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Introduction 

In recent years eye tracking has gained further popu-
larity in various fields, and has been applied in increas-
ingly unconstrained scenarios, both in research and com-
mercial applications. These new fields of application 
move away from stimuli that use clearly defined targets 
on a monitor and towards more naturalistic content and 
environments (e.g. movies, virtual reality, everyday life). 

In these more naturalistic set-ups, eye movement clas-
sification algorithms that were developed with static 
stimuli in mind, mostly relying on simple statistics such 
as speed (Komogortsev et al., 2010) or dispersion (Sal-
vucci and Goldberg, 2000), are not sufficient anymore, as 
they fail to account for the more complex and dynamic 
eye movement patterns. Owing to this, several more 
elaborate algorithms have been developed (Larsson et al., 
2015; Dar et al., 2019; Zemblys et al., 2018; Startsev et 
al., 2019a) in order to overcome the weaknesses of the 
earlier approaches when applied to dynamic contexts. 

For any algorithm, however simple or complex, the 
question of evaluating its performance is no less vital. 
Such evaluation is typically performed against some form 
of “ground truth”. In the case of experiments with dy-
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namic natural stimuli, the decision about which eye 
movement type should be assigned becomes more diffi-
cult, as the distinction between classes is not always 
clear-cut. For example, in dynamic scenes (e.g. movies), 
unlike during static scene viewing (e.g. photographs), 
viewers tend to make smooth pursuit eye movements, and 
many of the commonly used eye movement classification 
algorithms do not distinguish fixations and saccades from 
smooth pursuit. Therefore, in these set-ups, and especial-
ly for potentially ambiguous cases, the gold standard is 
considered to be manual annotation (Andersson et al., 
2017; Steil et al., 2018; Zemblys et al., 2018). However, 
manual labelling is a tedious and time-consuming pro-
cess, which can require between 10 s to one minute of 
labour for 1 s of gaze recording, depending on the stimu-
lus domain (Startsev et al., 2019b; Agtzidis et al., 2019). 
Therefore, manually annotated data sets tend to be limited 
in size, typically varying from a couple of minutes to ca. 
half an hour (Larsson et al., 2013; Santini et al., 2016; 
Andersson et al., 2017; Steil et al., 2018; Agtzidis et al., 
2019). To the best of our knowledge, only one published 
data set of manually annotated eye movements spans 
several hours (Startsev et al., 2019b). 

However, in order to better train and optimise pa-
rameter-rich algorithms, a collection of large and diverse 
data sets is vital. The data set of Startsev et al. (2019b), 
for instance, contains gaze data recorded during free 
viewing of dynamic natural scenes (e.g. a duck flying 
across a river), and is not on its own sufficient to cover all 
possible (or even frequently occurring) viewing scenari-
os. 

To help overcome this problem and provide a more 
diverse set of viewing conditions, we here present a 
large-scale manual annotation of eye movements – fixa-
tions, saccades, and pursuits – in a data set of eye track-
ing recordings during Hollywood movie clip viewing. 
The movie clips were displayed on a computer monitor 
and the gaze was recorded with a tower-mounted eye 
tracker system that employed a chin rest (to eliminate 
head movement) and reported gaze locations in the coor-
dinate system of the monitor. The recordings for a total of 
56 clips are included in our data set, split into a large test 
set (50 clips) and a smaller training set (6 clips): The 
latter is not intended for full-scale model training, but 
could rather serve for final classification algorithm pa-
rameter tuning. Such a pipeline would ensure that the 
algorithms get a fair chance to be adapted to the record-

ings similar to the test set (same stimuli domain and re-
cording equipment), but still independent of it. The 
stimuli clips (with their corresponding recordings) were 
selected from the larger Hollywood2 eye tracking data set 
(Mathe and Sminchisescu, 2012), and each subset was 
randomly drawn from the respective test and training 
portions of the original data set. In total, the annotated 
gaze data span 130 minutes. 

