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Introduction 
Traditionally, response behavior such as accuracy and 

more recently response time are typically used to make in-
ferences about participants' cognitive states, processes, or 
abilities to solve cognitive tasks (Groner & Groner, 1982; 
van der Maas, Molenaar, Maris, Kievit, & Borsboom, 
2011). Eye movements are a valuable source of infor-
mation which extends our ability to make this kind of in-
ference (e.g., Findlay & Gilchrist, 2003). 

However, analyzing eye-tracking data is a challenging 
problem especially when cognitive strategies are to be in-
ferred from the locations at which participants look and the 
order in which they look at them. Analyzing the infor-
mation about the spatial and temporal dimensions of eye 
movements is commonly referred to as scanpath analysis, 
where the term scanpath concerns the spatio-temporal se-
quence of fixations and saccades, a term coined by Noton 
and Stark (1971). 

Pioneering work of Yarbus (1967) showed (among 
other discoveries, Tatler, Wade, Kwan, Findlay, & Veli-
chkovsky, 2010) that giving different instructions to ob-
servers changes their gaze behavior. This inspired the eye-
tracking research community to devote its attention to-
wards the so called inverse Yarbus problem (Greene, Liu, 
& Wolfe, 2012; Haji-Abolhassani & Clark, 2014): in this 
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area of research, the question is whether it is possible to 
infer a task or a strategy from eye movement patterns ra-
ther than whether a task or strategy invokes different gaze 
behavior. Most of the applications to investigate the in-
verse Yarbus problem deal with situations where we know 
what task or strategy a participant uses, e.g., using an ex-
perimental manipulation or recruitment based on diagnosis 
or a cognitive development stage. This enables researchers 
to use supervised techniques to show that some form of 
eye-tracking data representation can be used to describe 
the strategy of the observed groups. The representations 
range from similarity measures based on string edit and se-
quence methods (Cristino, Mathôt, Theeuwes, & Gilchrist, 
2010; Glady, Thibaut, & French, 2013; Kübler, Rothe, 
Schiefer, Rosenstiel, & Kasneci, 2017; von der Malsburg 
& Vasishth, 2011), classifying raw eye tracking statistics 
(Boisvert & Bruce, 2016; Greene et al., 2012; Henderson, 
Shinkareva, Wang, Luke, & Olejarczyk, 2013; Hild, Voit, 
Kühnle, & Beyerer, 2018; Kanan, Ray, Bseiso, Hsiao, & 
Cottrell, 2014), Markov models (Groner & Groner, 1982; 
Groner, Walder, & Groner, 1984) or hidden Markov mod-
els (Coutrot, Hsiao, & Chan, 2018; Haji-Abolhassani, & 
Clark, 2014; Kit & Sullivan, 2016; Liu et al., 2009). For a 
review of different approaches to predict a task from eye 
movements see Boisvert and Bruce (2016). However, the 
question of how to infer a task or a strategy is a topical 
issue especially when it is unobserved (i.e., latent) and has 
to be inferred from the eye movements alone (i.e., a latent 
inverse Yarbus problem). This is precisely the issue of the 
current study. 

Discovering latent groups 
Latent groups are of interest whenever there is a rea-

sonable expectation that the observers might use a set of 
qualitatively different approaches to the task, and these 
differences would manifest through their gaze behavior, 
but it is unknown which observer uses which approach on 
which stimuli, other than what can be inferred from the eye 
movements themselves. This distinguishes the latent group 
problem from the prediction problem. In the prediction of 
a task, one has the information about the groups of observ-
ers which are supposed to qualitatively differ in the eye 
movement patterns and needs to learn which features of 
eye movements discriminate between these groups. In the 
latent group problem, one has to learn about the presence 
or absence of qualitatively distinct groups, and identify the 
features of the eye movements that are characteristic of 
these groups. The discussion of latent groups manifesting 

through eye movements appear in the context of cognitive 
tasks (Glady, et al., 2013; Hayes, Petrov, & Sederberg, 
2011, 2015; Loesche, Wiley, & Hasselhorn, 2015; 
Vigneau, Caissie, & Bors, 2006), decision making (Polo-
nio & Coricelli, 2018; Stewart, Gächter, Noguci, & Mullet, 
2016), visual search tasks (Crosby & Peterson, 1991), face 
recognition and exploration (Chuck, Chan, & Hsiao, 2014, 
2017; Chuck, Crookes, Hayward, Chan, & Hsiao, 2017; 
Coutrot, Binetti, Harrison, Mareschal, & Johnston, 2016), 
and various other topics (Hayes & Henderson, 2018; Liu 
et al., 2009; West, Haake, Rozanski, & Karn, 2006). 

In the context of cognitive tasks, the detection of qual-
itatively distinct groups of eye movements can be espe-
cially informative, because the groups might be related to 
a cognitive strategy a person uses to solve the problem at 
hand (Bethell-Fox, Lohnam, & Snow, 1984; Carpenter, 
Just, & Shell, 1990). Using the eye-tracking patterns to 
identify these strategies can bring additional insights as to 
how people solve these problems and can thus complement 
more conventional analyses of response behavior 
(Gierasimczuk, van der Maas, & Raijmakers, 2013; 
Steingroever, Jepma, Lee, Jansen, & Huizenga, 2019; van 
der Maas & Straatemeier, 2008). 

Detecting latent groups from eye movements can be 
viewed similarly as detecting latent groups from response 
behavior (Steingroever et al., 2019; van der Maas & 
Straatemeier, 2008), with the only difference being the 
type of data that are used as an input. Generally, the goal 
of detecting strategies can be achieved by unsupervised 
clustering methods or mixture modeling of the eye move-
ment data. Unsupervised methods for clustering similar 
eye movement patters has already been used in context of 
face recognition (clustering hidden Markov models, e.g. 
Chuk et al., 2014; Chuk, Chan, & Hsiao, 2017; Chuk, 
Crookes, et al., 2017), reading (latent profile modelling 
based on scanpath similarity measure, von der Malsburg & 
Vasishth, 2011), free viewing (hierarchical clustering 
based on similarity measure, West et al., 2006), visual 
search (manual classification, Crosby & Peterson, 1991), 
or usability testing (Goldberg & Helfman, 2010a, 2010b), 
among others. 

In the context of cognitive tasks hypotheses about la-
tent solving strategies are currently not always tested using 
latent group analyses. In many cases, based on theoretical 
expectations on how the latent strategies should manifest, 
researchers first define aggregate statistics from the eye 
movements (e.g., number of transitions, frequency of tran-
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sitions between different areas of interest, etc.). Then they 
relate them to performance, thereby showing that different 
strategies result in different eye movement statistics that 
are subsequently correlated with performance in the task 
at hand (Laurence, Mecca, Serpa, Martin, & Macedo, 
2018; Loesche et al., 2015; Vakil & Lifshitz-Zehavi, 2012; 
Vigneau et al., 2006), although an alternative approach has 
been proposed to model the eye-tracking data (Successor 
Representation Scanpath Analysis (SRSA), Hayes et al., 
2011, 2015). In short, SRSA builds successor representa-
tion matrices which contain information about the higher 
order transition dependencies in the data, which are then 
reduced in smaller number of dimensions and used as pre-
dictors of performance in the task. By adjusting parameters 
that control the specification of these matrices, the meth-
ods searches for a solution which maximized the predic-
tion of the task performance (i.e., a semi-supervised ap-
proach whereby task performance substitutes an indicator 
of the strategy, Hayes et al., 2011, 2015). It is often the 
case that the relationship between the latent strategy and 
the task performance (or other variable) is itself an empir-
ical question. In this situation, conducting an unsupervised 
latent group analysis first will enable us to separate two 
questions from each other – first, whether we can detect 
qualitatively different eye movement patterns, and second, 
whether these patterns relate to performance (or other var-
iables of interest). Crucially, this approach allows discov-
ering groups that are not necessarily related to perfor-
mance, and thus provides an opportunity to assess the latter 
question empirically. This distinction is important when 
the sole predictive performance is not of such an im-
portance compared to assessing theories about qualita-
tively different cognitive processes, and to explain, rather 
than predict, individual differences (for in depth discussion 
of the trade-off between prediction and explanation, see 
Yarkoni & Westfall, 2017). 

Eye movement representation 
To conduct a latent group analysis, a choice needs to 

be made how to represent the eye movements data (in 
terms of its spatial and temporal features) to serve the pur-
pose of finding the latent groups in the specific context. 
The need to choose between different representations 
arises due to the fact that the raw eye-tracking data are, in 
their totality, too complicated (and perhaps noisy) to pro-
vide meaningful insights into the phenomenon under in-
vestigation. Thus, researchers usually need to define which 
features of the data are meaningful or discriminatory for 

the specific application and model them as such. For ex-
ample, many authors emphasize individual differences in 
the processing of facial features, resulting in a distinction 
between holistic and analytic strategies in face recognition 
(Chuk et al., 2014; Chuk, Chan, & Hsiao, 2017; Chuk, 
Crookes, et al., 2017; Groner et al., 1984). Thus, hidden 
Markov models are suitable for this purpose as they allow 
to identify the important parts of the stimulus in a bottom-
up manner. Furthermore, the transition patterns of the hid-
den Markov model between the facial features enables to 
discriminate between left-eye biased and right-eye biased 
analytic patterns. Based on a careful consideration of the 
specifics of eye movements in reading, von der Malsburg 
and Vasishth (2011) use their own similarity measure 
which does not require discretization of the stimulus into 
regions of interest and can take into account the fixation 
duration, which is important in the context of syntactic 
analysis of sentences. Another approach (West et al., 
2006) relies on string edit distances (Levenshtein, 1966; 
Needleman & Wunsch, 1970; Smith & Waterman, 1981) 
to cluster sequences based on similarities between pairs of 
eye movement recordings. 

