it makes no difference for versions using 
the MAD estimator (triangles and circles, blue lines). (B) Mean and 
standard error of the pairwise difference in F1 score comparing AT vs 
AT-MAD (triangles), and AT-excise and AT-MAD-excise (circles). 
Filled, red circles represent statistically different score (p<0.05, multiple 
comparison corrected). Threshold estimation using MAD shows 
significantly improved performance for noise levels at 0.4 and above, 
particularly for the algorithm as originally proposed (triangles). (C-D) 
Mean and standard deviation of the true positive rate (C), and false 
negative rate (D) for the four different versions of the algorithm. 
Improvements in (A-B) can be traced both to a higher true positive rate 
(C) and a lower false negative rate (D). 

Previous studies have indicated that adaptive thresh-
olds perform better than fixed thresholds (Dai et al., 2016; 
Engbert & Kliegl, 2003; Nyström & Holmqvist, 2010), 
while other studies suggest that the inverse is true 
(Friedman et al., 2018). To this end, we compared robust 
adaptive threshold estimation to a fixed threshold version 
of the algorithm (setting 𝜃!" = 55, and 𝜃#" = 45 (Fried-
man et al., 2018). We found that at low levels of noise 
(<0.2), fixed thresholds showed a minor advantage in per-
formance (with a difference in F1 scores in the range of 
[0.0031, 0.0039]), but at high levels of noise (>0.3), adap-
tive threshold detection greatly outperformed fixed thresh-
old detection (difference in F1 scores range, [0.24, 0.76]). 

While robust threshold estimation results in better sac-
cade detection, it may do so by failing to properly charac-
terize saccade onsets and offsets. Thus, we compared onset 
and offset lags between the original and MAD versions of 
the algorithm. We found that onset and offset lags were 
comparable for all versions of the algorithms, increasing 
with noise (Figure 3A-B). All algorithms had a jitter of 
~2ms across all noise levels, although the variability in jit-
ter increased with noise (Figure 3C-D). Thus, based on the 
simulation results, the MAD algorithm consistently and 
more reliably detects saccades at higher noise levels, but 
shows similar saccade onsets/offsets.  

 
Figure 3. Onset and offset lags are comparable across all algorithms (A-
B) Mean and standard error of the onset (A) and offset (B) lags, which is 
the difference in onset/offset as determined by the algorithm and the 
reference. All tested algorithms show similar lags. At higher noise levels, 
the lag decreases (shifted earlier). (C-D) Mean and standard deviation of 
the onset (C) and offset (D) jitter in lag. Across all tested noise levels, 
jitter is around 2 ms, but variability in jitter gets higher with increasing 
noise levels. Jitter at all noise levels is comparable across algorithms. 
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Experimental questions may necessitate varying levels 
of confidence in saccade detection. For example, studies 
comparing saccade characteristics across populations 
(Bargary et al., 2017) may only wish to analyze well-de-
fined saccades. In this case, experimentalists may wish to 
have a particularly high detection threshold. This can be 
controlled by setting the lambda parameter to higher val-
ues. To this end, we performed another set of analyses ma-
nipulating the value of lambda (Figure 4). We found that 
for low noise levels (<0.2), the value of lambda did not 
distinguish the performance of any four considered algo-
rithms (Figure 4A-B,D-E). Very low lambda (=4, 5) had 
lower performance, due to a higher number of false posi-
tives. Here, AT-excise and AT slightly but significantly 
outperformed their robust counterparts (Figure 4C, F). 
However, the benefits of the MAD algorithm start to 

accrue at noise levels higher than 0.4. At these noise levels, 
very high lambda value (=10) negatively impact the per-
formance of AT by a factor of ~0.2 (Figure 4A). As noise 
increases, performance of AT rapidly declined, to a mini-
mum of ~0.2 at the highest noise level (=1). However, at 
this same level, AT-MAD achieved a performance of ~0.4.  
(Figure 4B). Indeed, for noise levels greater than or equal 
to 0.4, the AT-MAD algorithm had consistently and sig-
nificantly higher performance than AT, up to a peak of 
~0.45 at the highest value of lambda (Figure 4C). The ef-
fects were qualitatively similar when comparing AT-ex-
cise and AT-MAD-excise (Figure 4D-F), where the per-
formance boost was smaller but still substantial (Figure 
4F). Thus, the MAD algorithm allows experimentalists to 
more robustly define a desired confidence for detection.