In our data set, apart from the more common fixations 
and saccades, we also labelled smooth pursuit (SP) eye 
movements. SP is an important eye movement for the 
comprehension of motion since it keeps targets that move 
relative to the observer foveated. Also research evidence 
indicates that different functional areas of the brain sub-
serve SP (Petit and Haxby, 1999; Lencer and Trillenberg, 
2008; Ohlendorf et al., 2010) in comparison to fixations 
and saccades (Luna et al., 1998; Sestieri et al., 2008; 
Henderson and Choi, 2015). Pursuing moving targets is 
vital for the comprehension of Hollywood movie scenes 
due to the extensive camera and object motion present in 
them. This importance is reflected in the high percentage 
of SP (almost a quarter of the viewing time) in our la-
belled data. However, annotating SP is not always 
straightforward, and the addition of this eye movement 
type makes manual labelling more challenging. 

In the absence of objective and universally accepted 
ground truth (Hessels et al., 2018), the quality of eye 
movement labellings is mainly determined by their inter-
nal consistency. We therefore provided clear eye move-
ment definitions (presented in the next section) and each 
gaze sample was processed consecutively by two individ-
ual annotators. On the first pass, an annotator went 
through the laborious and time-consuming process of 
labelling all the gaze samples based on rudimentary and 
incomplete algorithmic suggestions. Despite best efforts, 
any manual process of the scale presented here likely 
introduces occasional errors. Therefore, the labelling was 
reviewed independently by an expert annotator (first 
author) who was presented with the previously annotated 
data and was free to make changes wherever he felt the 
eye movement definitions were violated. Based on the 
annotated data set, we present several basic eye move-
ment statistics along with the evaluation of the perfor-
mance of 15 classification algorithms from the literature. 
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Methods 

Before explaining the labelling process in more detail, 
we will briefly present the unlabelled data set, upon 
which we built our current work. The Hollywood2 data 
set (Mathe and Sminchisescu, 2012) was recorded, as its 
name suggests, with Hollywood movies (movie excerpts, 
to be precise) as stimuli and it contains ca. 70 hours of 
gaze recordings. Some example scenes overlaid with gaze 
samples of the different observers are provided in Figure 
1. The purpose of the data set was action recognition 
through eye movements, and the pool of 16 eye tracking 
experiment participants was split into two groups. The 
task of the “active” subgroup (12 subjects) was to assign 

one of the 12 action classes to each video clip. The “free 
viewing” subgroup (4 subjects) had no task and was 
simply watching the video clips. The participants’ head 
was stabilised with a chin rest and the eye movements 
were recorded monocularly from the dominant eye at 500 
Hz with an SMI iView X HiSpeed 1250 eye tracker. A 
relatively high eye tracking accuracy of 0.75 degrees was 
achieved via a 13-point calibration procedure at the be-
ginning of each recording block, plus a validation step at 
the end – if validation accuracy fell outside these limits, 
the data were discarded. 

 

Figure 1. Sample scenes from the Hollywood2 data set overlaid with 600 ms of gaze samples. The gaze pattern of each participant is 
visualised with a unique colour. The left and right snapshots show scenes with substantial motion and they contain 72% and 59% of 
smooth pursuit respectively. The high prevalence of pursuit is also visible by the elongated coloured lines (representing consecutive 
gaze samples) that are oriented along the direction of the motion. The middle snapshot does not contain smooth pursuit and the trace 
directions are more varied. 

 

Eye movement definitions 
In order to avoid potential confusion about the mean-

ing behind each labelled class of eye movements, we 
provide the definitions that were used during our manual 
annotation. These are similar to those used in (Startsev et 
al., 2019b). The only difference from the definitions used 
in that work is contained in our smooth pursuit definition, 
which now explicitly accounts for video object motion on 
the monitor that is caused by camera motion – something 
that almost never occurred in the (Startsev et al., 2019b) 
data. 

Fixation: A period of time where the gaze is relatively 
stationary on the monitor (and thus relative to the observ-
er) as reported by the eye tracker and does not follow a 
moving object. 

