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Introduction 

Estimating the real-time interest of users browsing a 

digital catalog opens a variety of application possibilities 

including online recommendation of items that might 

better fit their needs and automated assistance, such as 

offering a new viewpoint for their choice (Misu et al., 

2011; Reusens, Lemahieu, Baesens, & Sels, 2017; Walk-

er et al., 2004). Bring such systems into reality requires 

the development of a representation of user interest and a 

method for estimating it.  

Consider a situation in which a user is browsing a dig-

ital catalog containing items, each with multiple attributes, 

and selects one item. According to the concept of means-

end chains (Collen & Hoekstra, 2001; Gutman, 1982), it 

is desirable to estimate user interest not only on individu-

al items and attributes but also on the user’s personal 

values because such values are often linked to the basic 

reason for a choice.  

To represent user values, we assume that “each value 

can be associated with a subset of attributes.” For exam-

ple, the value “health” has strong relevance to “low calo-

rie” and “fiber rich” attributes. A model of a user’s inter-

nal process for this situation can be illustrated in Figure 1, 

which is based on the means-end chain concept. By as-

suming that personal values can be defined as certain 

aspects of items in a content domain, we introduce as-

pects as the representation of personal values.  

In the course of automated inference of user interests 

in this setting, a set of aspects needs to be prepared be-

forehand to represent personal values. In fact, the suc-

cessful estimation of user interest depends on the appro-

priateness of the prepared aspects; meanwhile, they de-

pend on many factors, such as content domains, the us-

er’s characteristics, and the task being engaged (Parnell et 

al., 2013). As will be discussed in the related work sec-

tion, one approach to the analysis is to use interviews, but 
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the quality of the data collected depends on the inter-

viewer’s skills; moreover, there is a cost involved.  

 

Figure 1. Example situation of users’ choice behavior during 

content browsing and user’s internal hierarchical structure based 

on means-end chain concept. 

In this paper, we therefore investigate another, data- 

driven, approach to obtaining a set of aspects from users’ 

behavior by assuming that “users share several common 

aspects related to the same content domain.” While such 

an assumption may not always be valid, it is still useful, 

at least for actual applications of decision support.  

Research objective 

This paper addresses two problems related to using 

eye gaze data collected during digital catalog browsing: 

(1) data-driven extraction of aspects that describe user 

interest and (2) estimation of the user interest.  

The analysis of sensory information (e.g., GPS coor-

dinates, click streams) with machine-learning techniques, 

such as topic models, is a growing trend for identifying 

an association between a user’s behavior and the user’s 

internal state (Bobadilla, Ortega, Hernando, & GutiéRrez, 

2013). Among these techniques, eye tracking is a promis-

ing approach to closely exploring a user’s internal states 

during decision making (S. W. Shi, Wedel, & Pieters, 

2013; Chen, Wang, & Wu, 2016).  

Our preliminary experiments revealed two important 

observations related to the limitation of directly applying 

topic models to gaze data:  

Observation 1. Users frequently switch their browsing 

states, e.g., from “simply grasping information 

about items” to “actively comparing items based on 

their interest”;  

Observation 2. Users do not always take into account 

all the attributes of displayed items but rather focus 

on a subset of them.  

In a large-scale analysis of users’ click histories on 

websites, Das et al. found that user clicks are noisier than 

their explicit ratings and purchase activities (Das, Datar, 

Garg, & Rajaram, 2007). That is, a user’s browsing be-

haviors (e.g., eye gazes and clicks) are not always closely 

associated with the user interest. In fact, eye gazes can be 

much noisier than clicks because gaze data capture a 

wide range of the human decision-making processes 

behind clicks. Additionally, each gaze point is only a 

slice of the user’s information processing in contrast to 

click activities, which involve more explicit decisions to 

obtain additional information. Therefore, it is likely that 

users focus on only some of the attributes of items on 

which gaze points are located.  

As a result, the aspects obtained from the direct appli-

cation of topic models tend to be affected by items or 

attributes of no interest to the user. To overcome this 

limitation, we need to identify “when” the user compares 

items and to detect “which attribute types/values” reflect 

the user’s interest.  

This research aims at providing a novel approach to 

obtaining a set of aspects from user gaze data collected 

during content browsing by extracting the dynamic 

changes in the user’s “focus” on attributes. It also aims at 

determining how the automatically obtained aspects can 

be used to represent and estimate the user interest.  

Contributions 

This paper proposes a novel two-step approach to the 

analysis of eye gaze data for aspect learning and interest 

estimation as described in the research objective above 

(the flow of the approach is summarized in Figure 2).  

In the proposed framework, a user’s gaze behavior is 

interpreted as the sequence of items at which the user 

looked (the bottom right part of Figure 2). The sequence 

of attribute values of each attribute type is retrieved from 

the sequence of items (the bottom left part of Figure 2). 

From the sequence of attribute values, as the first step, we 

introduce a likelihood-based short-term analysis of the 
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attribute values at which the user looked (the red-

highlighted area in Figure 2) for detecting distinctive 

gaze behavior while the user is actively comparing items. 

At the same time, the attribute values on which the user 

focuses during the distinctive periods are also extracted, 

which we refer to as the attributes-of-focus (or AOF for 

short). An example of AOF detection is shown in Figure 

2 by the red-circled period when the user focuses only on 

“low calorie” and does not focus on any other attributes. 

As the next step, we apply a probabilistic generative 

model to the AOF (the green-highlighted area in Figure 

2), a variant of the probabilistic latent semantic analysis 

(pLSA) model (topic model), to obtain the aspects and 

also to estimate the user interest described by the aspects.  

The generative model used in the second step is an 

extension of our previous work (Shimonishi, Kawashima, 

Yonetani, Ishikawa, & Matsuyama, 2013), which took all 

attribute values of items into account. In contrast, the 

basic idea now is to use the AOF behind the gaze behav-

ior as the “observation” of the subsequent probabilistic 

generative model. This is done by applying the first step. 

Along with introducing the first step, the generative mod-

el is modified to handle the AOF. While gaze behavior 

data is much noisier than the intended actions (e.g., ex-

plicit rating) used in traditional topic models, the first 

step acts as a filter to distinguish meaningful gaze data 

from the original data.  