In case the stimuli can be unambiguously divided into 
distinct meaningful areas of interest and the number, shape 
and position of these areas is assumed to be constant be-
tween the latent groups (as is the case in many cognitive 
tasks, e.g., Polonio & Coricelli, 2018; Truțescu & 
Raijmakers, 2019; Vigneau et al., 2006), a promising can-
didate for such representation is a transition matrix be-
tween pre-defined areas of interest, in which we quantify 
the probability of the next fixation on any area of interest 
conditionally on the position of the current fixation. Con-
structing or fitting transition matrices is relatively well es-
tablished in the eye-tracking literature, either as descrip-
tive statistic of the transition patterns (Althoff & Cohen, 
1999; Ellis & Stark, 1986; Ponsoda, Scott, & Findlay, 
1995) or as an integral set of parameters specifying (hid-
den) Markov models (see Coutrot et al., 2018; Visser, 
2011, and references therein). Compared to the hidden 
Markov models, constructing transition matrices from the 
fixated areas of interest significantly reduces the complex-
ity of the analysis at the expense of binning fixations into 
pre-defined areas of interest instead of treating them as 
hidden states that need to be estimated from the data. This 
essentially simplifies the problem into a representation of 
categorical time-series (Pamminger & Frühwirth-Schnat-
ter, 2010), without the need for a complicated evaluation 
of the likelihood of each eye movement sequence as a 
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whole as is the case in hidden Markov models. It is im-
portant to note that if the areas of interest cannot be defined 
in advance (e.g., because their position is itself a topic of 
empirical investigation), the data are too noisy relative to 
the sizes of the areas of interest, or if there are too many 
borderline fixations, this simplification may not be justi-
fied and other, more complex, approaches (e.g., hidden 
Markov Models) may be necessary. 

Despite the fact that by using only the first-order tran-
sition matrices one potentially ignores informative features 
of the eye movements data (Hayes et al., 2011; von der 
Malsburg & Vasishth, 2011), they can still provide rich in-
formation about the transition patterns between the areas 
of interest, patterns which in many cases should be differ-
ent between solution strategies that participants apply in 
cognitive tasks. Using transition matrices should be, in 
some cases (as we show later), sufficient to detect latent 
groups, while providing rich description of the character-
istic features of the transition patterns that define these 
groups. 

Goals & outline 
Following the arguments in the previous sections, we 

believe that a method for detecting latent groups from eye 
movement data would be informative to investigate the ex-
istence of different solution strategies in cognitive tasks, 
and eventually also their relation to task performance. 
Such a method should generally meet the following desid-
erata. First, the  eye movement patterns should be analysed 
(summarised) such that the features of the hypothetical 
strategies can be detected. Second, the method should be 
unsupervised to allow detecting latent groups, even if they 
do not relate to external variables. Third, it should be pos-
sible to use some selection method for the number of such 
groups. Fourth, the classification of an eye movement pat-
tern into a latent group should be possible on an individual 
item basis to allow the possibility that participants switch 
between strategies during the task (for example, due to 
learning). 

This article demonstrates the use of transition matrices 
as a representation of eye movements in order to detect la-
tent groups of similar eye movement transition patterns. 
Specifically, we use a relatively easy to apply unsuper-
vised method to discover latent groups, and present ways 
in which the classifications can be used in further analyses. 

The structure of the article is as follows. In the next 
section, we provide details about how to construct transi-

tion matrices, and present the method we use for their clus-
tering. Next, using simulations, we show that this method 
is able to retrieve the groups corresponding to strategies 
for solving a Mastermind Game and present an application 
of the method to real data. Then, we apply the method to a 
data set of the Wiener Matrizen Test (a test very similar to 
the Raven’s Progressive Matrices; Laurence et al., 2018). 
We conclude with discussion of our findings, as well as 
with the limitations, alternatives, and extensions to our ap-
proach. 

Clustering transition matrices 
Our goal is to introduce a method that can be used for 

unsupervised clustering of eye movement sequences. Our 
approach is the following. First, we process the fixation 
coordinates into pre-specified areas of interest (AOIs). 
Such approach is typical in eye-tracking literature, at least 
in tasks with clearly distinct meaningful parts of the stim-
ulus, although there   is some discussion on how to opti-
mally choose and delineate AOIs (e.g., Hessels, Kemner, 
van den Boomen, & Hooge, 2016). 

From each individual sequence of the fixated AOIs, we 
create the transition probability matrix, where each row 
corresponds to a "sender" AOI, and each column to the 
"receiver" AOI. Each row of the matrix is computed by 
counting the number of transitions from the sender AOIs 
to all other AOIs and dividing the row by the sum of the 
total transitions from that AOI. The entries of the d × d 
transition probability matrix M can be interpreted as fol-
lows: Given that a fixation is on the ith AOI, the probability 
that the next fixation is on the jth AOI is equal to Mij. 

All transition matrices are then reshaped into vectors 
of length d2 and stored in a data matrix where the rows 
correspond to the individual matrices (i.e., representations 
of the individual AOI sequences), and columns correspond 
to the cells in the transition probability matrices. The re-
sulting data matrix is then subjected to the standard k-
means clustering algorithm (Hartigan, 1975). 

As an unsupervised method, k-means provides us with 
an opportunity to find distinct groups of eye movement 
patterns, patterns which differ in their transition matrices, 
Scree plots can be used to diagnose solutions for different 
numbers of clusters. Furthermore, each cluster is assigned 
a mean transition matrix which identifies the characteristic 
features of the transition patterns in each group, which can 
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be used to interpret the groups and assign a label according 
to hypothesized cognitive processing. We use standard k-
means based on minimizing the within-cluster sum of 
squared Euclidean distances from the centroids to east of 
interpretation of the cluster centroids. Relative Euclidean 
distances of individual matrices to the cluster centers can 
be used to assess the representativeness of each eye move-
ment recording of that particular group. The cluster assign-
ment indicators can be used for further analysis, for exam-
ple examining the relationship of the clusters to perfor-
mance. The demonstration of our approach follows in the 
next two examples and a simulation study. 

Application: Deductive Mastermind 
Here, we present an example of detecting cognitive 

strategies in a Deductive Mastermind Game (DMM). In 
the DMM, the player is supposed to deduct a sequence of 
flowers based on multiple "conjectures" composed of a se-
quence of flowers and their corresponding feedback pre-
sented as a collection of colors next to the conjecture. The 
green feedback means that a flower in the conjecture be-
longs to the solution, red feedback means that a flower 
does not belong to the solution, and orange feedback 
means that a flower belongs to the correct solution but is 
on a wrong place in the sequence (Gierasimczuk et al., 
2013). 

The DMM was implemented as a part of web-based 
math and logic training system in primary schools called 
Math Garden (Rekentuin.nl or MathsGarden.com). 
Gierasimczuk et al. (2013) analyzed data collected with 
Math Garden and revealed that the player ratings and the 
item difficulty have a tri- and bi-modal distributions, re-
spectively. Logical analysis of the game showed that the 
items can be solved using different strategies, ones that 
vary in the number of steps a player needs to deduct the 
correct solution. One possible explanation for the multi-
modality of the player ratings might be that the population 
of players is a mixture of people using different strategies, 
strategies which relate to the efficiency in solving the 
game. 

The logical analysis predicts at least two strategies to 
occur during solving the items. The first strategy is char-
acterized by scanning the feedback in the order in which it 
is presented (i.e., from top to bottom) – this prediction 
relies on the assumption that it is a natural (i.e., 
learned) way of processing information before inter-

nalizing the differences in information value that dif-
ferent feedback holds. The prediction of the second 
strategy, in contrast, relies on the fact that each row 
of the stimuli can have different information value. 
Thus, this strategy would be characterized by selec-
tively scanning the feedback starting from the con-
jectures which contain the most information and pro-
ceeding to those which complement it. Figure 1 
shows one of the items with superimposed eye-track-
ing patterns under the two strategies. Notice that the 
first order transition matrix differs between the strat-
egies. Thus, it should be possible to discriminate be-
tween them using only the first order transition pat-
terns. 

 
Figure 1. Synthetic data of two strategies in one of the selected 
Mastermind games. The left panel shows the top-to-bottom strat-
egy, and the right panel shows the systematic strategy of selective 
processing. The top panel shows examples of the scanpaths, 
where dots correspond to fixations (the color gradually changes 
from bright green to dark red based on the order of the fixations) 
and lines connect the successive fixations (i.e., saccades). Bottom 
panel shows the transition matrices of the simulated strategies 
over 1,000 simulations. 