Saccade: A jump to a different on-screen position 
without any specific amplitude or speed threshold being 
imposed. The end of a saccade was marked when the 
gaze had stabilised again. Because of the difficulty in 

defining post-saccadic oscillations (PSOs) and because of 
their diverse shapes and durations (Hooge et al., 2015), 
PSOs were considered parts of the corresponding sac-
cades in our annotations. 

Smooth pursuit: A period of time where the gaze was 
smoothly moving and was following an on-screen mov-
ing object (either due to its own movement or camera 
motion) with roughly matching velocity (speed and direc-
tion) in screen coordinates. If the gaze was moving 
smoothly but without a potentially corresponding object 
motion, this part of the recording was labelled as a fixa-
tion, with the assumption that it was either drifting or 
affected by some recording artefacts (e.g. reported gaze 
drifts due to pupil diameter changes (Hooge et al., 2019)). 

Noise: Parts of the gaze signal that do not fulfil any of 
previous eye movement definitions (hence could also be 
interpreted as the “other” label or similar). These inter-
vals include blinks (together with the often-occurring up- 
and downwards saccade-like patterns around them), parts 
of the gaze recordings that fall outside the monitor, inter-
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vals where the eye tracker reported zero confidence, and 
physically implausible eye movements. For the purpose 
of this manuscript, blinks were labelled as noise (and not 
separately coded) because they are not always distin-
guishable from tracking loss in the absence of the camera 
signal of the videooculographic tracker. Despite the ina-
bility to perfectly judge whether a blink took place based 
on the point-of-regard signal alone, it is common practice 
in the eye tracking community to extract blinks based on 
the related signal artefacts typically observed in video-
oculography (large downwards and upwards saccade-like 
patterns surrounding periods of lost tracking), and per-
forming such analysis should be relatively straightfor-
ward based on the noise labels we provide. 

Labelling procedure 
For manual annotation we used the software devel-

oped in (Agtzidis et al., 2016a), which presents the video 
clip together with the participant’s gaze in four panels. 
An example screenshot of the tool as it was used during 
labelling is presented in Figure 2. The main panel dis-
plays the video stream overlaid with 200 ms of gaze (i.e. 
samples within 100 ms from the “current” one). The two 
panels to its right display the x and y coordinates of the 
gaze signal along with colour-coded boxes that represent 
different eye movement classes. These boxes can be 
adjusted, added, or deleted by the human annotators, and 
are, therefore, the main interaction point with the inter-
face. The last panel (located below the video panel) is 
optional and was not used in this experiment. Both the 
labelling tool and the hand-labelled data set in this work 
use the text based ARFF files; more details about the file 
format can be found in (Agtzidis et al., 2016a; Startsev et 
al., 2019b). 

For the labelling of the eye movements, two human 
annotators worked on each gaze recording one after the 
other. The first labeller was a paid student at the Tech-
nical University of Munich, working part-time (8 h/week 

for 22 weeks), who obtained basic knowledge about eye 
movements from following a relevant course, as well as 
additional clarifications from the authors. This first anno-
tator was also provided with representative examples for 
the eye movement definitions from Section “Eye move-
ment definitions” in action in the context of the labelling 
interface. During the full duration of the labelling pro-
cess, experts were available to answer any questions. 
Randomly chosen annotated files were periodically visu-
ally inspected by the authors, and feedback was provided 
to the annotator. 

To speed up the labelling process, the gaze files were 
pre-segmented with the I-VVT algorithm (Komogortsev 
and Karpov, 2013) with default parameters before being 
presented to the first annotator. By providing the auto-
matically labelled intervals, even if those were poorly 
aligned with actual eye movements, the task of the anno-
tator was simplified to mainly merging intervals and 
correcting their temporal locations, instead of constantly 
adding new intervals one by one and then correcting their 
borders. Such pre-annotation has been shown to provide 
considerable manual labelling speed-up, though research-
ers have to take extra care in order to avoid biasing the 
results (Startsev et al., 2019b). Due to using the I-VVT 
algorithm instead of a more elaborate approach (see Sec-
tion “Evaluation of classification algorithms”), the label-
ler could not leave its labels uncorrected: The outputs of 
I-VVT on our data were very noisy (see Table 1 for final 
agreement), meaning that the first annotator had to care-
fully inspect the full file. Any potential bias introduced 
by the algorithmic pre-segmentation therefore would 
have been small. 