Organization of this paper 

In the following two sections, we briefly review relat-

ed work and introduce the details of the two-step ap-

proach: a likelihood-based short-term analysis for AOF 

detection and a generative model for aspect learning and 

interest estimation. We then evaluate our framework, 

discuss limitations, and conclude in the subsequent sec-

tions.  

Related Work 

Analysis of values behind decision making  

The means-end chain model (Gutman, 1982) is one of 

the well-known methods for analyzing value-oriented 

behaviors in decision making (Keeney, 1992; Parnell et 

al., 2013) and exploring consumer motivations (Arsil, Li, 

& Bruwer, 2016; Zanoli & Naspetti, 2002). In this model, 

consumer decision making consists of options (means), 

consequences, and values (ends), and the model explains 

how a product can achieve the desired end states. Note 

that, in this paper, we use the term “value” to also de-

scribe “desired consequence” for simplicity, whereas the 

Figure 2. Flow of the two-step approach for interest estimation from user’s gaze behavior: 1st step is to detect 

user’s attributes-of-focus by applying likelihood-based short-term analysis; 2nd step is to estimate user interest by 

applying a probabilistic 
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different levels are distinguished in means-end chain 

models. To apply the means-end theory, an interview-

based method, such as laddering, is widely utilized in 

marketing research (Arsil et al., 2016; Reynolds & Gut-

man, 1988; Zanoli & Naspetti, 2002). In laddering meth-

ods, interviewers directly ask users about the values driv-

ing their decision making. Since the user responses are 

diverse, the use of laddering to obtain appropriate values 

faces several challenges (Veludo, Ikeda, & Campomar, 

2006). These challenges include the need to elicit infor-

mation about the user’s values and the need to control the 

dialog; therefore, the results strongly depend on the inter-

viewer’s skills (Reynolds & Gutman, 1988). In addition, 

many interviews are needed for each decision domain to 

obtain a sufficiently large value set.  

This difficulty is also seen in the analytic hierarchy 

process (AHP) (Saaty, 1980), which is an organization 

technique for group decision making. The AHP structures 

a decision problem similarly to the means-end chain 

model. Participants in the decision-making process first 

discuss criteria for the problem and then construct a hier-

archical structure consisting of a decision goal, goal al-

ternatives, and the criteria. Once a hierarchical structure 

for decision making is constructed, the alternatives can be 

sorted with respect to the weights of each of the criteria. 

However, the quality of the construction step depends on 

the skill and knowledge of the participants.  

Estimation of internal states behind user be-

havior  

 Estimation of a user’s internal states from the user’s 

behavior is attracting researchers’ attention thanks to 

improvements in automated data acquisition technologies 

(e.g., sensors and the Web). For example, search logs on 

the Web contain rich information from which one can 

infer a user’s internal states (Athukorala, Medlar, Ou-

lasvirta, Jacucci, & Glowacka, 2016; He, Qvarfordt, 

Halvey, & Golovchinsky, 2016; Martin-Albo, Leiva, 

Huang, & Plamondon, 2016; Uetsuji, Yanagimoto, & 

Yoshioka, 2015).  

While the inference of internal states requires the rep-

resentation of the states (i.e., state space), it is often diffi-

cult to manually prepare the state space itself since ap-

propriate representation depends on the situation. Unsu-

pervised machine learning techniques, such as topic mod-

els (latent factor models) (Iwata, Watanabe, Yamada, & 

Ueda, 2009; Jin, Zhou, & Mobasher, 2004; Ni, Lu, Quan, 

Wenyin, & Hua, 2012; Uetsuji et al., 2015; Y. Shi, Lar-

son, & Hanjalic, 2014), are widely studied as promising 

techniques for finding a representation of a user’s internal 

states from his or her decision-making behavior. Iwata et 

al. (Iwata et al., 2009), for example, proposed a model for 

estimating temporal changes in consumer interest and 

item trends and tracking time-varying item trends by 

analyzing item purchase logs using a variant of the dy-

namic topic model.  

Internal and external factors of gaze behavior  

 Human visual attention is affected by both internal 

and external factors (Orquin & Loose, 2013; Bruce & 

Tsotsos, 2009; Kollmorgen, Nortmann, Schröder, & 

König, 2010), which direct a user’s goal-oriented and 

stimulus-oriented attention, respectively.  

Goal-oriented attention is driven internally by one’s 

goals, so the resultant gaze behavior is affected by the 

task being engaged even if the same stimulus is presented 

(Yarbus, 1967; Borji & Itti, 2014). In fact, a number of 

studies have been conducted on cognitive-state estimation 

from eye gaze. The applications developed include infer-

ring a user’s knowledge levels (Cole, Gwizdka, Liu, 

Belkin, & Zhang, 2013), a user’s cognitive ability to read 

graphs (Steichen, Conati, & Carenini, 2014), and a user’s 

engagement in conversations (Ishii, Nakano, & Nishida, 

2013). A user’s gaze behavior has also been used to esti-

mate his or her preference from content browsing 

(Brandherm, Prendinger, & Ishizuka, 2008; Hirayama, 

Jean-Baptiste, Kawashima, & Matsuyama, 2010). For 

example, Brandherm et al. developed an approach for 

estimating a user’s preferred target in displayed content 

on the basis of the frequency and duration of gazing at 

targets (Brandherm et al., 2008).  

Stimulus-oriented attention is directed by external 

factors, such as the visual saliency of a scene (Itti, Koch, 

& Niebur, 1998). Therefore, the effects of external fac-

tors also need to be considered when analyzing gaze 

behavior during choice. For example, the effect of spatial 

position is known to be large, especially after short-

duration presentation of a visual target (e.g., an image) 

(Tatler, Baddeley, & Gilchrist, 2005). Furthermore, ex-

ternal factors themselves can even change the decision 

results. For example, Milosavljevic et al. reported that 

salient targets tend to be chosen when the decision time is 

short or when a cognitive load exists (Milosavljevic, 

Navalpakkam, Koch, & Rangel, 2012).  
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Gaze behavior and decision phase  

User decision making consists of several phases (Rus-

so & Leclerc, 1994; Schaffer, Kawashima, & Matsuyama, 

2016) such as browsing a catalog to acquire information 

(screening phase) and comparing items to evaluate them 

(comparison phase). Note that the comparison phase is 

expected to contain more clues to a user’s values than the 

screening phase. To identify the decision phases, a short-

term (segment-wise) analysis of gaze region sequences 

has been proposed (Ishikawa, Kawashima, & Matsuyama, 

2015; Schaffer et al., 2016). A tri-gram of gaze region 

sequences is considered to be a unit of analysis to extract 

layout-related gaze features for classifying the decision 

phases (browsing states).  

