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Introduction 
Each year in Canada, about 970,000 colonoscopies 

are performed (Ekkelenkamp, Koch, de Man, & Kuipers, 
2016). During the examination, the physician (endosco-
pist) inserts a long but flexible tube carrying a camera 
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Eye-tracking can help decode the intricate control mechanism in human performance. In 
healthcare, physicians-in-training require extensive practice to improve their healthcare 
skills. When a trainee encounters any difficulty in the practice, they will need feedback 
from experts to improve their performance. Personal feedback is time-consuming and 
subjected to bias. In this study, we tracked the eye movements of trainees during their 
colonoscopic performance in simulation. We examined changes in eye movement behav-
ior during the moments of navigation loss (MNL), a signature sign for task difficulty 
during colonoscopy, and tested whether deep learning algorithms can detect the MNL by 
feeding data from eye-tracking. Human eye gaze and pupil characteristics were learned 
and verified by the deep convolutional generative adversarial networks (DCGANs); the 
generated data were fed to the Long Short-Term Memory (LSTM) networks with three 
different data feeding strategies to classify MNLs from the entire colonoscopic procedure. 
Outputs from deep learning were compared to the expert’s judgment on the MNLs based 
on colonoscopic videos. The best classification outcome was achieved when we fed hu-
man eye data with 1000 synthesized eye data, where accuracy (91.80%), sensitivity 
(90.91%), and specificity (94.12%) were optimized. This study built an important founda-
tion for our work of developing an education system for training healthcare skills using 
simulation. 
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(colonoscope) into the patient’s lower gastrointestinal 
(GI) tract to detect any abnormality (Allen, 2012). Co-
lonoscopy is often a painless procedure that can benefit 
people with cancer screens. However, physicians-in-
training (endoscopists) require extensive practice to gain 
the necessary skills in manipulating the scope for com-
pleting the inspection and basic surgical procedures, such 
as taking a tissue sample (biopsies) or removing a polyp 
(polypectomy) (Karen Palmer, 2017) (Committee et al., 
2011). Medical simulation has been widely used in recent 
years to give trainees abundant opportunities to reach 
their proficiency (Hammond, Watson, Lund, & Barton, 
2013; Jirapinyo, Imaeda, & Thompson, 2015; Subhas, 
Mugwisi, & Mittal, 2017).  

In any simulation-based training session, faculty 
members are needed for observing the performance and 
providing concrete feedback to trainees (Skubleny, 
Switzer, Karmali, & de Gara, 2015). Feedback and in-
structional message are important for skill improvement 
especially when trainees encounter any task difficulty 
(Boyle, Al-Akash, Patchett, Traynor, & McNamara, 
2012). Education outcomes will be questionable if train-
ees are deprived of feedback on their performance (Dube 
& Rostom, 2016). When it comes to a large training 
group, the teaching burden on faculty members will be 
dramatically high (Dolay & Hasbahceci, 2017). Personal 
feedback also comes with inherited drawbacks, including 
inconsistency and bias (Nerup, Preisler, Svendsen, 
Svendsen, & Konge, 2015). As we are entering the era of 
artificial intelligence (AI), we ought to create an educa-
tion system that can release the burden of faculty mem-
bers while providing consistent teaching feedback to 
trainees.  

The initial step to achieve the above goal is to spot the 
moment of task difficulty during trainees’ performance. 
Once a moment of task difficulty is detected, we then 
need to figure out a way to deliver an appropriate instruc-
tional message to the trainee in the applicable format. The 
latter step can be achieved using a new interface, such as 
augmented reality (Lu, Sanchez Perdomo, Jiang, & 
Zheng, 2020). In this paper, we focus on the first step, 
which is how to detect the moment of task difficulty 
based on trainees’ behavioral data.  