Methods 
We use subset of the data that was collected with adults 

outside the educational system as part of a larger project 
(Truțescu & Raijmakers, 2019). The data are available at 
https://osf.io/he43s/. Twenty-six university students with 
normal or corrected-to-normal vision participated in the 
study. Two participants were excluded from the analysis 
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due to missing data in the eye-tracking measurements. The 
study comprised of one learning block (13 items) and two 
test blocks (16 items each) in randomized order of the 
items within each block. The 2-pin items were constructed 
as an adapted version of the DMM task suitable for eye-
tracking by adjusting the layout of the displayed conjec-
tures (see Appendix in Truțescu & Raijmakers, 2019). The 
items in the learning phase were designed such that they 
are easily solvable regardless of the scanning strategy; 
items with all combinations of feedback were presented to 
give participants the opportunity to establish the difference 
between feedback types. For a concise presentation of the 
current method, we further analyse only four items (two 
from each test block) containing orange-orange feedback 
at the third row. These items can be solved by focusing 
only on the third row, as the orange-orange feedback in-
forms to swap the positions of the two presented flowers, 
see Figure 1. 

The eye movements were recorded using EyeLink-
1000 eye tracker with 500 Hz sample rate (SR Research 
Ltd., Ontario, Canada). Participants were seated at a desk 
with a chin rest about 55 cm in from of a 17-inch computer 
monitor, subtending an approximate 27 × 24 visual angle. 
Before the data collection, a five-point calibration was 
used, which was repeated until the recorder point of gaze 
reached the best possible quality. 

The raw data were parsed into fixations and saccades 
using Gazepath algorithm (van Renswoude et al., 2018). 
The identified fixations were classified into sic rectangular 
areas of interest, one each for the row of the task in the left 
panel, and the sixth belonging to the response area on the 
right panel (see Figure 1). Thus, "scanpath" is in our case 
operationalized as a series of fixated AOIs. By doing so 
we artificially segregate the items into meaningful chunks 
of information: the units of information are the pairs of 
flowers and associated feedback, which corresponds to the 
definition of the conjectures in the logical analysis of the 
Mastermind game (Gierasimczuk et al., 2013). This ap-
proach imposes relatively strong assumptions on the se-
mantic connotation (i.e., the structure of the task as inter-
preted by individual participants) and could be prone to 
measurement noise (in applications where the AOIs are 
relatively small or close to each other); we nevertheless 
consider this a sensible approach in the current task as the 
rows of the stimuli were designed to be visually well sep-
arated and correspond to the semantic denotation of the 
task, which had been communicated through the experi-

menter's instructions and demonstrated during the learning 
block. 

Transition matrix eye movement analysis. Before clus-
tering the data, we conducted a simulation study in order 
to investigate the method's performance. We previously 
analyzed all scanpaths on the four selected items for which 
classification into the top-to-bottom and systematic strat-
egy was possible by visual inspection. We wrote a simula-
tion function which mimics the two strategies (top-to-bot-
tom and systematic, see Figure 1). The simulated patterns 
were matched with real data with respect to several criteria 
(see https://osf.io/82fau/ and https://osf.io/ bz3ny/). This 
enabled us to simulated an arbitrary number of participants 
using one or the other strategy with some variability in the 
patterns within the strategies (associated R code at 
https://osf.io/jxwrk/). 

We tested the method's performance with respect to 
two varying features of the simulated data. For each of the 
features, we selected three values, resulting in a 3 by 3 sim-
ulation design. The features we varied and their values 
were the following: 

1. Sample size: n (20, 60, 100). We varied the total 
number of the participants in the simulated studies. 

2. Proportion of strategies: p (0.25, 0.5, 0.75). We 
varied the proportion of participants using one or 
another strategy. The value of p corresponds to the 
proportion of participants using the top-to-bottom 
strategy. This number was treated as a sample pro-
portion (not population proportion) and thus there 
was no sampling variance between the simulations 
using the same value. 

We simulated 600 data sets per each combination of 
parameters (totaling 3 × 3 × 600 = 5,400 simulated stud-
ies). In each simulation, each participant solved only one 
item. This allowed us to inspect the robustness of the 
method even for item-wise analysis (i.e., with relatively 
sparse data). 

For each data set, the procedure was follows. Each in-
dividual sequence of AOIs was converted to a 6 × 6 tran-
sition matrix. The individual matrices were reshaped into 
a vector of length 6 × 6 = 36 and stored into a n × 36 ma-
trix. The k-means clustering was applied to this matrix 
with solutions from 1 to 10 clusters to inspect whether the 
scree plot identifies the correct number of clusters (2). 
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Next, we assumed that the correct number of groups 
was selected and investigated the classification accuracy 
of the two-cluster solution. We also investigated the stabil-
ity and accuracy of the estimated cluster centers. To do 
this, we had to resolve an issue of label switching. In each 
simulation we created a 2 × 2 confusion matrix of the true 
group membership against the estimated labels given by 
the k-means. If the sum of the diagonal entries in this ma-
trix was greater than the sum of the off-diagonal entries of 
the matrix, we kept the labels as they are. If this was not 
the case, the cluster indicators from k-means were rela-
beled. 

After the simulations were conducted, we applied clus-
tering of transition matrices to real data. The subset of the 
whole data consists of 24 × 4 = 96 eye movement se-
quences for cluster analysis. For each sequence, we calcu-
lated the 6 × 6 transition probability matrix and reshaped 
it into a vector of length 36. The resulting 96 × 36 matrix 
was subjected to the k-means clustering. 

Simulation results 
Extracting the correct number of strategies. A rule of 

thumb for selecting the number of clusters is to inspect a 
scree plot to see at which point the amount of unexplained 
variance by the clusters stops decreasing rapidly. Given 
the subjective nature of this procedure, we cannot report 
exact number of the cases where the scree plot would iden-
tify the true number of latent groups (2) correctly. How-
ever, from a qualitative inspection of the scree plots, we 
saw that the classic "elbow" shape emerges mostly when 
1) sample size is large, and 2) when the sized of groups are 
even. Decreasing the sample size results in mostly unin-
formative scree plots (i.e., the scree plot decreases gradu-
ally). 
Table 1. Median and interquartile range of classification accu-
racy based on the k-means clustering of transition matrices.  

p n Total Systematic Top-to-bottom 

0.25 20 0.90 (0.75, 0.95) 0.93 (0.80, 1.00) 1.00 (0.60, 1.00) 
 60 0.95 (0.90, 0.97) 0.96 (0.89, 0.98) 0.93 (0.87, 1.00) 
 100 0.95 (0.92, 0.97) 0.96 (0.92, 0.99) 0.96 (0.92, 0.96) 

0.50 20 0.95 (0.85, 1.00) 1.00 (0.90, 1.00) 0.90 (0.80, 1.00) 
 60 0.95 (0.92, 0.97) 0.97 (0.93, 1.00) 0.93 (0.87, 0.97) 
 100 0.94 (0.92, 0.96) 0.98 (0.96, 1.00) 0.92 (0.88, 0.96) 

0.75 20 0.80 (0.70, 0.90) 1.00 (1.00, 1.00) 0.80 (0.67, 0.87) 
 60 0.83 (0.73, 0.92) 1.00 (1.00, 1.00) 0.78 (0.64, 0.89) 
 100 0.84 (0.75, 0.90) 1.00 (0.96, 1.00) 0.79 (0.68, 0.88) 

Classification accuracy. For all simulations, we in-
spected how accurate is the participant assignment using 
the solutions with two latent groups. 
Table 2. Median and interquartile range of the proportion of pat-
terns classified as top-to-bottom. 

 

Table 1 shows the median and interquartile range of the 
assignment accuracy for all combinations of n and p. Over-
all, the classification accuracy is high, in most scenarios 
higher than 90 %. The total accuracy is the highest when 
the two strategies are equally represented in the sample, 
and slightly increases with sample size. The accuracy of 
correctly classifying top-to-bottom pattern is slightly 
lower than the accuracy of classifying the systematic pat-
tern, which might be due to the fact that the top-to-bottom 
pattern is more variable, and can also contain characteristic 
features of the systematic pattern (namely, transitions from 
the third row to the response). 

The assignment accuracy means that if we wished to 
estimate the proportion of the strategies in the sample, we 
would estimate it correctly, except when the top-to-bottom 
pattern is dominant. In that case, a large portion of the top-
to-bottom patterns would be classified as systematic, lead-
ing to underestimation of the number of top-to-bottom pat-
terns in the data, as can be seen in Table 2. 