In this work, we focus on analyzing comparison be-

havior rather than rapid choice behavior by explicitly 

discriminating the screening and comparison phases. 

Using this experimental design, we analyze gaze behavior 

in the comparison phase since the effect of visual salien-

cy in this phase is reduced due to the proceeding screen-

ing phase, as will be explained in the evaluation section.  

Methods 

Two-step approach to estimating user inter-

ests 

We first introduce the representation of content and 

user interest used to describe the decision-making situa-

tion for a digital catalog. Let ℐ = {𝐼1, … , 𝐼𝑁} be a set of 

items in a digital catalog and 𝒜 be a set of attribute types 

common to all the items, where every item takes one 

attribute value from the set of attribute values 𝒱(a) =

{𝑉1
(𝑎)

, … , 𝑉𝐾𝑎

(𝑎)
} for each attribute type 𝑎 ∈ 𝒜. For exam-

ple, “calorie” is an attribute type, while “high” and “low” 

are its values.  

To represent the user interest, we introduce aspects of 

items to describe possible reasons for comparison. Let 

𝒞 = {𝐶1, … , 𝐶𝑅} be a set of 𝑅 aspects of items in a con-

tent domain, where these aspects are assumed to depend 

not on the user or displayed item set but on the content 

domain, as mentioned in the introduction section. We 

also assume that each aspect can be characterized by its 

association with attribute values. For example, the aspect 

“healthy” in the food content domain is relevant to “low 

calorie” and “fiber rich.” We model an aspect 𝐶𝑟 using 

parameter 𝒑𝑟 = (𝑝𝑟,1, … , 𝑝𝑟,𝐾) (𝑝𝑟,𝑘 ≥ 0, ∑ 𝑝𝑟,𝑘 = 1)𝑘 , 

where 𝐾 = ∑ 𝐾𝑎𝑎∈𝒜  is the total number of attribute 

values, and each element denotes the degree of associa-

tion with each attribute value. Corresponding to the rep-

resentation of the aspect, we also denote all attribute 

values as {𝑉1, … , 𝑉𝐾}  without the indicator of attribute 

type 𝑎 for convenience.  

Given the aspects introduced above, we model a us-

er’s interest as an 𝑅-dimensional parameter vector 𝜽 =

(𝜃1, … , 𝜃𝑅) (𝜃𝑟 ≥ 0, ∑ 𝜃𝑟 = 1)𝑟 , where each element of 

𝜽 corresponds to the importance weight on each aspect. 

We assume that a user’s interest 𝜽  remains constant 

during each session, where “session” denotes one deci-

sion-making period involving browsing behavior for 

choosing one item. The goal of this paper is to estimate a 

user’s interest 𝜽(𝑠)  for session 𝑠  by learning {𝒑𝑟}𝑟 =

{𝒑1, … , 𝒑𝑅} , the degree of association between aspects 

and attribute values, from the data collected on the user’s 

gaze behavior.  

The main idea of our approach is the explicit use of 

AOF, i.e., the attributes upon which the user actually 

focused. Although each item has attribute values for all 

attribute types 𝑎 ∈ 𝒜, only a subset of attributes is taken 

care of in a decision-making session. We therefore intro-

duce a designated step to extract AOF before applying a 

probabilistic generative model for interest estimation 

using unsupervised learning.  

Our approach thus consists of two steps (Figure 2). As 

the first step, we apply a likelihood-based short-term 

analysis to the sequences of gaze targets, i.e., the regions 

of interest (ROIs). In this step, the AOF are extracted by 

detecting the periods of distinctive gaze behavior, which 

are characterized by biased gaze-target patterns from 

neutral browsing. As will be shown later, this step is 

simple but highly effective for the subsequent second step, 

learning aspects and estimating user interest from gaze 

behavioral data using a generative model. As a concrete 

model for the second step, we propose the probabilistic 

interest-driven attention focusing (pIAF) model by ex-

tending the pLSA (Hofmann, 1999) suitable for our situa-

tion. The two steps are explained in the following subsec-

tions, respectively.  

It depends on content design whether AOF can be di-

rectly obtained by observing user gaze points on a catalog, 

and it is difficult in general. For example, when a user 
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browses a catalog with food pictures, it cannot be ob-

tained only from gaze points on which visual attributes 

the user focuses. The proposed method only requires 

ROIs decided based on each item (i.e., does not need to 

directly observe AOF) and therefore applicable to wide 

range of content design. 

AOF detection by short-term analysis 

To detect the AOF (the red-highlighted area in Figure 

2), we follow an anomaly detection approach: We first 

model neutral-browsing behavior and then utilize the 

likelihood of the model computed in each window posi-

tion (temporal interval). Since a likelihood value tells us 

how likely an observation occurs under the model, the 

bias of the gaze behavior (i.e., distinctive gaze behavior) 

can be detected when the value falls below a predeter-

mined threshold. 

The flow of AOF detection is illustrated in Figure 3. 

Here we focus on analyzing the gaze-target transitions, 

i.e., the changes of the ROIs, although gaze duration also 

carries information. We first map a sequence of gaze 

points to a sequence of browsed items (𝑖1, … , 𝑖𝑇), 𝑖𝑡 ∈ ℐ 

based on item regions. Note that time 𝑡 is defined based 

on the transitions between browsed items (i.e., 𝑖𝑡−1 ≠ 𝑖𝑡). 

For each attribute type 𝑎 ∈ 𝒜 , a sequence of attribute 

values of browsed items (𝑣1
(𝑎)

, …, 𝑣𝑇
(𝑎)

) is obtained corre-

sponding to the sequence of browsed items ((1) to (2) in 

Figure 3). Then, an analysis window with length 𝑙 with 

shift size 1  is used for short-time analysis of the se-

quence. For each window position, a frequency distribu-

tion of attribute values, 𝒙𝑙
(𝑎)

, is obtained for each attrib-

ute type 𝑎 ∈ 𝒜 ((2) to (3) in Figure 3); here, the sum of 

the total 𝐾𝑎 elements of 𝒙𝑙
(𝑎)

 is 𝑙. We refer to 𝒙𝑙
(𝑎)

 as an 

observed-attribute distribution. By assuming that each 

observed-attribute distribution 𝒙𝑙
(𝑎)

 in a neutral browsing 

obeys a probability distribution with function 

𝑔(𝒙𝑙
(𝑎)

; 𝑙, 𝝓(𝑎)), its likelihood value is calculated ((3) to 

(4) in Figure 3), where 𝝓  is the model parameter of 

neutral browsing described below. By comparing likeli-

hood values with a threshold, periods of distinctive be-

havior are detected.  