 

Figure 4. MAD is more robust to changes in threshold confidence level (A) Mean and standard deviation of the detection performance of the AT 
algorithm as a function of lambda for various levels of noise. Copper-tone color indicates the level of noise, with darker (lighter) colors indicating less 
(more) noise. At low noise levels (<0.2), performance does not depend on the choice of lambda. At moderate noise levels (0.4), performance rapidly 
decreases at very high lambda values (=10). However, with high noise levels, there is a substantial and rapid decrease in performance with higher 
lambda values. (B) Same as (A) but for the AT-MAD algorithm. Performance is high for low-moderate noise levels (<0.6). For higher noise levels, 
performance decreases at a slower rate for higher lambda values. (C) Difference in detection performance between AT-MAD and AT. Colored dots 
represent significant differences at the corresponding noise level. Dots above (below) zero depict significant increases (decreases) (p<0.05, multiple 
comparison corrected). At higher levels of lambda, AT-MAD far outperforms AT. This is especially true for moderate to high-levels of noise. (D-F) 
Same as (A-C) but for AT-excise (D), AT-MAD-excise (E), and their comparison (F). Results are qualitatively similar as for (A-C). Excising some data 
points using the original algorithm helps but using MAD still allows for higher lambda values 
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 Up to this point, results were based on simulated data. 
A remaining question is how the algorithms would per-
form on real-world data. We analyzed data from twelve 
subjects performing a task with head-unrestrained viewing 
of a static scene. We manually annotated two minutes of 
data randomly sampled from each subject. Average noise 
levels (RMS) for the three subjects were 0.12 ± 0.015 dva 
in the horizontal direction, and 0.19 ± 0.024 dva in the ver-
tical direction (Dalrymple et al., 2018), placing it in the 
lower quarter of simulated noise levels. Noise levels were 
higher in the vertical rather than horizontal direction, as 
has been observed in adults using similar equipment (Dal-
rymple et al., 2018), likely due to the pupil being occluded 
as it travels upwards and thus away from the eyetracking 
sensors. We then compared detection performance of the 
AT and AT-MAD (Figure 5). AT-MAD was equal to or 
outperformed AT in all cases where lambda was set to 7 or 
greater (Figure 5A). This was due to its higher true positive 

rate (Figure 5B), and lower false negative rate (Figure 5D). 
These improvements outweighed the higher false positive 
rate evident in AT-MAD rather than AT (Figure 5C). 
Three example subjects are shown in Figure E-J. Generally 
speaking, AT failed because it would consistently find a 
higher threshold than AT-MAD, resulting in an inability to 
detect low-velocity saccades (illustrated in Figure 5I-J). 
Detection performance of AT-MAD generally stayed sta-
ble across all values of lambda (Figure 5A), whereas AT 
showed a steep drop in performance with increasing 
lambda, as well as an increase in variance (Figure 5A). In-
deed, in one subject, a lambda of 10 resulted in no detected 
saccades (Figure 5Ei). These results complement the sim-
ulation results and suggest that AT-MAD outperforms AT 
on human data by estimating a lower threshold, though one 
that is still conservative enough to avoid false positives in 
most cases. Furthermore, they suggest a lambda of at least 
8 can drastically reduce false positives without affecting 
overall detection performance. 