The second annotator (the first author) then performed 
the final pass over all the gaze files. The second labeller 
could freely modify the gaze event intervals wherever it 
was deemed necessary. We consider the labels yielded by 
this annotator as final, though the work of both annotators 
is included in our data for transparency. 
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Figure 2. Example screenshot of the tool as it was used during labelling. The two panels on the right are used during the labelling 
procedure in order to change the borders of the colour-coded areas depending on the x and y coordinates (black lines). The still frame 
here (top-left panel) comes from the same video as the rightmost frame in Figure 1. For the specific participant here, most of the 
samples are labelled as SP (blue boxes) due to the gaze following either camera or object motion.

 

Results 
Basic statistics 

The hand-labelling process for our data set required 
approximately 230 hours of labour, which were roughly 
split into 170 hours for the novice labeller and 60 hours 
for the expert. Overall, the labelled data set contains 
14,643 fixations, 15,082 saccades, and 5649 SP episodes, 
with the eye movement types representing 62.4%, 9.1%, 
and 24.2% of the total gaze samples, respectively (the rest 
were marked as noise). 

To better understand the characteristics of the three 
labelled eye movement types in this data set, we present 
in Figure 3 the distributions of their speeds, durations, 
and amplitudes. The amplitude was computed as the 
distance between the first and the last samples in each eye 
movement interval, while the speed was computed by  

 

 

 

dividing the amplitude by the respective interval duration. 
Note that the horizontal axes of the plots are in logarith-
mic units; this non-linearity makes direct comparison 
more difficult, but allows for a better visualisation of the 
large value range that is spanned by the distributions of 
the presented attributes for the defined eye movements 
classes. 
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Figure 3. Distributions of speed (3a), duration (3b), and amplitude (3c) for the three labelled eye movement classes. Note the 
logarithmic scale of the x axis (chosen due to the large range of the reported statistics for the three classes). To facilitate the 
comparison between the distributions, we visualise the first and third quartiles of each distribution as vertical dashed lines. 

 
From Figure 3a we can see that saccades, being much 

faster than the two other classes, are clearly distinguisha-
ble by considering speed alone. Smooth pursuits, on the 
other hand, are expectedly faster than fixations on aver-
age, but there is a substantial overlap between the two 
classes in terms of their average speed, as it is evident 
from the quartile lines (vertical dashed lines) in the fig-
ure. This overlap makes the distinction between drifting 
fixations and SP more challenging, at least when purely 
speed-based thresholding is attempted. 

Examining event durations (Figure 3b), saccades are 
again clearly separated from the other two types as their 
maximum duration does not exceed 100 ms in our data. 
By contrast, 75% of fixation and SP intervals lasted long-
er than 160 ms, and their overall duration distributions 
almost perfectly overlap. 

Finally, the amplitude distributions of the three eye 
movement types (related to the dispersion feature used by  

classifiers) are presented in Figure 3c. Here, a fair separa-
tion between fixations and saccades would be possible 
with a single threshold in the absence of SP. The distribu-
tion related to the latter class, however, significantly 
overlaps with the amplitude distributions of both fixa-
tions and saccades, thus making a good separation among 
the three impossible with simple thresholding. 

Evaluation of classification algorithms 
Data sets such as this one, apart from providing valu-

able insights into the eye movement characteristics, also 
serve as an essential tool for the development of algo-
rithms that automatically segment the gaze signal into eye 
movements. The annotated data can be used as basis for 
the validation and optimisation of rule-based algorithms, 
but also as a training set for the machine learning and 
deep learning approaches, which have offered significant 
performance increases in many fields in recent years. 
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Table 1. Evaluation results for 15 publicly available eye movement classification algorithms. The order of presentation is based on 
the average F1-score. 