 

Figure 3. Flow of AOF detection using short-term analysis 

Neutral browsing is defined as browsing behavior in 

which the user does not focus on any specific attribute 

values. As a simple model for such behavior, we use a 

multinomial probability distribution described by 

𝑔(𝒙𝑙
(𝑎)

; 𝑙, 𝝓(𝑎)) = 𝑙! ∏
𝜙𝑘

(𝑎)𝑥𝑘
(𝑎)

𝑥𝑘
(𝑎)

!
 ,

𝐾𝑎

𝑘=1

(1) 

where 𝝓(𝑎) = (𝜙1
(𝑎)

, … , 𝜙𝐾𝑎

(𝑎)
) . Here, 𝜙𝑘

(𝑎)
 denotes how 

likely the attribute value 𝑉𝑘(𝑎) is to be looked at under 

neutral browsing. Specifically, we determine the parame-

ter as 𝜙𝑘
(𝑎)

= 𝑁𝑘
(𝑎)

/𝑁 , where 𝑁𝑘
(𝑎)

 is the number of 

items that have 𝑉𝑘
(𝑎)

, the 𝑘-th attribute value of attribute 

type 𝑎, in a catalog with 𝑁 items. For the sake of sim-

plicity, we ignore the effect of visual saliency (see also 

the related work section) in this model and assume that 

users browse catalog content uniformly when they are in 

neutral browsing, while its extension will be discussed 

later in the discussion section.  

Finally, the AOF are identified in each detected win-

dow interval by simply comparing the relative frequency 

of observed attribute values, 𝒙𝑙
(𝑎)

/𝑙, to the multinomial 

parameter 𝝓(𝑎) . Specifically, if 𝑥𝑘
(𝑎)

/𝑙 > 𝜙𝑘
(𝑎)

, attribute 

value 𝑉𝑘
(𝑎)

 is regarded as one of AOF ((4) to (5) in Fig-

ure 3). To simplify the AOF notation, we also use an 

indicator vector 𝒇𝑡 = (𝑓𝑡,1, … , 𝑓𝑡,𝐾) ∈ {0, 1}𝐾 (K =

 ∑ 𝐾𝑎𝑎∈𝒜 ), of which element 𝑓𝑡,𝑘 is 1 if the correspond-

ing attribute value 𝑉𝑘 is detected as one of the AOF at 

time 𝑡, and 0 otherwise. 
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Interest estimation using a generative model 

Modeling human behavior as a generative process us-

ing a probabilistic model is one approach to analyzing the 

internal states behind behavioral data. That is, the proba-

bilistic model enables the model parameters to be esti-

mated from data and to the infer internal states as latent 

parameters (Iwata et al., 2009; Y. Shi et al., 2014). By 

borrowing this concept, we propose the pIAF model to 

learn the aspects and to estimate user interest (the green-

highlighted area in Figure 2). Figure 4 illustrates the 

overview of the model. 

Figure 4. Illustration of interest-driven attention focusing model. 

The generative process to the AOF is modeled as fol-

lows (left side of Figure 4). Note that, while the green 

arrows in Figure 2 show the flow of aspect learning and 

interest estimation by the model, the direction of arrows 

in Figure 4 is the opposite because these arrows indicate 

the generative process of the AOF. During session 𝑠, a 

user is assumed to have interest 𝜽(𝑠), which is consid-

ered to be the parameter of a categorical probability dis-

tribution 𝑃(𝑐𝑡 = 𝐶𝑟|𝑠) = 𝜃(𝑠), 𝑟 = 1, … , 𝑅 . We assume 

that the user first focuses on an aspect 𝑐𝑡 ∈ 𝐶𝑟  (aspect-

of-focus) (e.g., “healthy”) at each time 𝑡 , where 𝑐𝑡  is 

determined in accordance with the distribution 𝜽(𝑠) ((1) 

to (2) in Figure 4). The user then turns his or her attention 

to some of the attribute values (e.g., “low calorie” and 

“fiber rich”) represented as the AOF 𝒇𝑡 , depending on 

the aspect-of-focus 𝑐𝑡. When 𝑐𝑡 is determined to be 𝐶𝑟, 

𝒇𝑡 is assumed to obey the conditional probability distri-

bution 𝑃(𝒇𝑡|𝑐𝑡 = 𝐶𝑟) = ℎ(𝒇𝑡; 𝑛𝑡 , 𝒑𝑟) ((2) to (3) in Fig-

ure 4). This is called an observation model, which will be 

discussed below. We assume that the user generates a 

sequence of AOF by repeating this generative process for 

every time step in the session 𝑠 with the constant interest 

𝜽(𝑠). 

 

Regarding observation model ℎ, one can directly ap-

ply a categorical distribution similar to the original pLSA 

(Hofmann, 1999), and in fact, our previous work fol-

lowed this option (Shimonishi et al., 2013). However, 

such a model seems to be unnatural as a user’s focus can 

take only a single attribute value at a time. In actual situa-

tions, a user jointly considers “multiple” attribute values 

in not all but “partial” attribute types. Therefore, the 

observation model ℎ should be able to represent a joint 

distribution of attribute values constituting the AOF.  

To take both the multiplicity and partiality of users’ 

focus into account, we have extended the observation 

model to incorporate the concept of users’ attention re-

source (Goldstein, Vanhorn, Francis, & Neath, 2011). 

Specifically, we consider a multinomial distribution on 

“all the attribute values” as the observation model and 

introduce the number of attribute values of simultaneous 

focus, 𝑛𝑡, as a parameter of the attention resource at time 

𝑡. Here, ℎ(𝒇𝑡; 𝑛𝑡 , 𝒑𝑟) is derived as 

ℎ(𝒇𝑡; 𝑛𝑡 , 𝒑𝑟) = 𝑛𝑡! ∏
𝑝𝑟,𝑘

𝑓𝑡,𝑘

𝑓𝑡,𝑘!
= 𝑛𝑡! ∏ 𝑝𝑟,𝑘

𝑓𝑡,𝑘

𝐾

𝑘=1

𝐾

𝑘=1

, (2) 

where 𝑛𝑡 = ∑ 𝑓𝑡,𝑘𝑘 . Note that the parameter 𝑛𝑡  is as-

sumed to be given as the number of detected AOF. 