In this study, we report our effort on detecting task 
difficulty using trainees’ eye-tracking data. Specifically, 
we record trainees’ eye movements while they are per-
forming a colonoscopic procedure. During a colonoscop-

ic procedure, the scope is navigating inside the GI tract. 
The interior structure of the colon is alike in all direc-
tions; trainees often do not have sufficient visual cues for 
guiding their scope movement (Siau, Hodson, Valori, 
Ward, & Dunckley, 2019). Adding to the difficulty, the 
direction of the colonoscope is controlled by two-
wheeling knobs in the hands of the trainee, which are 
difficult to manipulate. The reduced visual cues and the 
difficulty in controlling scope direction can lead to a 
moment of navigation loss (MNL), where global spatial 
and local anatomic references are confusing to an opera-
tor (Swanstrom & Zheng, 2008). When this happens, 
effective inspection and manipulation are suspended. In 
the worst scenario, the tip of the scope may push the wall 
of the colon with an exceeded amount of force, causing 
severe complications including bleeding and perforation 
of the colon (Luning, Keemers-Gels, Barendregt, Tan, & 
Rosman, 2007; Moore, 2003; Rabeneck et al., 2008). In 
any training session of colonoscopy, the MNL is a sign of 
dangerous maneuver calling immediate assistance and 
guidance. Our training instructor will step in at the MNL 
to help the trainee to regain navigation before an undesir-
able consequence occurs.  

In this project, we investigated whether the eye-
tracking signals can give us enough evidence to detect the 
MNL accurately during a colonoscopic procedure. Spe-
cifically, we analyzed eye gaze and pupil dilation charac-
teristics and applied AI to help us find MNLs during 
colonoscopy. To achieve this goal, we first manually 
annotated those MNLs recorded in colonoscopic videos. 
We then compared a list of eye-tracking measures includ-
ing fixation and saccade between the MNL and non-MNL 
(the moment without navigation loss). Deep learning 
(DL) algorithms were applied to those data for detecting 
the MNL during the entire colonoscopic procedure. DL 
outcomes on MNLs were eventually compared to ex-
pert’s judgment based on colonoscopic videos. We hy-
pothesized that the deep learning algorithm will achieve 
an outcome (accuracy, sensitivity, and specificity > 90%) 
in spotting the MNL during a colonoscopic procedure. 

Methods 
Participants 
The study was conducted at the Surgical Simulation 

Research Lab of the University of Alberta. Ten junior 
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surgical residents and university students at the Universi-
ty of Alberta were recruited. They were in the early sur-
gical training phase with zero to less than 10 opportuni-
ties to practice colonoscopic procedures. The study was 
reviewed and approved by the Health Research Ethical 
Board of the University of Alberta. Written consent was 
obtained from each participant before entering the study. 

Tasks 
Participants were asked to perform colonoscopic cas-

es on the Accutouch Colonoscopic Virtual Reality Simu-
lator (Figure 1. CAE Healthcare, Montreal, Quebec). The 
simulated case was a 54-year-old female patient who has 
two polyps in the ascending colon that need to be in-
spected with colonoscopy. The participant was instructed 
to visualize the ileocecal valve and take pictures of the 
two polyps. Each participant practiced for three minutes 
to familiarize with the simulation and scenario before the 
trial. Specific feedback for colonoscopic performance 
was not provided once the trial started. 

 
Figure 1. Experimental setup. A Tobii X2-60 was installed 
under the monitor of the Accutouch VR Endoscopic Simulator. 
Throughout a colonoscopic procedure, a moment of navigation 
loss (MNL) might occur several times (bottom panel, 
highlighted in light yellow). During a MNL, the lumen of the 
colon disappeared; the participant’s eye was scanning the wall 
of the colon to search for the correct direction. 

Data Collection 
When the participant was performing the colonoscop-

ic procedures, the simulator recorded the entire perfor-
mance video from the scope view. These scope videos 
were used for inspecting the MNL. At the same time, an 
eye-tracker (Tobii X2-60, Tobii Technology, Danderyd, 
Sweden) attached to the bottom of the endoscopic moni-
tor recorded the participant’s eye movement. The sam-
pling frequency of Tobii X2-60 is 60 Hz and the record-
ing resolution of the video is 1024 × 768 (in pixel). 

Specialized software (Tobii Studio 3.3.2, 2017) was used 
to extract eye movement measures for further analysis. 

Data Extraction 
Colonoscopic videos were replayed frame-by-frame 

to label the MNLs by an experienced endoscopist. In this 
study, a MNL started at the moment of scope pointing to 
the wall of the colon, leaving the bowel lumen complete-
ly disappeared from the scope view. Once the bowel 
lumen re-appeared, the MNL ended and the non-MNL 
began. The duration of each MNL and non-MNL was 
recorded. Data acquired from eight subjects were used for 
statistical analysis and for training the deep learning algo-
rithm. From their colonoscopic video, a total of 51 MNLs 
and 77 non-MNLs were annotated by an experienced 
endoscopist. After training, verification was performed 
on data collected with another two participants differing 
from the training dataset, where 17 MNLs and 44 non-
MNLs were annotated by an experienced endoscopist. 