 
Table 3. Median and interquartile range of the pairwise Pear-
son's correlations of the cluster centers. 

 p  

n 0.25 0.5 0.75 

20 0.25 (0.20, 0.30) 0.45 (0.40, 0.50) 0.60 (0.50, 0.70) 

60 0.27 (0.25, 0.30) 0.47 (0.45, 0.50) 0.60 (0.48, 0.68) 

100 0.27 (0.25, 0.29) 0.48 (0.45, 0.50) 0.60 (0.51, 0.66) 

  Cluster label  

p n Systematic Top-to-bottom  

0.25 20 0.91 (0.87, 0.94) 0.71 (0.44, 0.82)  
 60 0.97 (0.96, 0.98) 0.91 (0.87, 0.94)  
 100 0.98 (0.98, 0.99) 0.95 (0.93, 0.96)  

0.50 20 0.88 (0.84, 0.91) 0.89 (0.84, 0.92)  
 60 0.96 (0.94, 0.97) 0.96 (0.95, 0.97)  
 100 0.97 (0.96, 0.98) 0.98 (0.97, 0.98)  

0.75 20 0.77 (0.67, 0.84) 0.91 (0.86, 0.93)  
 60 0.90 (0.85, 0.93) 0.96 (0.94, 0.98)  
 100 0.93 (0.89, 0.96) 0.98 (0.96, 0.98)  
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Stability of strategy representation. We also inspected 
whether the cluster centers are stable (i.e., show relatively 
similar transition matrices across simulations). Table 3 
shows the median and interquartile range of the pairwise 
Pearson's correlations between the cluster centers. Overall, 
the correlations are quite high, suggesting that the repre-

sentations of the transition matrices remain similar across 
the simulations. The average cluster representations across 
all simulations are shown in Figure 2. 

Empirical results 
Here, we present the results of the k-means clustering 

applied to the real DMM data (Truțescu & Raijmakers, 
2019) from four items. The R Script is at 
https://osf.io/g2yp4/. The scree plot was uninformative as 
it did not show a clear “elbow” pattern. Thus, we inspected 
the agreement between the solutions spanning from two to 
four clusters. 

Figure 3 shows the average transition matrices for the 
two, three and four cluster solutions, and the pair-wise 
confusion matrices of the cluster membership. Comparing 
the two and three clusters solution suggests that the cluster 
1 from the two clusters model is almost perfectly separated 

Figure 2. The average transition matrices identified by the k-
means across all simulations. 

Figure 3. The cluster centers of the k-means solutions with two, three and four clusters, and the confusion counts of the different 
solutions. Each row corresponds to one solution (two, three, and four centers from top to bottom). The bars on top right of the 
Figure correspond to the overlap between cluster assignments. For example, panel 2 vs 3 indicates that most of the cases assigned 
to the first and second cluster in the three cluster solution were classified into the first cluster in the two cluster solution, whereas 
most of the cases classified into the third cluster with the three cluster solution were classified into the second cluster in the two 
cluster solution. 
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in two clusters under the three clusters model (see confu-
sion matrix in the first row and third column). In addition, 
the four clusters solution finds one additional sub-cluster 
which is characterized by transitions between conjectures 
1-3, but does not proceed further (which could be ex-
plained by the participant attempting to solve the item 
from top to bottom and terminating the process once the 
most informative feedback was found). Overall, these re-
sults suggest that the data are in line with the prediction of 
two general patterns – that of systematically searching for 
the most informative feedback, and that of attempting to 
solve the item in the order of conjectures as they are pre-
sented.  

To check qualitatively whether the fixation sequences 
clustered in the groups correspond to the systematic and 
top-to-bottom patterns as described above, we also plot the 
most representative sequences for each of the clusters. We 
compute the “representativeness” of a sequence to a par-
ticular cluster as a Euclidian distance of the transition ma-
trix of the sequence to that cluster center, relative to the 
sum of the Euclidian distances to all other clusters. 

Figure 4 shows the fixation sequences, where the 
points show the individual fixations on particular AOIs (on 
the y-axis) as a function of time (time has been normalized 

to span between 0 and 1). Because there is a strong overlap 
between the cluster assignments between the 2-4 k-means 
solutions, we only show the representative fixation se-
quences grouped into four clusters. Clusters 1 and 2 are 
characterized by transitions between the third row and the 
response (AOIs number 3 and 6). Cluster 3 is characterized 
by a period of fixations on the first three rows, followed by 
transitions to the response. Cluster 4 is the most variable, 
having characteristic pattern of progression from the top to 
the bottom of the game with frequent transitions to the re-
sponse in between. Overall, clusters 1 and 2 align with the 
predicted systematic patterns, whereas clusters 3 and 4 
align with the top-to-bottom pattern. The distinction be-
tween the clusters 3 and 4 is that patterns in the cluster 3 
usually terminate very quickly after fixating the third row 
(which contains sufficient information to deduce the cor-
rect solution), whereas patterns in cluster 4 do not seem to 
have this pattern.  

The clustering suggested that the groups also differ in 
terms of the number of fixations. This would be consistent 
with the view that the current items are relatively easy to 
solve when using the systematic search (i.e., focusing on 
the most informative feedback). 

Figure 4. Each row shows five example scanpaths assigned to one of the clusters. Fixations to particular AOIs are shown as dots 
and transitions are connected with lines. 
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Figure 5 shows the distribution of the number of fixa-
tions for each cluster, as well as the marginal distribution 
over all data. We conducted exploratory analyses by fitting 
the fixation counts with multilevel negative binomial 
model using R package brms (Bürkner, 2017, 2018) to see 
whether the apparent differences between the clusters are 
statistically supported (see https://osf.io/87ahz/). The re-
sults indicated that the cluster 4 has the highest number of 
fixations, the cluster 3 has the second highest, and the clus-
ter 1 and cluster 2 are comparable, see Figure 6. However, 
trying to uncover the groups based on the fixation counts 
would be a hard task, judged by the apparent absence of 
multimodality of the overall distribution of fixation counts. 

 

Lastly, we set out to investigate whether the clusters 
are associated with different probability of a correct an-
swer, although the current set of items does not allow a lot 
of room for modelling on this part as the items are rela-
tively easy (i.e., the percentage of correct answers is 
88.5 %). In particular, the first three clusters had perfect or 
near perfect performance on these items, whereas only 
68 % of the patterns in the fourth cluster resulted in correct 
response, see Table 4. 

To sum up, we were able to cluster the real DMM data 
using transition matrices; in accordance with the expecta-
tions, we found two general patterns – one that is charac-
terized by a systematic selective scanning of the most in-
formative feedback and another characterized by a search 
pattern starting at the top of the item, proceeding down-
wards. However, the clustering results were not entirely 
conclusive regarding the number of clusters and it is pos-
sible that more sub patterns are hidden (i.e., one that starts 
as the top-to-bottom pattern and switches one the most in-
formative feedback is processed). The patterns differ in the 
lengths of the sequences, and the fourth cluster seem to 
have different probability of correct answers. Specifically, 
the first two clusters have high chance of a correct answer 
as they appear to focus on the feedback which is sufficient 
to solve the item. The third cluster also has a high success 
rate, suggesting that it might be capturing the processes 
when a participant solves the item in non-systematic way 
(i.e., from top to bottom), but deduces the correct solution 
once arrived to the most informative feedback. 

 
Table 4. Descriptives of the correct answers for each of the 
cluster. 

     Cluster  
  1 2 3 4  

 n 13 23 29 31  
# correct 13 22 29 21  

 % correct 1 0.957 1 0.677  

Figure 5. Distribution of fixations of the four clusters. 

Figure 6. The average number of fixations of each group 
with 95 % credible intervals. 
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Application: Progressive Matrices 
In the previous example, we have shown that classify-

ing the eye movement sequences using clustering of tran-
sition matrices is possible, even if the data are relatively 
sparse. To illustrate the use of clustering transition matri-
ces in a different context, we present a reanalysis of data 
collected by Laurence et al. (2018). The data contain eye-
tracking recordings of participants who solved Wiener-
Matrizen Test 2 (WMT-2, Formann & Piswanger, 1979; 
Formann, Waldherr, & Piswanger, 2011). The WMT-2 is 
structurally similar to the Raven's Progressive Matrices 
(RPM), as both consist of a 3 x 3 matrix containing images 
with varying features, where the bottom-right item is miss-
ing, and a 2 x 4 response alternatives matrix. The goal of 
the task is to identify which item from the response alter-
natives matrix belongs to the missing part of the 3 x 3 ma-
trix, such that the varying features complete a logically 
consistent pattern. 

Vigneau et al. (2006) proposed that two distinct general 
strategies – constructive matching and response elimina-
tion (Bethell-Fox et al., 1984) – can be employed when 
solving the Raven’s Progressive Matrices (RPM). The for-
mer is a systematic strategy of evaluating the matrices to 
deduce the only correct solution, which is then found in the 
response area. In contrast, response elimination is a strat-
egy of successively considering different responses and 
evaluating whether they are consistent with the infor-
mation given by the matrices or not. The two strategies 
should manifest through different eye movement patterns, 
as constructive matching would yield systematic transi-
tions by rows (or columns), whereas the response elimina-
tion would show a pattern of frequent transitions from the 
matrix and the response area. Following the seminal work 
of Vigneau et al. (2006), numerous studies followed up the 
hypothesis to replicate its findings, using mostly summary 
statistics from the eye-tracking data (Laurence et al., 2018; 
Loesche et al., 2015; Vakil & Lifshitz-Zehavi, 2012). 
More recently, a different approach has been applied for 
describing cognitive strategies taking into account higher 
order dependencies in the transition patterns (Hayes et al., 
2011, 2015). Here, investigate this hypothesis using clus-
tering of transition matrices. 