 When we have AOF sequences extracted from mul-

tiple sessions of decision making, the parameters of the 

proposed generative model, {𝜽(𝑠)}𝑠  (users’ interests) 

and {𝒑𝑟}𝑟  (multinomial parameters that characterize 

aspects), can be estimated using maximum likelihood 

estimation similar to standard pLSA models (right side of 

Figure 4). The likelihood function in this problem is 

derived as follows from the probability that AOF 𝒇𝑡 in 

all the given sessions are observed (see Appendix for 

derivation): 

𝐿 ({{𝒇𝑡
(𝑠)

}
𝑡
}

𝑠
) = ∏ {∏ ∑ ℎ(𝒇𝑡

(𝑠)
; 𝑛𝑡 , 𝒑𝑟)𝜃𝑟(𝑠)

𝑟𝑡

} .

𝑠

(3) 

With this likelihood function, aspects can be learned 

as {𝒑𝑟}𝑟  as shown in Figure 4 (a) through maximum 

likelihood estimation using observations in multiple ses-

sions. The input and output parameters are summarized 

as follows (learning setting):  

⚫ Input: {{𝒇𝑡
(𝑠)

}
𝑡
}

𝑠
 (a training set of AOF se-

quences);  
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⚫ Output: {𝒑𝑟}𝑟  (the degree of association be-

tween aspects and attribute values) and {𝜽(𝑠)}𝑠 

(the users’ interests in training sessions).  

Meanwhile, the user’s interest 𝜽(𝑠) in the observed 

eye gaze data during session 𝑠 can also be estimated 

once the aspect parameters are learned (Figure 4 (b)). 

Note that {𝒑𝑟}𝑟  is given in this case, and therefore 

the input and output parameters of the estimation al-

gorithm are summarized as follows (inference set-

ting):  

⚫ Input: {𝒑𝑟}𝑟  and {𝒇𝑡
(𝑠)

}
𝑡

 (the AOF sequence 

during a session);  

⚫ Output: 𝜽(𝑠) (the user’s interest during the ses-

sion). 

Evaluation 

We evaluated the proposed two-step approach in 

terms of two perspectives. First, we investigated how the 

use of AOF detection affects the results of aspects ob-

tained from eye gaze data compared with a method not 

using AOF detection. Then, we evaluated the accuracy of 

user interest estimation from gaze data for each decision-

making session using the obtained aspects.  

To focus on evaluating the basic effectiveness of the 

proposed framework, we conducted an experiment in a 

controlled decision-making situation rather than in an 

actual situation, which involves a variety of decision-

making factors. Specifically, during each session, we 

asked the participant to select one item from a set of 

items in a digital catalog in accordance with a particular 

requirement. We expected that the participants would 

compare several options with some bias regarding the 

attribute values of interest. Since each of the require-

ments can be characterized by several attribute values, 

the given tasks serve as the ground truth for quantitative 

evaluation of both the aspect learning and interest estima-

tion. 

Participants 

We conducted the experiment with the help of 37 par-

ticipants (18 male and 19 female university students, 

ranging in age from 19 to 34, with a mean of 22.3 and a 

standard deviation of 2.9). 

Design 

The importance of decision making depends on the 

content domain and affects the user’s behavior. For ex-

ample, if the decision will greatly affect the user’s life 

(e.g., choosing a house), the user will examine the op-

tions more seriously and carefully than for less-important 

decisions (e.g., deciding what to eat for lunch). We there-

fore used the content domain of choosing a laptop com-

puter, which is assumed to have moderate importance.  

As shown in Figure 5, the participants were asked to 

select a laptop computer (“PC”, hereinafter) from 12 PCs 

displayed on a screen. An eye tracker (Tobii X120) under 

the display was used to measure the participant’s eye 

movements, where the freedom of head movement was 

300 x 220 x 300 mm, and the accuracy was 0.5 degrees. 

A sampling rate of 60 Hz (less than the maximum rate of 

120 Hz) was used as we needed patterns of fixations 

rather than saccades. Each item region contained a writ-

ten description of the attributes of the PC along with a 

picture to help the participants remember the position of 

the PC in the content. Each PC had five attribute types: 

price, screen size, CPU score, memory capacity, and 

weight. Each of the attribute types could take one of three 

values (e.g., low, middle, high). The content for each 

session was prepared so that 4 out of the 12 PCs had the 

same attribute value for each of the five types. To reduce 

the effect of the difference of content among the trials, 

we prepared three types of content by only replacing 

pictures of the PCs. That is, the sets of PCs’ attribute 

values in each content were the same.  

 

Figure 5. Experimental environment and displayed content of a 

catalog. Each item region consisted of a picture and descriptions 

of the PC attributes in text format. (Descriptions in this figure 

are translations from the original language, Japanese.) 

In each session, we gave a participant a task to select 

a PC that fulfills a specified requirement (situation and 
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purpose). For simplicity, we hereinafter use “task” to also 

denote “requirement.” An example task is as follows: 

“Please assume that you will use your primary PC at 

home to watch movies and play games. Which PC do you 

think is the best for that situation?” We assumed that 

receiving a particular task would keep the participant’s 

interest 𝜽(𝑠) constant during the session.  

Three tasks common to all participants were prepared. 

Each participant completed three sessions corresponding 

to the three tasks, where the order of the tasks was sys-

tematically ordered in a Latin squares design. We ex-

pected that aspects obtained from eye gaze data would be 

related to the three tasks. In particular, we expected that 

the participant’s interest 𝜽(𝑠)  took one of three states 

(1, 0, 0) , (0, 1, 0) , or (0, 0, 1)  depending on the task, 

where 𝜃𝑟 = 1 for the aspect 𝐶𝑟 (𝑟 ∈ {1, 2, 3}) that cor-

responds to the specified task.  