  Sample-level F1 Event-level F1 

Model F1 average Fixation Saccade SP Fixation Saccade SP 

1D CNN-BLSTM Startsev et al. (2019a) 0.787 0.872 0.827 0.680 0.808 0.946 0.588 

sp tool + Startsev and Dorr (2019) 0.755 0.853 0.816 0.617 0.820 0.905 0.516 

REMoDNaV (Dar et al., 2019) 0.748 0.779 0.755 0.622 0.784 0.931 0.615 

sp_tool (Agtzidis et al., 2016b) 0.703 0.819 0.815 0.616 0.587 0.900 0.483 

(Dorr et al., 2010) 0.685 0.832 0.796 0.373 0.821 0.884 0.403 

(Larsson et al., 2015) 0.647 0.796 0.803 0.317 0.807 0.886 0.274 

(Berg et al., 2009) 0.601 0.824 0.729 0.137 0.845 0.826 0.243 

I-VMP San Agustin (2010) 0.564 0.726 0.688 0.564 0.503 0.563 0.338 

I-KF Sauter et al. (1991) 0.523 0.816 0.770 – 0.748 0.803 – 

I-VDT Komogortsev and Karpov (2013) 0.504 0.813 0.700 0.136 0.557 0.559 0.263 

I-HMM Salvucci and Anderson (1998) 0.480 0.811 0.720 – 0.646 0.700 – 

I-DT Salvucci and Goldberg (2000) 0.473 0.803 0.486 – 0.744 0.802 – 

I-VT Salvucci and Goldberg (2000) 0.432 0.810 0.705 – 0.520 0.555 – 

I-VVT Komogortsev and Karpov (2013) 0.390 0.751 0.705 0.247 0.061 0.555 0.023 

I-MST Goldberg and Schryver (1995) 0.385 0.793 0.349 – 0.590 0.576 – 
Cells marked with “–” denote an eye movement type that was not classified by the given algorithm and therefore no evaluation was 
possible. 

Here, we present the evaluation results for 15 publicly 
available algorithms (one of the entries is a post-
processing result of another). We do not provide the de-
tails for the tested algorithms, as the data set itself is the 
main focus of this article, but we refer the reader to the 
original papers cited next to each entry in Table 1. In 
brief, we tested a variety of algorithms, ranging from 
simple thresholding techniques to deep learning ap-
proaches. Most of the evaluated algorithms label smooth 
pursuit as well as fixations and saccades. For the evalua-
tion we used the F1 score as quality metric, which is the 
harmonic mean of precision and recall. The F1 score was 
used for the evaluation of both sample- and event-level 
(i.e. continuous sequences of samples with the same la-
bel) matching between the hand-labelled ground truth and 
the algorithm outputs. For event-level evaluation, we 
employed the algorithm of Hooge et al. (2017) for event 
matching, where the ground-truth events are matched 
with the earliest intersecting algorithmically labelled 
event and only one-to-one association is allowed. 

All the algorithms in Table 1 were evaluated as pro-
vided by the authors, with their default parameters, on the 
test set part (50 video clips) of our hand-labelled data set. 
The implementation of the algorithms starting with “I-” 
was provided by the toolbox of Komogortsev (2014). The 
authors of (Larsson et al., 2015) did not make the source 
code of their algorithm publicly available, so our re-
implementation 
(http://michaeldorr.de/smoothpursuit/larsson_reimplemen
tation.zip) of this algorithm was used. 

The earliest algorithms in this table (namely I-KF, I-
HMM, I-DT, I-VT, and I-MST) were designed with the 
assumption that the experimental stimuli are exclusively 
static and, therefore, they do not label SP (the eye move-
ment accounting for a quarter of the samples in our data 
set). As a result, these algorithms achieved some of the 
lowest (average) scores. It is worth mentioning that most 
of eye movement filters that are provided by the eye 
tracker manufacturers rely on these algorithms or their 
variations, and are made available as-is through closed-
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source distributions. Our evaluation results, therefore, 
indicate that the outputs of such systems cannot be al-
ways trusted to deliver adequate labels, in particular when 
dynamic stimuli are utilised. 