Laurence et al. (2018) data 
The data analyzed here were collected and reported 

previously by Laurence et al. (2018). The data are gener-
ated by 34 participants who solved 18 items (3 practice 

items) from Wiener-Matrizen Test 2 (WMT-2; Formann et 
al., 2011). The data contain the responses (correct/incor-
rect) and the processed eye-tracking data: the fixations 
were classified into 10 AOIs (https://osf.io/sgyk3/). The 
areas 1–9 correspond to the individual cells in the matrix, 
starting from top-left entry, and filling the matrix row-wise 
(e.g., 1 – top-left; 3 – top-right; 7 – bottom-left, up to 9 – 
bottom-right). The area 10 is the response matrix area, 
containing all eight options for selecting the solution. The 
data is organized as ordered sequences of fixations on the 
areas of interest for each participant and each item. If a 
fixation did not fall into either of the designated areas of 
interest, we excluded that fixation from the data, which re-
sulted in deleting 4,338 fixations out of the total number 
of 91,267, leading to a 95% inclusion rate. 

Methods 
Because it has been argued that in the context of 

Raven's Matrices, one should remove repeated fixations 
within one AOI, as the frequency of repeats is quite high 
(especially within the response matrix; Hayes et al., 2011), 
we use the clustering technique both on data where the re-
peated fixations were included (i.e., using the full data), as 
well as clustering data after removing the repeated fixa-
tions, essentially removing 35,880 transitions (about 
44.7 %). Almost half of the excluded transitions (15,185) 
were based on the repeated fixations within the response 
alternatives matrix. 

The rest of the procedure was as follows. First, each 
fixation sequence was converted to a transition matrix. The 

Figure 7. Scree plots from the k-means clustering for the data. 
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34 × 18 = 612 transition matrices were reshaped into vec-
tors and stored in a 612 × 100 data matrix. This matrix was 
subjected to k-means clustering estimating 1 to 10 clusters 
to inspect the scree plots. 

Results 
The scree plots from the k-means on data with excluded 

repeated fixations provided a modest support for the pres-
ence of two groups, whereas the scree plot on the full data 
remained inconclusive, see Figure 7. In line with previous 
literature (Hayes et al., 2011, 2015), we further discuss the 
results based on the k-means solution with two clusters; 
solutions with higher numbers of clusters yielded qualita-
tively comparable results (see https://osf.io/ h3nc7/). 

On the full data, 271 (42 %) sequences were classified 
into the first cluster, whereas 293 (48 %) sequences were 
classified into the first cluster using the data without the 
repeated fixations. Overall, the agreement between the two 
classifications was high: 516 out of the total 612 sequences 
(84 %) were assigned into the same cluster regardless 
whether the repeated fixations were excluded or not. Fig-
ure 8 shows the mean transition matrices of the two clus-
ters. The transition matrix of the first cluster suggests a 
similar pattern that has been previously described by 
Hayes et al. (2011), interpreted as the constructive match-
ing strategy, indicating high probabilities of transitioning 
to left or right relative to the current fixation, which sug-
gests a general pattern of inspecting the matrices within 
individual rows. However, the interpretation of the second 
cluster is less clear. First, the probabilities of transitioning 
left or right remain quite high, but there is also an increased 

probability to transition up or down, suggesting inspection 
of the matrices within columns. Second, under the expec-
tation that the second cluster is related to the response 
elimination strategy, we would expect higher, and more 
uniformly distributed probabilities on column 10 (transi-
tion probabilities to the response area), but also in row 10 
(transition probabilities from the response area). Although 
this is generally the case, the differences compared to the 
first cluster are rather small, which does not corroborate 
strongly that this cluster can be interpreted as the response 
elimination strategy. 

Figure 8. Average transition matrices of the two clusters. Left 
panel shows matrices of the first cluster with (top) and without 
(bottom) repeated fixations, right panel shows matrices of the sec-
ond cluster with (top) and without (bottom) repeated fixations. 

Figure 9. Top row shows five scanpaths that have been assigned to cluster 1, bottom row shows five scanpaths that have been 
assigned to cluster 2 by all three clustering methods. Repeated fixations are removed. 
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Figure 9 shows examples of the scanpaths that have 
been assigned to one or the other cluster. The first cluster 
is characterized by frequent transitions from left to right 
within rows (i.e., 1→2→3, etc.), whereas the second clus-
ter also shows frequent transitions within columns (i.e., 
1→4, 2→5, etc.). 

The approach in the previous studies focusing on strat-
egies in Progressive Matrices (Laurence et al., 2018; Lo-
esche et al., 2015; Vakil & Lifshitz-Zehavi, 2012; Vigneau 
et al., 2006) is to inspect, for example the number of tog-
gles (transitions between the matrix and the alternatives), 
or the rate of toggling (number of toggles divided by the 
response time). Here, we inspected whether the two un-
covered clusters differ in the length of the sequences, num-
ber of toggles, or rate of toggling (in this case defined as 
the number of toggles divided by the number of transi-
tions). Figure 10 shows that the differences between the 
clusters are not very pronounced in either of these 
measures. We did not test the differences further. How-
ever, the results suggest that neither of the clusters relate 
to the hypothetical response elimination pattern. 

Regardless of the interpretation of the clusters, we in-
spected their relation to performance. We fitted an explor-
atory multilevel logistic model using R package brms 
(Bürkner, 2017, 2018) predicting whether the answer was 
correct or incorrect with a fixed and random slope for clus-
ters, random intercept for participants and items (see 
https://osf.io/wvy23/). The analyses revealed that the dif-
ferences between the clusters vary substantially and the av-
erage effect is not very pronounced; the second cluster per-
formed slightly better, but the results are inconclusive. Fol-
lowing the focus of the original article, we fitted an explor-
atory model which also takes into account item types (i.e., 
Rule Type items, Rule Direction items, and Graphical 
Component Nature items; Laurence et al., 2018) and their 
interactions with the clusters (see https://osf.io/adt89/).  
Figure 12 summarizes the main results. On a descriptive 

level, the first cluster performs slightly better on the Rule 
Type items, and the second cluster performs slightly better 
on the Rule Direction and Graphical Component Nature 
items. However, these differences were very small and in-
conclusive given the limited sample size. We found that 
there was some systemacity between the cluster assign-
ment and participants; that is, some participants were as-
signed consistently to one cluster over another; the number 
of these participants was larger than what would have been 
expected if participants switched between patterns ran-
domly. Thus, we also explored the possibility that the 
amount of switching between the two patterns could be re-
lated to performance. However, we did not find any nota-
ble patterns. For more details, see https://osf.io/2zkj8/. 

To sum up, we found two clusters in solving progres-
sive matrices. Contrary to the results from previous litera-
ture (Hayes et al., 2011, 2015; Laurence et al., 2018; 
Vigneau et al., 2006), we did not find a clear pattern that 
would correspond to the response elimination strategy. 
However, the two clusters would roughly correspond to 
patterns, one of which is predominantly driven by transi-
tions within rows, whereas the other is characterized by 
mixtures of transitions within rows and within columns. 
To our knowledge, the second pattern is rarely discussed 
in the literature as a viable alternative to solve the matrices. 
It is not impossible that other, more nuanced sub-strategies 
remained hidden in our analysis, for example, switching 
between different patterns (i.e., row-wise, column-wise, 
and matrix-response transitions), instead of using these 
patterns as pure cognitive strategies. 

Figure 10. Distribution of the number of fixations (left), number of toggles (middle), and rate of toggling (right) of the two clusters. 
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Discussion 
In this article, we centralize the idea of classification 

scanpaths where we can assume that different strategies to 
solve a cognitive task could elicit different types of gaze 
behavior. To this end, using an unsupervised method for 
clustering transition matrices, we can discover groups of 
similar eye movement patterns without the need to assume 
that the groups differ on some other variable (e.g., perfor-
mance in the task). This is of special interest in contexts 
where the groups are hypothesized and have to be inferred 
from the data, as well as the relationship of the group to 
the other variables is hypothesized and needs to be empir-
ically tested. This problem arises frequently in the discus-
sion of strategies in solving cognitive tasks, which we pre-
sented with two examples using the Deductive Master-
mind game and Progressive Matrices task. 

In the Mastermind example, we showed that we can re-
trieve patterns that correspond to systematic search for the 
most informative feedback, compared to less systematic 
scanning patterns guided by the order of the feedback pre-
sented. Such patterns that were predicted based on the log-
ical reasoning analysis of the items in Gierasimczuk et al. 
(2013). In this example, the differences between the 
groups were detectable by visual inspection, which al- 
lowed us to conduct a realistic simulation study. Hence the 
classification should be relatively easy. From our point of 
view, this is a virtue of our example: showing that an au-

tomatic method arrives at the same conclusion as working 
through the data manually should assure us that the method 
is indeed valid. Furthermore, the application of the method 
to the real data revealed one pattern where the participant 
solves the item in a relatively non-systematic way, but 
switches to the systematic pattern once arriving at the most 
informative feedback, whereas another pattern suggests 
that the participant attempts to solve the item in a relatively 
non-systematic way, and does not recognize that the third 
row is sufficient to arrive at the conclusion. 