Each of these three tasks is implicitly related to sever-

al attribute values. For instance, a PC for playing games 

or watching movies requires “high CPU score and large 

memory capacity.” We refer to these values as task-

related attribute values. Although the visual appearance 

conveys various types of information, the information 

actually obtained depended on the participant. Therefore, 

we designed that all the task-related attribute values were 

included in the text descriptions to equalize the amount of 

information given to the participants (Figure 5). Table 1 

summarizes the three tasks and task-related attribute 

values. The aim of this experiment was to determine the 

learning capability of our framework to identify aspects 

common to multiple participants. Therefore, we designed 

tasks that could be easily and uniquely determined to 

some extent. 

Table 1. Three tasks and task-related attribute values 

Given tasks Task-related  

attribute values 
Situation Purpose 

Select a PC 

to use at home 

To watch movies 

and play games 

High CPU score 

Large memory capacity 

Select a PC 

to be carried 

around 

To take notes Small screen 

Light 

Select a PC 

at low cost 

To view Web 

pages 

Large memory capacity 

Low price 

We expected the participants to interpret each task as 

a set of attributes and then compare the options that satis-

fied the requirements. The participants’ knowledge af-

fected not only the decision process (Karimi, Papamichail, 

& Holland, 2015) but also this interpretation. To set the 

participants’ knowledge almost equal, we briefly ex-

plained the meaning of the attribute types before explain-

ing the tasks. Although this setting may seem too con-

trolled, it is reasonable for our aim, which was not to 

determine the accuracy of detecting attribute values 

looked at by the participants but to determine the effect of 

AOF detection on aspect learning.  

To elicit the participants’ comparison behavior, we set 

the number of items that met the task to two so that the 

participants could not uniquely decide on one PC for the 

specified task. We randomized the positions of the PCs in 

the content to reduce the effect of the spatial layout.  

The total number of sessions in this experiment was 

111 (37 participants x 3 tasks, contents). 

Procedure 

Each participant was first asked to sit facing the dis-

play and to position his or her face in line with the chin 

rest (see Figure 5). After the calibrating the eye tracker, 

we explained the content and procedure of the experiment. 

The procedure in each session consisted of four steps: 

Step 1. The participant was given a task (first two col-

umns in Table 1).  

Step 2. The accuracy of the eye tracker’s calibrated 

parameters was confirmed.  

Step 3. The content was displayed, and the participant 

was asked to select one PC.  

Step 4. After the participant reported having made a 

selection, we asked which PC the participant had se-

lected.  

In Step 3, to explicitly separate the screening phase 

from the comparison phase (Russo & Leclerc, 1994; S. W. 

Shi et al., 2013), each item was displayed in turn at inter-

vals of three seconds. Then they were all displayed and 

eye gaze was measured. Separating the screening phase 

in this way may have reduced the effect of the spatial 

position (see also the related work section), thereby ena-

bling us to assume the participants browsed the content 

uniformly during neutral browsing.  

While items with a certain combination of attribute 

values (e.g., {low price, high CPU score, large memory 
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capacity}) would satisfy more than one task, we did not 

include items with such combinations because once such 

an item appeared in a session, it could affect the compari-

son behaviors in the subsequent sessions due to the famil-

iarity of the attribute combination.  

Because we did not limit the decision-making time, 

the participants browsed the content as long as they need-

ed and had enough time to compare items before deciding 

on one. 

Results 

Figure 6 shows an example of gaze trajectory when a 

participant compared PCs by considering the attribute 

values of PCs. As can be seen in this figure, each partici-

pant mainly looked at and compared keywords of attrib-

ute values rather than pictures. Regarding the difference 

of the tasks, we confirmed from the obtained gaze data 

that the difference of both the physical duration and the 

number of items looked at in each task are small among 

the three tasks. 

 

Figure 6. Example of gaze trajectory on the content. The de-

scriptions in this figure are translations from the original Japa-

nese same as Figure 5. 

Example of AOF detected from actual eye gaze data 

are shown in Figure 7. Window size 𝑙  and threshold 

value 𝑡ℎ𝑟. used to determine the AOF were set to 5 and 

0.03 , respectively. These parameters were determined 

experimentally to satisfy the following two constraints: 

At least one AOF was extracted from all sessions except 

for too short sessions; and, the only shared attribute val-

ues of the two items were extracted as AOF when a par-

ticipant compared only two items in a short-term window. 

The task-related attribute values of this session were high 

CPU score and large memory capacity ( 𝑉3
(𝐶𝑃𝑈)

 and 

𝑉3
(𝑚𝑒𝑚)

; the notations were introduced in the methods 

section, and subscript 3  denotes the highest value for 

that attribute type). Remind that “Time” in the figure is 

based on the switching of gaze targets (i.e., ROIs). In this 

example, we can see that the participant first focused on 

high CPU scores (𝑉3
(𝐶𝑃𝑈)

) and then compared items with 

not only a high CPU scores but also large memory capac-

ity (𝑉3
(𝐶𝑃𝑈)

and 𝑉3
(𝑚𝑒𝑚)

) and a mid-range price (𝑉2
(𝑝𝑟𝑖)

).   

 

Figure 7. Example of detected AOF. (a) The original sequence 

of attribute values of browsed items; (b) detected AOF. 

The compared items coincided with those we ex-

pected to be compared for the given task. An attribute 

value of midrange price (𝑉2
(𝑝𝑟𝑖)

) was also detected be-

cause the compared items commonly had the value 𝑉2
(𝑝𝑟𝑖)

, 

although it was not included in the task. Similar choice 

behavior was seen in many other sessions with other 

participants. That is, the participants first focused on one 

task-related attribute value and then narrowed down the 

options by adding the other task-related attribute values 

to focus on. However, the participants did not always 

focus on attribute values related to their interests in the 

last couple of fixations. The total number of detected 

AOF in each (normalized) temporal position is depicted 

in Figure 8. In this plot, each session was divided into ten 

segments with respect to the temporal position, and the 
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total number of AOF in each segment was calculated. 

This figure shows that, although the participants com-

pared PCs mainly in latter part of the session, the com-

parison decreases in the end of the session.  

 

Figure 8. The total number of AOF detected in each temporal 

position in the session. 