All the more recent algorithms that are evaluated here 
have the ability to classify SP. However, the approaches 
that only rely on simple rules (namely I-VVT, I-VDT) 
yielded very low scores, likely due to significant overlap 
between the basic statistics of the different eye move-
ments as demonstrated in the previous section, cf. Figure 
3. Here, it should be noted that the I-VVT algorithm was 
used to pre-annotate the data set in order to speed-up the 
labelling process. From the results table, it becomes evi-
dent that the end result of the hand-labelling process is 
not comparable to the I-VVT suggestions, as this algo-
rithm only ranked second to last. 

Our clustering-based SP classification approach (Ag-
tzidis et al., 2016b) achieved high sample-level F1 scores, 
but its known weakness is the erroneous fragmentation of 
long events in the ground truth into shorter ones (Startsev 
et al., 2019b). For this reason, we applied our recent hid-
den Markov model (HMM) based label smoothing tech-
nique (Startsev and Dorr, 2019) to its outputs. The 
smoothing model was trained on the outputs of this algo-
rithm for the training subset of the data (6 clips). It was 
then used to improve the labels of the same algorithm 
(Agtzidis et al., 2016b) on the outputs on the 50-clip test 
part. After the smoothing operation, the average F1-score 
of the  algorithm increased 5%, while fixation event-level 
F1 shot up by 23%. 

The newest algorithms we tested (Startsev et al., 
2019a; Dar et al., 2019) achieved the highest average F1-
scores, indicating their capabilities for robust automatic 
analysis of unseen large-scale data corpora. Nevertheless, 
their performance in terms of SP classification was sig-
nificantly lower than that for fixations or saccades, 
demonstrating the difficulty of classifying this eye 
movement type and pointing out the necessity for further 
improvements in this domain. In fact, all of the evaluated 
algorithms demonstrated lower SP classification perfor-
mance when compared to either fixations or saccades. 

Discussion 
Data set statistics 

As we have presented in the previous section, a large 
part of the viewing behaviour is devoted to SP: This eye 
movement accounts for almost a quarter of the viewing 
time, on average across stimuli and observers. This is a 
much higher figure than the previously reported 11% and 
9.8% for the video free-viewing GazeCom (Startsev et 
al., 2019b) and 360-degree video (Agtzidis et al., 2019) 
data sets, respectively. The figure is, however, almost two 
times lower than the 52.2% for the video viewing part of 
the data set from Andersson et al. (2017), where partici-
pants were explicitly instructed to follow moving objects 
with their eyes. Also, while the overall viewing time in 
this data set is much lower than in GazeCom (ca. 2.2 h vs. 
4.7 h), the amount of recorded smooth pursuit is almost 
identical between the two (ca. 32 min vs. 31 min) because 
of the much higher proportion of pursuit in our data set. 

Based on the negligible difference in the SP share be-
tween the “active” and the “free viewing” groups in the 
current data set (24% vs. 24.3%), we conclude that the 
differences in the SP amount between the current data set 
and GazeCom or 360-degree data set in (Agtzidis et al., 
2019) likely originates from the different stimuli types 
(Hollywood movie clips vs. naturalistic videos), and not 
from the task performed by the observers (free-viewing 
vs. action recognition). 

Comparing the gaze event speed distributions in our 
data set (Figure 3a) and the equivalent statistic in the 
GazeCom data set (depicted in Figure 4) one can observe 
that they are very similar in shape. Fixations and saccades 
are easily separable from one another, with SP speeds 
somewhere in-between the two other eye movement 
types, overlapping with both. 