The second application used data from Progressive 
Matrices items. We found a pattern corresponding to the 
one described in the previous literature (solving analyti-
cally the matrices by progressing through the rows, Hayes 
et al., 2011, 2015), and one additional pattern that can be 
roughly described as progressing through the matrices 
within their columns, a pattern that has not been reported 
previously. Inspecting solutions with more clusters yielded 
qualitatively comparable results suggesting that we were 
unable to detect any additional patterns except these two. 
The patterns we found did not show differences on various 
summary measures (derived from eye movements, but also 
the performance in the task), thus, it would be hard to dis-
entangle these patterns using supervised or semi-super-
vised methods, which have been predominantly used in 
earlier attempts to discover strategies in similar cognitive 
tasks (Hayes et al., 2011, 2015; Loesche et al., 2015; 
Vigneau et al., 2006). Contrary to the previous literature, 
we did not find a pattern that would correspond to the re-
sponse elimination strategy. It is possible that the chosen 

Figure 11. Left panel shows the marginal average probability of a correct answer of each cluster for the two clusters. Right 
panel shows the probability of a correct answer for each cluster and each item separately. The circles denote the observed 
proportion of correct answers (and the size of the circle represents the number of data points), whereas dots denote the mean 
of the posterior distribution. Error bars represent 95% credible intervals. 
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representation of eye movement patterns (i.e., transition 
matrices) is unable to detect the response elimination pat-
tern. Another option could be that the response elimination 
pattern occurs rarely as a pure strategy, but is rather emerg-
ing as a short phase during solving the items, after more 
systematic phases (e.g., that a person falls back on the re-
sponse elimination after he or she fails to deduce the cor-
rect solution using analytic matching). If this is the case, 
our method could miss this pattern as it assumes that the 
eye-movements follow one pattern throughout solving the 
individual item (i.e., it is not possible to detect switches 
between patterns during solving the task). We believe that 
a comprehensive re-analysis of existing data sets (Hayes et 
al., 2011, 2015; Laurence et al., 2018; Loesche et al., 2015; 
Vigneau et al., 2006) using a range of different methods, 
or a (large-scale) replication study might be appropriate to 
find the common ground for the findings. 

Our choice of the specific representation of the eye 
movement data, and the methods for clustering as well as 
the distance metric is up for a debate. Different analytic 
choices could yield different results, depending on the 
questions and context of the analysis. We used transition 
matrices because the predicted strategies should differ in 
the transition matrices, hence, it should be possible to iden-
tify them as such. However, using transition matrices re-
quires pre-defined areas of interest, and thus the method is 
limited only to applications where these areas can be de-
fined without many arbitrary decisions. In these situations, 
transition matrices are simple to construct and interpret, 
although this should be done with caution. Some authors 

(Hayes et al., 2011) suggested that looking only at first-
order transition probabilities is too much of a simplifica-
tion of the eye movements data. Further, even very differ-
ent scanpaths can have similar transition matrix (von der 
Malsburg & Vasishth, 2011). Thus, there is an intrinsic 
epistemological asymmetry – it is easier to discover qual-
itatively different groups of eye movement patterns than to 
provide evidence that some hypothesized pattern is miss-
ing (as is the case of our application on the Progressive 
matrices). To some extent, this asymmetry would likely 
occur regardless of the representation of eye movements 
as there will be potentially always some aspect of the data 
that has been left unmodelled. Individual researchers thus 
need to make informed decisions what representation of 
eye movement data to use, and if possible, commit to the 
analysis in advance to enable confirmatory analyses (de 
Groot, 2014). Exploratory analyses using different analytic 
approaches and eye movement representations can be then 
used to complement, expand, or challenge the confirma-
tory findings and their theoretical underpinnings (Jaeger & 
Halliday, 1998) – especially if methods that build upon 
different assumptions lead to different results. We hope 
that the method we demonstrated in this article enriches 
the analysis toolbox for latent inverse Yarbus problem 
and will offer new insights, as we showed in our two 
examples. 

The k-means clustering method based on minimiz-
ing squared Euclidean distances was chosen based on 
purely pragmatic reasons. It may be thought that the k-
means is not the most appropriate method for clustering 

Figure 12. Left panel shows the interaction between the three item types and the cluster with respect to the probability of correct 
answer. Right panel shows the probability of a correct answer for each cluster and each item separately. Error bars represent 95% 
credible intervals. 
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transition matrices, as it corresponds to the simplest 
form of mixture model for multivariate normal data - 
whereas transition matrices are essentially multivariate 
vectors of probability simplicia. Furthermore, the selec-
tion of the number of retained clusters with scree plots is 
somewhat arbitrary, and the k-means assumes that the 
groups are of equal size, leading to a bias (and potentially 
incorrect classification) if that is not the case. These limi-
tations can be tackled with more advanced modeling, ei-
ther by specifying a full (hidden) Markov model and use 
clustering techniques on them (Chuk, Chan, & Hsiao, 
2017; Chuk, Crookes, et al., 2017), modeling the data as 
mixtures of categorical time-series where the transition 
matrices can be thought of as collections of multinomial 
variables (Pamminger & Frühwirth-Schnatter, 2010), or 
mixture modeling of even more complex time-series mod-
els (e.g., Berchtold & Raftery, 2002). Whereas either of 
these methods would probably do more justice to the data, 
we believe that simpler methods such as the k-means might 
be useful. Computing transition matrices is a simple task 
and the k-means is implemented as a basic algorithm in 
most of the statistical software, can be run without exten-
sive modelling experience and knowledge, and thus is 
widely available to all researchers. Thus, the method we 
proposed can prove to be a simple alternative to assess hy-
potheses about qualitatively different groups of scanpaths, 
or explore whether the data set comprises of homogeneous 
eye movements patterns. Furthermore, the method is able 
to capture the patterns on single item basis, which we have 
also shown using simulations. This enables us to poten-
tially investigate within-person variability in the cluster as-
signment (e.g., due to effects of learning). Further, even 
within the simple approach of k-means, there may be pos-
sible important improvements, such as using clustering 
based on different distance measures, different criteria for 
selection of the number of clusters (e.g., Tibshirani, Wal-
ther, & Hastie, 2001), or regularized k-means or k-means 
with variable selection to tackle the dimensionality of the 
data and identifying features important for detecting dif-
ferences between the clusters (e.g., Chormunge & Jena, 
2018; Sun, Wang, Fang, et al., 2012). 

While the method’s advantages perhaps facilitate its 
use in wide range of application, it provides only limited 
options for modeling the eye movement data in more 
flexible manner. In particular, we cannot fix certain pa-
rameters to balance over-fitting and under-fitting, nor 
can we take into account hierarchical structure of the 
data (i.e., participant and item characteristics). This lim-

itation proved to be important in our Mastermind exam-
ple, where the non-systematic, top to bottom strategy 
should more or less exhibit similar pattern across all 
items, whereas the systematic strategies should exhibit 
different patterns depending on the structure of the feed-
back. This is why we limited our example to only four 
items where the systematic strategy should elicit the 
same pattern. We could partially solve the problem by 
recoding AOIs on some items to conform to the same 
expected transition matrix, but it would not solve the 
problem in general. On the other hand, more flexible 
approaches to modeling the transition patterns would 
enable us to fix the strategies across items for one clus-
ter, but let vary the strategies across items for another. 
Furthermore, more advanced modeling techniques 
could be used to identify or extend models of response 
behavior that assume latent states of different cognitive 
processes (e.g., Dutilh, Wagenmakers, Visser, & van 
der Maas, 2011; Molenaar, Oberski, Vermunt, & De 
Boeck, 2016; van Maanen, Taatgen, van Vugt, Borst, & 
Mehlhorn, 2015), some of which were partially moti-
vated by the results of eye-tracking studies on cognitive 
tasks (Molenaar & de Boeck, 2018). However, we be-
lieve that even simple methods such as the method pro-
posed in this article provides new ways to analyse data 
and derive new hypotheses, as well as think about novel 
directions of the eye-tracking applications. 

Contributions 

Maartje E. J. Raijmakers, Ingmar Visser, and Šimon 
Kucharský provided the original idea of this article and 
wrote the manuscript. Šimon Kucharský conducted all 
analyses reported in this article. Martina Zaharieva pro-
vided feedback to the manuscript and ensured that the as-
sociated code is correct and reproducible. Gabriela-Olivia 
Truțescu collected and cleaned the Mastermind data and 
provided feedback to the manuscript. Paulo G. Laurence 
cleaned and processed data for the Progressive Matrices 
example and provided feedback to the manuscript and 
analyses. 

Ethics and Conflict of Interest 

The authors declare(s) that the contents of the article 
are in agreement with the ethics described in http://bib-
lio.unibe.ch/portale/elibrary/BOP/jemr/ethics.html and 



Journal of Eye Movement Research Kucharský, Š., Visser, I., Truțescu, G.-O., Laurence, P. G., Zaharieva, M., & Raijmakers, M. E. J. (2020) 
13(1):1 Clustering eye movement transitions 
 

  17 

that there is no conflict of interest regarding the publica-
tion of this paper.  