 

Figure 5. AT-MAD outperforms AT on real world data (A-D) Performance of the AT (orange) and AT-MAD (blue) algorithms on two minutes of 
human gaze data (n=12), depicted as the (A) F1 score, (B) True positive rate, (C) False positive rate, and (D) False negative rate. AT-MAD outperforms 
AT for all levels of lambda greater than 6. (E-H) Same as (A-D) but for three individual subjects (i-iii). In all three subjects, AT-MAD outperforms AT 
for lambda >6. In one subject (Ei), the F1 score is undefined because precision and recall are zero (I,J)  Example saccades in these subjects that AT 
could not detect (I) but AT-MAD could (J). Dashed line represents the initial threshold, and solid red lines are threshold on subsequent iteration, with 
darker (lighter) representing earlier (later) iterations.  
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 Given these results, we focused our next analyses on 
the values of lambda that gave the best performance for 
each algorithm. This was a lambda of 6 for AT, and a 
lambda of 9 for AT-MAD. For these parameters, AT-
MAD significantly outperformed AT (t-test, p=0.012), and 
found a lower threshold on average (AT: 94.6 ± 12.5, AT-
MAD: 87.7 ± 9.68). 

Our simulation results suggest that AT-MAD may be 
more suitable for noisier data. We thus related each sub-
ject’s average noise level (defined as the average of hori-
zontal and vertical noise) with the difference in perfor-
mance of AT-MAD and AT (where positive values indi-
cate AT-MAD outperforms AT). The performance differ-
ence tended to be greater at higher levels of noise, though 
this did not reach significance (Spearman rank correlation, 
R=0.514, p=0.087).  

One potential difficulty in reliable saccade detection 
is the sampling rate of the acquisition equipment (Anders-
son, 2010). To this end, we compared the performance of 
the algorithms under lower sampling rates by down-sam-
pling the data to 150 Hz. We then compared the perfor-
mance difference under low (150 Hz, downsampled data) 
and moderate (300 Hz, original data) sampling rates across 
algorithms. We found that the performance difference be-
tween AT and AT-MAD was statistically indistinguisha-
ble (t-test, p=0.45). 

Discussion 
The current work improves on saccade detection by ro-

bustly estimating a threshold while mitigating the influ-
ence of saccades themselves. The use of a robust estimator 
allows the estimation of a threshold unbiased by the very 
signal we are trying to detect (Leys et al., 2013). This al-
lows a more accurate estimation of the background noise 
levels. We find that the use of MAD, a robust estimator of 
the dispersion not biased by outliers, improves the detec-
tion of saccades relative to previously published versions 
of this algorithm (Nyström & Holmqvist, 2010), particu-
larly at higher noise levels. There is both an increase in the 
number of correctly identified saccades, and a decrease in 
the number of falsely identified saccades. Moreover, be-
cause MAD is not sensitive to outliers in the data, its use 
allows the experimentalist to confidently define their de-
sired level of confidence. 

The goal of the algorithm by Nyström and colleagues 
is to find the lowest possible threshold that can reliably 
differentiate saccades from noise and fixations. However, 
as we have shown, the resulting threshold remains sensi-
tive to the saccades themselves. One reason is that data 
samples that fall just below threshold (i.e. those flanking 
detected saccades) can still influence the computed thresh-
old. This concern can be alleviated by excising a number 
of samples in the inter-saccadic flanks. However, this pro-
cedure introduces another user-defined parameter, namely, 
the duration/number of samples to discard. It is likely the 
case that the optimal number of samples to discard varies 
by experimental condition, manipulation, or hard-ware 
considerations. By considering all of the data, this concern 
is obviated.  

We considered an experiment where the scene was 
static, and considered an appropriate algorithm for this. 
However, dynamic scenes present new challenges as they 
contain other gaze events, such as smooth pursuits.  
Smooth pursuits are difficult to distinguish from fixations 
and saccade events because of their overlapping velocity 
profiles, so an alternative is to  consider the signal in the 
acceleration domain (Duchowski, 2003; Duchowski et al., 
2002; Larsson et al., 2013). Because the acceleration is a 
second order derivative, the effect of outliers is amplified. 
In this case, the use of the MAD estimator would likely 
improve threshold estimation, especially in combination 
with an iterative threshold estimation as Nyström and col-
leagues proposed (Nyström & Holmqvist, 2010). In fact, 
preliminary tests in our lab on other data where smooth 
pursuits are prevalent have shown this to be the case (data 
not shown). Other algorithms use thresholding on different 
aspects of gaze, such as dispersion, to disambiguate 
smooth pursuits from other gaze events (Andersson et al., 
2017; Komogortsev & Karpov, 2013), and here too, we 
would expect robust threshold estimation to be beneficial 
during adaptive threshold estimation. 