From the eye-tracking, Tobii studio reported three dif-
ferent types of eye movements, saccade, fixation, and 
pupil dilation. The fixation is based on the I-VT (Veloci-
ty-Threshold Identification) fixation filter in Tobii studio 
(Salvucci & Goldberg, 2000). The velocity feature is 
calculated by measuring the distance between two adja-
cent data points. Here, the velocity threshold is set to 2.1 
pixels/ms. Each point is then labeled as a fixation if the 
velocity is below a certain threshold or otherwise as a 
saccade. The minimum fixation duration is set to 90 ms. 
The fixations duration below 90 ms will be discarded 
from the analysis. 

Eye gaze measures 

The eye gaze parameters included saccade/fixation 
number (#), saccade duration (s), saccade/fixation fre-
quency (#/s), and percentage of saccade duration were 
reported for MNL and non-MNL respectively. Significant 
statistical tests (see table 1) on these measures over MNL 
and non-MNL were performed, and the results were used 
for selecting the key features to feed the machine learning 
algorithms. 

Saccadic amplitude 

When falling into a MNL, a subject might be more ac-
tively searching for visual cues to regain their navigation, 
which can be described as the saccadic amplitude 
(SacAmp, the angular distance between two succeeding 
points of momentary stop in a translational plane). We 



Journal of Eye Movement Research Xin, L., Bin, Z., Xiaoqin, D., Wenjing, H., Yuandong, L., Jinyu, Z., Chen, Z., & Lin, W. (2021) 
14(2):5 Detecting Performance from Eye-Tracking 
 

  4 

calculated the cumulative frequency of SacAmp above 
1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, and 
7.5 degrees for MNL and non-MNL respectively. The 
SacAmp range where the largest difference was observed 
between MNL and non-MNL was used for feeding the 
deep learning algorithms. 

Euclidean distance between fixations 

In addition to the SacAmp, we used the fixation dis-
tance (FixDis, the Euclidean distance in pixels between 
two fixations) to describe the searching behavior during 
an MNL. We calculated the cumulative frequency of 
FixDis below 25, 50, 75, and 100 pixels for MNL and 
non-MNL respectively. The FixDis range where the larg-
est difference was observed between MNL and non-MNL 
was used for feeding the deep learning algorithms. 

Pupil size 

A subject’s pupil size may enlarge during a MNL as 
their level of stress increases (Zheng, Jiang, & Atkins, 
2015). The pupil size during the colonoscopic procedure 
was affected by many factors and displayed enormous 
individual differences. To make pupillary data compara-
ble, we introduce a term called the adjusted pupil size 
(APS). We first found the minimum and maximum value 
of pupil diameter from each subject during the entire co-
lonoscopic trial and then calculate the APS at any given 
time using the equation below.  

APS = !"#!"!"#
!"!$%#!"!"#

× 100%         (1) 

Here, ps$%& and ps$'( are the maximum and min-
imum pupil sizes during the colonoscopic procedure, 
where ps is the current pupil size.  

Please note the APS is reported in percentage; it 
means, subject’s pupil size at any given time is reported 
as the percentage to the range of pupil change over the 
entire trial. We calculated APS within the fixation (APSfix) 
and saccade (APSsac) phase as well as in the entire trial 
(APStrial) and compared them between MNL and non-
MNL.  

We divided the range of APStrial (0-100%) equally in-
to 20 intervals with an index from 1 to 20 (e.g. the index 
1 represents a 0-5% APStrial change) to find the index 
where the APStrial has the largest difference between 
MNL and non-MNL. We also compared the cumulative 
frequency of APStrial between 55% and 100% in MNL 
and non-MNL.  