Acknowledgements 

Šimon Kucharský was supported by the NWO (Neder-
landse Organisatie voor Wetenschappelijk Onderzoek) 
grant no. 406.10.559. Paulo G. Laurence was supported by 
the FAPESP (Fundação de Amparo a Pesquisa do Estado 
de São Paulo) grant no.  2018/09654-7 and CAPES (Coor-
denação de Aperfeiçoamento de Pessoal de Nível Supe-
rior). Martina Zaharieva was funded under the Research 
Priority Area Yield, University of Amsterdam. 

Open practices statement 

The data and analysis code are openly available at 
https://osf.io/wvzs9/. All analyses are exploratory and not 
preregistered. 

 

 

References 
Althoff, R. R., & Cohen, N. J. (1999). Eye-Movement-

Based Memory Effect: A Reprocessing Effect in Face 
Perception. Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 25 (4), 997–1010. 

Berchtold, A., & Raftery, A. (2002). The mixture transi-
tion distribution model for high-order Markov chains 
and non-gaussian time series. Statistical Science, 17 
(3), 328–356.  

Bethell-Fox, C. E., Lohman, D. F., & Snow, R. E. (1984). 
Adaptive reasoning: Componential and eye movement 
analysis of geometric analogy performance. Intelli-
gence, 8 (3), 205–238. 

Boisvert, J. F., & Bruce, N. D. (2016). Predicting task 
from eye movements: On the importance of spatial 
distribution, dynamics, and image features. Neuro-
computing, 207, 653–668. 

Bürkner, P.-C.  (2017).  brms: An R package for Bayes-
ian multilevel models using Stan. Journal of Statisti-
cal Software, 80 (1), 1–28. doi: 10.18637/jss.v080.i01 

Bürkner, P.-C. (2018). Advanced Bayesian multilevel 
modeling with the R package brms. The R Journal, 10 
(1), 395–411. 

Carpenter, P. A., Just, M. A., & Shell, P. (1990). What 
one intelligence test measures: A theoretical account 
of the processing in the Raven progressive matrices 
test. Psychological review, 97 (3), 404–431. 

Chormunge, S., & Jena, S. (2018). Correlation based fea-
ture selection with clustering for high dimensional 
data. Journal of Electrical Systems and Information 
Technology, 5 (3), 542–549. 

Chuk, T., Chan, A. B., & Hsiao, J. H. (2014). Under-
standing eye movements in face recognition using 
hidden Markov models. Journal of vision, 14 (11), 1–
14. 

Chuk, T., Chan, A. B., & Hsiao, J. H. (2017). Is having 
similar eye movement patterns during face learning 
and recognition beneficial for recognition perfor-
mance? Evidence from hidden Markov modeling. Vi-
sion research, 141, 204–216. 
doi: 10.1016/j.visres.2017.03.010 



Journal of Eye Movement Research Kucharský, Š., Visser, I., Truțescu, G.-O., Laurence, P. G., Zaharieva, M., & Raijmakers, M. E. J. (2020) 
13(1):1 Clustering eye movement transitions 
 

  18 

Chuk, T., Crookes, K., Hayward, W. G., Chan, A. B., & 
Hsiao, J. H. (2017). Hidden Markov model analysis 
reveals the advantage of analytic eye movement pat-
terns in face recognition across cultures. Cognition, 
169, 102–117. doi: 10.1016/j.cognition.2017.08.003 

Coutrot, A., Binetti, N., Harrison, C., Mareschal, I., & 
Johnston, A. (2016). Face exploration dynamics dif-
ferentiate men and women. Journal of vision, 16 (14), 
1–19. doi: 10.1167/16.14.16 

Coutrot, A., Hsiao, J. H., & Chan, A. B. (2018). Scanpath 
modeling and classification with hidden Markov mod-
els. Behavior research methods, 50 (1), 362–379. 

Cristino, F., Mathôt, S., Theeuwes, J., & Gilchrist, I. D. 
(2010). Scanmatch: A novel method for comparing 
fixation sequences. Behavior research methods, 42 
(3), 692–700. 

Crosby, M. E., & Peterson, W. W. (1991). Using eye 
movements to classify search strategies. Proceedings 
of the human factors society annual meeting, 35 (20), 
1476–1480. doi: 10.1177/154193129103502012 

de Groot, A. D. (2014). The meaning of “significance” 
for different types of research [translated and anno-
tated by Eric-Jan Wagenmakers, Denny Borsboom, 
Josine Verhagen, Rogier Kievit, Marjan Bakker, An-
gelique Cramer, Dora Matzke, Don Mellenbergh, and 
Han LJ van der Maas]. Acta psychologica, 148, 188–
194. 

Dutilh, G., Wagenmakers, E.-J., Visser, I., & van der 
Maas, H. L. (2011). A phase transition model for the 
speed-accuracy trade-off in response time experi-
ments. Cognitive Science, 35 (2), 211–250. 

Ellis, S. R., & Stark, L. (1986). Statistical dependency in 
visual scanning. Human factors, 28 (4), 421–438. 

Findlay, J. M., & Gilchrist, I. D. (2003). Active vision: 
The psychology of looking and seeing. Oxford, United 
Kingdom: Oxford University Press. 

Formann, A. K., & Piswanger, K. (1979). Wiener 
Matrizen-Test (WMT). Weinheim: Beltz.  

Formann, A. K., Waldherr, K., & Piswanger, K. (2011). 
Wiener matrizen-test 2: WMT-2; Ein rasch-skalierter 
sprachfreier Kurztest zu Erfassung der Intelligenz. 
Retrieved from https://www.testzentrale.de/shop/wie-
ner-matrizen-test-2-74949.html 

Gierasimczuk, N., van der Maas, H. L., & Raijmakers, M. 
E. (2013). An analytic tableaux model for deductive 
mastermind empirically tested with a massively used 
online learning system. Journal of Logic, Language, 
and Information, 22, 297–314. doi: 10.1007/s10849-
013-9177-5 

Glady, Y., Thibaut, J.-P., & French, B. (2013). Visual 
strategies in analogical reasoning development: A 
new method for classifying scanpaths. Proceedings of 
the annual meeting of the cognitive science society, 
35, 2398–2403. doi: 10.13140/2.1.4107.1365 

Goldberg, J. H., & Helfman, J. I. (2010a). Identifying ag-
gregate scanning strategies to improve usability eval-
uations. Proceedings of the human factors and ergo-
nomics society annual meeting, 54, 590–594. 

Goldberg, J. H., & Helfman, J. I. (2010b). Scanpath clus-
tering and aggregation. Proceedings of the 2010 sym-
posium on eye-tracking research & applications, 
227–234. doi: 10.1145/1743666.1743721 

Greene, M. R., Liu, T., & Wolfe, J. M. (2012). Reconsid-
ering Yarbus: A failure to predict observers’ task 
from eye movement patterns. Vision research, 62, 1–
8. doi: 10.1016/j.visres.2012.03.019 

Groner, R., & Groner, M. (1982). Towards a hypothetico-
deductive theory of cognitive activity. In Groner, R., 
& Fraisse, P. (Eds.), Cognition and eye movements. 
Amsterdam: North Holland. Reprinted in 
https://www.researchgate.net/publication/312424385 

Groner, R., Walder, F., & Groner, M. (1984). Looking at 
faces: Local and global aspects of scanpaths. In Gale, 
A. G., & Johnson, F. (Eds.), Theoretical and applied 
aspects of eye movement research. Amsterdam: North 
Holland. 

Haji-Abolhassani, A., & Clark, J. J. (2014). An inverse 
Yarbus process: Predicting observers’ task from eye 
movement patterns. Vision research, 103, 127–142. 

Hartigan, J. A. (1975). Clustering algorithms. New York, 
NY: Wiley & Sons. 

Hayes, T. R., & Henderson, J. M. (2017). Scan patterns 
during real-world scene viewing predict individual 
differences in cognitive capacity. Journal of Vision, 
17 (5), 1–17. doi: 10.1167/17.5.23 



Journal of Eye Movement Research Kucharský, Š., Visser, I., Truțescu, G.-O., Laurence, P. G., Zaharieva, M., & Raijmakers, M. E. J. (2020) 
13(1):1 Clustering eye movement transitions 
 

  19 

Hayes, T. R., Petrov, A. A., & Sederberg, P. B. (2011). A 
novel method for analyzing sequential eye move-
ments reveals strategic influence on Raven’s Ad-
vanced Progressive Matrices. Journal of Vision, 11 
(10), 1–11. doi: 10.1167/11.10.10 

Hayes, T. R., Petrov, A. A., & Sederberg, P. B. (2015). 
Do we really become smarter when our fluid-intelli-
gence test scores improve? Intelligence, 48, 1–14. doi: 
10.1016/ j.intell.2014.10.005 

Henderson, J. M., Shinkareva, S. V., Wang, J., Luke, S. 
G., & Olejarczyk, J. (2013). Predicting cognitive state 
from eye movements. PloS ONE, 8 (5), e64937. doi: 
10.1371/journal.pone.0064937 

Hessels, R. S., Kemner, C., van den Boomen, C., & 
Hooge, I. T. (2016). The area-of-interest problem in 
eyetracking research: A noise-robust solution for face 
and sparse stimuli. Behavior research methods, 48 
(4), 1694–1712. 