We have shown that the benefits of the MAD estimator 
mainly accrue at high noise levels. This is particularly im-
portant in non-ideal experimental conditions that can lead 
to noisier data, such as unrestrained viewing, or when 
working with younger, older, or clinical populations (Bar-
gary et al., 2017; Rütsche et al., 2006), as well as in more 
realistic virtual or game-like settings (Clay et al., 2019). 
The other benefit of MAD is that it allows experimentalists 
to define a confidence level (lambda parameter), as re-
quired by the experimental questions/equipment. This 
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could be relevant for studies that look at differences in sac-
cade generation across individuals, or populations; such 
studies may wish to analyze only well-defined saccades 
(i.e. a higher confidence threshold) (Bargary et al., 2017). 
Alternatively, lower thresholds may be used to allow the 
detection of micro-saccades (Engbert & Kliegl, 2003), alt-
hough this remains to be tested. The use of MAD allows 
experimentalists to set confidence levels in an unbiased 
manner. 

The current study focuses on the comparison of one 
published algorithm with a robust alternative. This algo-
rithm has laudable strengths compared to others, such as 
data-driven (as opposed to user driven) threshold estima-
tion, and a flexible approach that allows setting different 
thresholds across different experimental subjects, sessions, 
trials etc. It performs better than nine published algorithms 
on experiments with static stimuli (Andersson et al., 2017). 
That said, it remains an open question whether other 
threshold-based algorithms would benefit from the use of 
a robust estimator. Because of the ease of implementation, 
we believe this could be easily tested by interested readers. 

This study is related to a method of threshold detection 
proposed by Engbert and colleagues (Engbert & Kliegl, 
2003), which has been widely used in research into micro-
saccades (Engbert & Kliegl, 2003; Otero-Millan et al., 
2008). They use a different, median-based method of esti-
mating the standard deviation. A formal comparison be-
tween the two methods is beyond the purview of the paper. 
However, the present work should be seen as complemen-
tary. It provides a formal and rigorous comparison of ro-
bust vs non-robust statistics in the estimation of the stand-
ard deviation for the purpose of threshold determination 
and suggests that robust estimation may be superior in gen-
eral.  

While the proposed method showed improvements in 
saccade detection, it did not affect the estimation of sac-
cade onset and offsets. Thus, the use of robust statistics for 
threshold estimation should be viewed as complementary 
to methods that use more sophisticated approaches to de-
termining saccade onsets and offsets that take into account 
gaze events such as post-saccadic oscillations, deviations 
from the main direction, or temporal changes in direction 
variability (e.g., Larsson et al., 2013).  

Our preliminary results suggest that both robust and 
non-robust saccade detection perform similarly at low 
(150 Hz) and moderate (300 Hz) sampling rates. However, 

low-frequency sampling is usually performed in experi-
mentally challenging conditions (Evans et al., 2012; La-
nata & Greco, 2015; Leube et al., 2017), and thus this data 
tends to be noisier. Moreover, outliers exert more influ-
ence with less data. On the other hand, peak velocities can-
not be reliably recovered under low-frequency sampling 
regimes (Mack et al., 2017), suggesting that the effect of 
outliers may be more prevalent at higher sampling rates. 
Future studies could ascertain the performance of robust 
and non-robust thresholding using different experimental 
equipment, including both commercially available and 
open-source systems (Zimmermann et al., 2016). Addi-
tionally, robust estimation may be beneficial in non-human 
animal models, for which head-free eye-tracking is chal-
lenging. Indeed, initial testing in our laboratory suggests 
that robust threshold estimation improves saccade detec-
tion in non-human primates in a variety of different tasks 
(data not shown). 

In conclusion, we present here a simple, easily imple-
mentable change to a common step in the analysis of sac-
cades, namely, using a robust estimator of the central ten-
dency and deviation to estimate detection thresholds. The 
simple change leads to improved saccade detection with a 
published algorithm. The simplicity of this change should 
encourage further testing and implementation in other 
thresholding algorithms. 
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