The results of the learned aspects without and with the 

AOF detection step are shown in Figure 9 (b) and (c), 

respectively. They can be compared qualitatively with the 

task-related attribute values shown in Figure 9 (a) in 

terms of the degree of association with the attribute val-

ues. The results without the AOF detection step (Figure 9 

(b)) were obtained from original attribute-value sequenc-

es (e.g., Figure 7 (a)) while those with the AOF detection 

step (Figure 9 (c)) were obtained from sequences of de-

tected AOF (e.g., Figure 7 (b)). In both cases, the number 

of aspects was set to three (𝑅 =  3), the same as that of 

the tasks, so that aspects corresponding to the given tasks 

were obtained. 

These results show that the learned aspects were more 

distinct from one another when the AOF detection step 

was applied and that the attribute values highly associated 

with each aspect seem to be similar to the task-related 

attribute values for all three tasks. In addition, from the 

result with the different setting of the number of aspects, 

𝑅 =  4 (Figure 9 (d)), we can see that task-related attrib-

ute values were still obtained successfully as aspects 𝐶1 

to 𝐶3 despite the existence of another aspect, 𝐶4. 

For quantitative evaluation of the effectiveness of the 

AOF detection step, the similarities between the learned 

aspects and the given tasks were calculated. The similari-

ties were defined by the cosine similarity of two parame-

ter vectors: 

𝑆𝑖𝑚(𝑟, 𝑟̂) =
𝒑𝑟 ⋅ 𝒑̂𝑟

‖𝒑𝑟‖‖ 𝒑̂𝑟‖
, (4) 

 

 

Figure 9. Task-related attribute values and learned aspects 

without and with AOF detection step using eye gaze data. In (b) 

and (c), the number of aspects was set to three (the same as that 

of the tasks) while it was set to four in (d). The size and color of 

each dot both depict the value of the multinomial parameter 

𝒑𝒓,𝒌, which represents the degree that aspect 𝑪𝒓 is associated 

with attribute value 𝑽𝒌. 

where 𝒑𝑟 (𝑟 = 1, 2, 3) denotes the multinomial parame-

ter of a learned aspect (see also the methods section) 

and  𝒑̂𝑟 ∈ {0, 1}𝐾  (𝑟̂ = 1, 2, 3) is the vector form of the 

task-related attribute values in which an element is 1 if 

the value exists and 0 otherwise. Figure 10 shows the 

similarity scores between the task-related attribute values 

and the corresponding aspects found by matching the 

given tasks with the learned aspects. These results quanti-

tatively show that the learned aspects were highly associ-

ated with the given task-related attribute values.  

 

Figure 8. Similarities between task-related attribute values and 

learned aspects without and with AOF detection step. 

To evaluate the accuracy of interest estimation, we 

conducted task estimation using the learned aspects, with 

the given task as the ground truth. Table 2 shows the 

results of task estimation based on the maximum proba-
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bility of the estimated participants’ interest, 

argmax𝑟 𝜽(𝑠) = argmax𝑟 𝑃(𝐶𝑟|𝑠) . The interest 𝜽(𝑠) 

shown in Figure 9 (c) was estimated at the same time as 

aspect learning. That is, parameter estimation for the 

learning setting with Eq. (3) was used here since the main 

point of this evaluation is to confirm the effect of AOF 

detection on aspect learning and interest estimation. Note, 

on the other hand, that our approach can also be used to 

estimate user interest from newly observed gaze data with 

the inference setting. The accuracy of the task estimation 

was 83.8%. In 4 out of the 111 sessions, the AOF detec-

tion step did not detect the participant’s comparison be-

havior as biased gaze behavior due to quick decision 

making by the participants. That is, duration for those 

four sessions was less than 5, the size of the analysis 

window in the AOF detection step, 𝑙.  

Table 2. Results of estimation of participants’ interest (en-

gaging task). Number in each cell in column 𝑟 (𝑟 =  1, 2, 3) 

shows the number of sessions that were estimated as engaged 

task 𝑟. “No comparison” means the AOF detection step could 

not detect a bias of gaze behavior during the session. 

  Estimated task 

  1 2 3 No comparison 

 1 32 0 3 2 

Actual task 2 0 30 7 0 

 3 4 0 31 2 

These results show the effectiveness of using the AOF 

detection step both in learning aspects of items and in 

estimating the participant’s engaging tasks (i.e., their 

interest) from their gaze behavior. In particular, the re-

sults shown in Figure 9 indicate that considering the 

participant’s “focus” on attributes (i.e., attributes-of-

focus) is crucial to analyzing the participant’s comparison 

behavior. 

Discussion 

The results presented above demonstrate the effec-

tiveness of introducing the AOF detection step for learn-

ing aspects from gaze behavioral data and its effective-

ness in estimating user interests reflected in gaze-target 

patterns. In this section, we discuss the limitations of our 

framework that arise from the assumptions made about 

the user internal model and observable gaze behavior. 

Dynamics of user interests  

User interest is affected by many factors, including 

relatively stable individual preferences and temporary 

interests elicited by external information (e.g., novel 

information). However, our model assumes that a user’s 

interest is constant during a content browsing session. 

Although this assumption is useful for determining the 

basic capabilities of the proposed model and algorithm 

for learning aspects, which is the main focus of this paper, 

dynamic changes of user interest in actual situations 

should be addressed in order to put the proposed method 

into practical use.  

One approach to doing this is to introduce temporal 

segments by exploiting the results of the AOF detection 

step. By dividing AOF sequence into segments at the 

points where attribute values in the AOF change, we can 

consider that a user’s interest is constant in each segment. 

The proposed learning and estimation methods could then 

be applied to these segments, i.e., parameter vector 𝜽 

could be assumed to be piecewise constant. While this 

segment-based model may cause shortage of training data, 

extending our pLSA-based model with a Bayesian ap-

proach such as latent Dirichlet allocation (LDA) (Blei, 

Ng, & Jordan, 2003) is a possible solution. 

Number of aspects 

Since our method finds aspects on the basis of unsu-

pervised learning as do topic models, the number of as-

pects needs to be given. In fact, the number of aspects 

was set to be the same as that of the tasks for the sake of 

evaluating the learned aspects in terms of the similarity to 

the given tasks. However, in practice, the number of 

aspects can vary depending on the user and the situation 

(e.g., the content and the task), so it is difficult to deter-

mine it beforehand in general.  

As shown by the results in Figure 9 (d), our approach 

is robust to the setting of the number to some extent. 