Examining the distributions more closely, however, 
reveals that the eye movement speeds are lower in Hol-
lywood2 (in comparison to GazeCom) across the board. 
For fixations, the difference is very small and could be 
explained by the different eye tracking systems used for 
their recording (first and third quartiles differ by less than 
0.5 deg/s between the two data sets). For SP, the differ-
ence is also relatively small (5.4 vs 7.0 deg/s for the first 
quartile and 6.8 vs 9.3 deg/s – for the third, comparing 
the Hollywood2 subset vs. the GazeCom, respectively). 
This effect likely arises from the different properties of 
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the moving targets in the two data sets, as the SP speed 
typically closely follows the speed of the pursued target 
(Meyer et al., 1985). Finally, for saccades we see a sub-
stantial difference in gaze speed between the two data 
sets: The first quartile reaches 52 deg/s for the current 
data set vs. 82 deg/s for the GazeCom (note that these are 
overall and not peak speeds); the third quartiles reach 154 
deg/s vs. 202 deg/s, respectively. These differences can 
be potentially explained by the more centre biased gaze 
patterns in Hollywood2 than in GazeCom (Dorr et al., 
2010), which would result in lower saccadic amplitudes 
and, therefore, lower saccadic speeds (Bahill et al., 1975), 
despite the similar monitor sizes in the two experiments. 

 

Figure 4. Event speed distribution for the GazeCom data set. 
Note the logarithmic scale of the x axis (chosen due to the large 
range of the reported speed for the three classes). The figure 
presented here is a reproduction of Figure 4 from (Startsev et 
al., 2019b). 

Combination with other data sets 
Though the data set that we presented here does not 

attempt to cover all the conditions that humans experi-
ence in their everyday lives, it can be combined with 
other published data sets in order to achieve a more com-
prehensive superset, thus allowing to examine human eye 
movements in a more diverse set of paradigms, possibly 
in combination with the corresponding visual attention 
allocation mechanisms. Studying the latter via the means 
of computer vision (e.g. saliency prediction) requires 
large amount of diverse data in a variety of contexts, to 
which this work is contributing as well. In terms of diver-
sity, the data set of Andersson et al. (2017), for example, 
despite its small overall duration, contains three stimulus 
categories that span moving dots, still images, and vide-
os. 

For a larger-scale analysis, e.g. the GazeCom 
(Startsev et al., 2019b) data set and the data set from 
Agtzidis et al. (2019) can supplement the data presented 

here, resulting in many hours of manually annotated data 
of human behaviour in dynamic scenes, either natural or 
cinematic, presented on a monitor or a head-mounted 
display that allows free head motion. 

Large and diverse saliency data sets (Wang et al., 
2018; Jiang et al., 2018; David et al., 2018) can further 
help us understand the allocation of attention, but the data 
that is typically published is somewhat limiting, as they 
only provide saliency maps or scanpaths at best (i.e. not 
the raw gaze tracking data, but already processed by 
some standard algorithm or a filter built into the eye 
tracker (Wang et al., 2018; Alers et al., 2012; Leboran et 
al., 2017)). Only few exceptions can be named, among 
them – the eye-1 data set by Itti and Carmi (2009) and the 
fully processed Hollywood2 data set in (Startsev and 
Dorr, 2020), where several eye movement classes (in-
cluding fixations and smooth pursuit) were algorithmical-
ly labelled. 

Also the combination of various human eye move-
ment data sets that represent diverse viewing scenarios 
can help us better understand the human viewing behav-
iour and develop improved algorithms. These, in turn, 
enable a higher quality automatic analysis of fMRI 
(Hanke et al., 2016; Georgescu et al., 2013) and clinical 
data (Thibaut et al., 2016; Tseng et al., 2013), which 
could offer a better understanding of the neural mecha-
nisms that drive human vision. These large scale analyses 
would have been impossible if we had to rely on manual 
labour only. Finally, more intuitive and comfortable gaze 
based interfaces (Vidal et al., 2013; Schenk et al., 2016) 
can be designed based on these more diverse experi-
mental data, e.g. by deriving and using the properties of 
the naturally occurring eye movements in various scenar-
ios. 

Conclusion 

In this article we presented a large-scale hand-labelled 
ground truth data set of eye movements that used Holly-
wood movie clips as stimuli. Based on these labels, we 
then presented some basic eye movement characteristics 
not only for fixations, saccades, but also smooth pursuits. 
Afterwards, we evaluated the classification performance 
of 15 eye movement labelling algorithms that varied from 
classical to state-of-the-art. The data set and results pre-
sented here contribute towards a better understanding of 
visual behaviour patterns in naturalistic contexts. 
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