Hild, J., Voit, M., Kühnle, C., & Beyerer, J. (2018). Pre-
dicting observer’s task from eye movement patterns 
during motion image analysis. Proceedings of the 
2018 ACM symposium on eye tracking research & 
applications, 1–5. doi: 10.1145/3204493.3204575 

Jaeger, R. G., & Halliday, T. R. (1998). On confirmatory 
versus exploratory research. Herpetologica, 54 
(Suppl), S64–S66. 

Kanan, C., Ray, N. A., Bseiso, D. N., Hsiao, J. H., & Cot-
trell, G. W. (2014). Predicting an observer’s task us-
ing multi-fixation pattern analysis. Proceedings of the 
symposium on eye tracking research and applications, 
287–290. doi: 10.1145/2578153.2578208 

Kit, D., & Sullivan, B. (2016). Classifying mobile eye 
tracking data with hidden Markov models. Proceed-
ings of the 18th international conference on human-
computer interaction with mobile devices and services 
adjunct. 1037–1040. doi: 10.1145/2957265.2965014 

Kübler, T. C., Rothe, C., Schiefer, U., Rosenstiel, W., & 
Kasneci, E. (2017). Subsmatch 2.0: Scanpath compar-
ison and classification based on subsequence frequen-
cies. Behavior research methods, 49 (3), 1048–1064. 
doi: 10.3758/s13428-016-0765-6 

Laurence, P. G., Mecca, T. P., Serpa, A., Martin, R., & 
Macedo, E. C. (2018). Eye movements and cognitive 
strategy in a fluid intelligence test: Item type analysis. 
Frontiers in Psychology, 9, 380. doi: 
10.3389/fpsyg.2018.00380 

Levenshtein, V. I. (1966). Binary codes capable of cor-
recting deletions, insertions, and reversals. Soviet 
physics doklady, 10, 707–710. 

Liu, Y., Hsueh, P.-Y., Lai, J., Sangin, M., Nussli, M.-A., 
& Dillenbourg, P. (2009). Who is the expert? Analyz-
ing gaze data to predict expertise level in collabora-
tive applications. 2009 IEEE international conference 
on Multimedia and Expo, 898– 901. doi: 
10.1109/ICME.2009.5202640 

Loesche, P., Wiley, J., & Hasselhorn, M. (2015). How 
knowing the rules affects solving the raven advanced 
progressive matrices test. Intelligence, 48, 58–75. 
doi: 10.1016/j.intell.2014.10.004 

Meseguer, E., Carreiras, M., & Clifton, C. (2002). Overt 
reanalysis strategies and eye movements during the 
reading of mild garden path sentences. Memory & 
Cognition, 30 (4), 551–561. 

Molenaar, D., & de Boeck, P. (2018). Response mixture 
modeling: Accounting for heterogeneity in item char-
acteristics across response times. Psychometrika, 83 
(2), 279–297. 

Molenaar, D., Oberski, D., Vermunt, J., & De Boeck, P. 
(2016). Hidden Markov item response theory models 
for responses and response times. Multivariate behav-
ioral research, 51 (5), 606–626. 

Needleman, S. B., & Wunsch, C. D. (1970). A general 
method applicable to the search for similarities in the 
amino acid sequence of two proteins. Journal of Mo-
lecular Biology, 48 (3), 443–453. 

Noton, D., & Stark, L. (1971). Scanpaths in eye move-
ments during pattern perception. Science, 171 (3968), 
308–311. 

Pamminger, C., & Frühwirth-Schnatter, S.  (2010).  
Model-based clustering of categorical time series. 
Bayesian Analysis, 5 (2), 345–368. 

Polonio, L., & Coricelli, G. (2018). Testing the level of 
consistency between choices and beliefs in games us-
ing eye-tracking. Games and Economic Behavior, 
113, 566–586. doi: 10.1016/j.geb.2018.11.003 

Ponsoda, V., Scott, D., & Findlay, J. M. (1995). A proba-
bility vector and transition matrix analysis of eye 
movements during visual search. Acta psychologica, 
88 (2), 167–185. 

 

 



Journal of Eye Movement Research Kucharský, Š., Visser, I., Truțescu, G.-O., Laurence, P. G., Zaharieva, M., & Raijmakers, M. E. J. (2020) 
13(1):1 Clustering eye movement transitions 
 

  20 

Smith, T. H., & Waterman, M. (1981). Identification of 
common molecular subsequence. Journal of Molecu-
lar Biology, 147 (2), 195–197. doi: 10.1016/0022-
2836(81)90087-5 

Steingroever, H., Jepma, M., Lee, M. D., Jansen, B. R., & 
Huizenga, H. M. (2019). Detecting strategies in devel-
opmental psychology. Computational Brain & Behav-
ior, 2, 128–140. doi: 10.1007/s42113-019-0024-x 

Stewart, N., Gächter, S., Noguchi, T., & Mullett, T. L. 
(2016). Eye movements in strategic choice. Journal of 
behavioral decision making, 29 (2-3), 137–156. 

Sun, W., Wang, J., Fang, Y., et al. (2012). Regularized k-
means clustering of high-dimensional data and its as-
ymptotic consistency. Electronic Journal of Statistics, 
6, 148–167. 

Tatler, B. W., Wade, N. J., Kwan, H., Findlay, J. M., & 
Velichkovsky, B. M. (2010). Yarbus, eye movements, 
and vision. i-Perception, 1 (1), 7–27. 

Tibshirani, R., Walther, G., & Hastie, T.  (2001).  Esti-
mating the number of clusters in a data set via the gap 
statistic. Journal of the Royal Statistical Society: Se-
ries B (Statistical Methodology), 63 (2), 411–423. 

Truțescu, G.-O., & Raijmakers, M. E. J. (2019). Logical 
reasoning in a deductive version of the Mastermind 
game. Thesis Commons. doi: 10.31237/osf.io/hzqx3 

Vakil, E., & Lifshitz-Zehavi, H. (2012). Solving the ra-
ven progressive matrices by adults with intellectual 
disability with/without down syndrome: Different 
cognitive patterns as indicated by eye-movements. 
Research in developmental disabilities, 33 (2), 645– 
654. doi: 10.1016/j.ridd.2011.11.009 

van der Maas, H. L., Molenaar, D., Maris, G., Kievit, R. 
A., & Borsboom, D. (2011). Cognitive psychology 
meets psychometric theory: On the relation between 
process models for decision making and latent varia-
ble models for individual differences. Psychological 
review, 118 (2), 339–356. doi: 10.1037/a0022749 

van der Maas, H. L., & Straatemeier, M. (2008). How to 
detect cognitive strategies: Commentary on 'differen-
tiation and integration: guiding principles for analyz-
ing cognitive change'. Developmental science, 11 (4), 
449–453. 

van Maanen, L., Taatgen, N., van Vugt, M., Borst, J., & 
Mehlhorn, K. (2015). Speed-accuracy trade-off be-
havior: Response caution adjustment or mixing task 
strategies?  Proceedings of ICCM 2015: 13th interna-
tional conference on cognitive modeling, 214–219. 
Retrieved from https://hdl.handle.net/11245/1.494580 

van Renswoude, D. R., Raijmakers, M. E., Koornneef, 
A., Johnson, S. P., Hunnius, S., & Visser, I. (2018). 
Gazepath: An eye-tracking analysis tool that accounts 
for individual differences and data quality. Behavior 
research methods, 50 (2), 834–852. doi: 
10.3758/s13428-017-0909-3 

Vigneau, F., Caissie, A. F., & Bors, D. A. (2006). Eye-
movement analysis demonstrates strategic influences 
on intelligence. Intelligence, 34 (3), 261–272. doi: 
10.1016/j.intell.2005.11.003 

Visser, I. (2011). Seven things to remember about hidden 
Markov models: A tutorial on Markovian models for 
time series. Journal of Mathematical Psychology, 55 
(6), 403–415. 

von der Malsburg, T., & Vasishth, S. (2011). What is the 
scanpath signature of syntactic reanalysis? Journal of 
Memory and Language, 65 (2), 109–127. 

West, J. M., Haake, A. R., Rozanski, E. P., & Karn, K. S. 
(2006). EyePatterns: Software for identifying patterns 
and similarities across fixation sequences. Proceed-
ings of the 2006 symposium on eye tracking research 
& applications, 149–154. 
doi: 10.1145/1117309.1117360 

Yarbus, A. L. (1967). Eye movements during perception 
of complex objects. In Eye movements and vision, 
171–211. Boston, MA: Springer. doi: 10.1007/978-1-
4899-5379-7_8 

Yarkoni, T., & Westfall, J. (2017). Choosing prediction 
over explanation in psychology: Lessons from ma-
chine learning. Perspectives on Psychological Sci-
ence, 12 (6), 1100–1122. 
doi: 10.1177/1745691617693393 

 

 

 

 

 

 