Moreover, the use of standard hyper-parameter estima-

tion of unsupervised learning, e.g., non-parametric Bayes, 

should be effective in determining the appropriate num-

ber of aspects. However, the “interpretation” of learned 

aspects is desirable for many applications, such as speech 

dialog systems using aspects for probing questions (Misu 

et al., 2011), and needs to be investigated.  
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Temporal patterns of gaze targets  

The temporal patterns of gaze targets convey useful 

information for estimating user interest during decision 

making. For example, if a user “re-fixates” on a target, he 

or she is probably specifically focusing on the target and 

comparing it with the alternatives (Schaffer et al., 2016). 

Although these temporal patterns are indirectly consid-

ered in the AOF detection step to identify bias in the 

user’s gaze behavior in a short-term window, explicit 

modeling of gaze-transition patterns needs to be incorpo-

rated for a natural interpretation of user gaze behavior.  

Information of gaze duration  

Because we are particularly interested in user compar-

ison behavior, changes in the gaze target (i.e., gaze-target 

transition) were used for the definition of time 𝑡 in the 

proposed approach. This is suitable for treating the num-

ber of times a target is looked at as the weight placed on 

the target’s importance. However, this approach cannot 

be used to examine how carefully the user looks at each 

target. For example, Sugano et al. showed with random 

forests that duration is the feature that contributes the 

most to estimating the user’s interests (Sugano, Ozaki, 

Kasai, Ogaki, & Sato, 2014). Taking physical duration 

information into account may enable us to examine the 

degree of user focus on a gaze target and may increase 

the accuracy of the interest estimation.  

Effect of visual saliency and content design  

While we simply assumed that users uniformly 

browse displayed items on a screen during neutral brows-

ing, visual saliency, such as salient regions and the posi-

tion of items in a catalog, affects user gaze behavior (e.g., 

center bias (Borji, 2012)). Therefore, taking into account 

the effect of visual saliency in the neutral-browsing mod-

el may increase the accuracy of AOF detection. For ex-

ample, a saliency map (Itti et al., 1998) can be used to 

determine the parameters of the multinomial distribution 

used in the neutral-browsing model as the weights on 

each attribute of items.  

In our experiment, the positions of the items were 

randomized to reduce the effect of item location in order 

to focus on the aspect-driven comparison behavior. How-

ever, the layouts in actual catalog content are not random-

ized but rather structured (e.g., similar items are arranged 

more closely together). This affects content browsing and 

is actually useful for analyzing browsing states in a deci-

sion-making process (Schaffer et al., 2016). Therefore, 

the information of content design needs to be considered 

for interest estimation. 

Conclusion 

This paper addressed the problem of finding a repre-

sentation for a user interest and its estimation from eye 

gaze data in digital-catalog browsing using a data-driven 

approach. By introducing aspects as approximate repre-

sentations of user values when choosing items, we aimed 

at obtaining a set of aspects from eye gaze data using 

unsupervised learning of the pIAF model, a probabilistic 

generative model of attributes-of-focus (AOF). The main 

contribution of this paper is the introduction of an AOF 

detection step to overcome the problem of such data-

driven learning and estimation being strongly affected by 

item information and attributes of no interest to the user. 

We evaluated the validity of this approach with actual 

eye gaze data and found that it successfully constructs 

distinctive aspects highly correlated with user decision 

goals compared with an approach without the AOF detec-

tion step. Future work includes investigating ways to 

overcome the limitations discussed in the previous sec-

tion and applying the proposed method to interactive 

systems that can proactively assist user decision making. 
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Appendix 

Derivation of the equation for maximum 

likelihood estimation 

The joint probability of an aspect-of-focus and an at-

tribute-of-focus during session 𝑠 is derived as follows by 

assuming the conditional independence of 𝒇𝑡  and 𝑠 

given 𝑐𝑡: 

𝑃(𝒇𝑡 , 𝑐𝑡 = 𝐶𝑟|𝑠) = 𝑃(𝒇𝑡|𝑐𝑡 = 𝐶𝑟|𝑠)𝑃(𝑐𝑡 = 𝐶𝑟|𝑠) 

= ℎ(𝒇𝑡; 𝑛𝑡 , 𝒑𝒓)𝜃𝑟(𝑠). (5) 

 

Hence, the probability that an attribute-of-focus 𝒇𝑡 is 

observed during session 𝑠 is given by 

𝑃(𝒇𝑡|𝑠) =  ∑ ℎ(𝒇𝑡; 𝑛𝑡 , 𝒑𝒓)𝜃𝑟(𝑠)

𝑟

. (6) 

When we have 𝑆 sessions of decision making, the pa-

rameters to be estimated are {𝜽(𝑠)}𝑠, users’ interests, and 

{𝒑𝑟}𝑟 , which are multinomial parameters that character-

ize aspects. Here, the probability of an attribute-of-focus 

𝒇𝑡 during session 𝑠 is given by Eq. (6), where parameter 

𝑛𝑡  is given as described in the methods section. Given 

parameters 𝜽(𝑠) and {𝒑𝑟}𝑟, the likelihood of a sequence 

of attributes-of-focus {𝒇𝑡
(𝑠)

}
𝑡
 during session 𝑠  is com-

puted as 

𝐿 ({𝒇𝑡
(𝑠)

}
𝑡
) = ∏ 𝑃(𝒇𝑡

(𝑠)
|𝑠)

𝑡

 

= ∏ ∑ ℎ(𝒇𝑡
(𝑠)

; 𝑛𝑡 , 𝒑𝒓)𝜃𝑟(𝑠)

𝑟𝑡

. (7) 

By computing the likelihood of all sessions, we can ob-

tain Eq. (3). 

The model parameters can therefore be estimated by 

solving the following optimization problem derived by 

maximizing the logarithm of Eq. (3): 

maximize{𝜽(𝑠)}𝑠,{𝒑𝑟}𝑟  ∑ ∑ log ∑ ℎ(𝒇𝑡
(𝑠)

; 𝑛𝑡 , 𝒑𝒓)𝜃𝑟(𝑠)

𝑟𝑡𝑠

 

                  subject to  ∑ 𝜃𝑟(𝑠) = 1 ∀𝑠

𝑟

 

   ∑ 𝑝𝑟,𝑘 = 1 ∀𝑟 .

𝑘

(8) 

This problem can be solved using an expectation-

maximization algorithm similar to parameter estimation 

of pLSA. 