Statistical Analysis 
Statistical analysis was used to determine which 

measures could better identify MNLs. We hypothesized 
that measures showing a significant difference between 
MNLs and non-MNLs would be good features for train-
ing the algorithms. Statistical analysis was performed 
using SPSS 25.0 (IBM Corp, Chicago, USA). The 
Shapiro-Wilk’s test (p > 0.05) and a visual inspection of 
histograms and normal Q-Q plots (Quantile-Quantile 
plots) showed that eye fixation, saccade, and pupil data 
were approximately normally distributed. The Independ-
ent Samples t-Test was run to compare eye measures 
between MNL and non-MNL. Means and standard errors 
were reported for significance, with a priori level of 0.05 
(Table 1, 2, and 3).  

Deep Learning 
Feature selection 

We selected the significantly different measures from 
time and frequency in saccade and fixation, saccade am-
plitude, fixation distance, and pupil measures. We noted 
that a growing amount of data will dramatically increase 
the computation load on the computer. Our goal is to 
achieve the best learning outcome with a moderate 
amount of data. 

Training process 

The training process included two stages. In the first 
stage, we trained DCGANs (Deep Convolutional Genera-
tive Adversarial Networks) algorithm using eye data from 
human subjects to learn their probability distribution and 
for augmenting eye data by computer (Radford, Metz, & 
Chintala, 2016). Generative adversarial networks are a 
class of machine learning frameworks including two 
neural networks. These two neural networks contest with 
each other in a zero-sum game, where one agent’s gain is 
another agent’s loss. Computer synthesis was a necessary 
step for this study as human data was not enough. 
DCGANs can explore the potential pattern from complex 
data and augment high-quality synthesized samples sup-
plementing the training sets for intelligent detections 
(Radford et al., 2016). There were many pieces of re-
search using DCGANs in medical data augmentation, 
such as voiceprint samples augmentation for Parkinson 
(Zanini & Colombini, 2020), CT image reconstruction for 
skin and liver lesion classification (Ben-Cohen et al., 
2019; Pollastri, Bolelli, Paredes, & Grana, 2020), Chest 
X-Ray pathology synthesizing (Salehinejad, Colak, 
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Dowdell, Barfett, & Valaee, 2019), et al. It can be con-
sidered as a valid method for data augmentation. 

As shown in Figure 2 (Top Panel), the DCGANs were 
trained for non-MNL and MNL independently, so the 
label of synthesized eye data was known. Specifically, 
the number of training epochs in the DCGANS was set to 
5000 with a batch size of 32. The variable learning rate 
was 0.001 and the momentum term was 0.5 for the Adam 
optimizer. The a priori input noise variables were a 100-
dimensional vector with uniform randomly synthesized 
values in [-1,1]. The dimension of filters in the first con-
volutional layer was 5×5×64 and the number of units for 
the fully connected layer was set to 1024 for both genera-
tor and discriminator networks. 

Figure 2. Illustration of AI architecture for detecting MNLs 
during colonoscopy. Top Panel: DCGANs-based generator for 
synthesizing data for MNL and non-MNL phases 
independently. Bottom Panel: flowchart of feeding data to 
LSTM model to detect and classify MNLs in a colonoscopic 
procedure. 

To verify the eye data synthesized by DCGANs, we 
constructed a probability distribution of synthesized data 
points over the real human data and created a low-
dimension map for visual inspection using the t-SNE (t-
distributed Stochastic Neighbor Embedding) algorithm 
(van der Maaten & Hinton, 2008).  

The second stage of the training process was using the 
real and synthesized eye data to train the LSTM (Long 
Short-Term Memory networks) detection model as shown 
in Figure 2 (Bottom Panel). The LSTM unit is composed 
of a cell, an input gate, an output gate, and a forgetting 
gate (Karim, Majumdar, & Darabi, 2019). The cell memo-
rizes values over arbitrary time intervals and the three 

gates regulate the flow of information into and out of the 
cell. This unit setting is well-suited to solve the vanishing 
gradient problem in deep networks. Furthermore, LSTM 
is a powerful computer algorithm for classifying human 
data (Hou, Yang, Wang, & Yan, 2020; Michielli, 
Acharya, & Molinari, 2019; Xie et al., 2019; Zhu, Chen, 
& Ye, 2020). It can process single data points as well as 
an entire-time series. The number of training epochs for 
LSTM was set to 1000 and the batch size was 32. The 
number of units for each layer was set to 32 and the time 
step (including a feature vector) was set to 1. The weights 
were initialized with the orthogonal matrix and the offset 
terms were initialized to 0. The softmax layer had two 
nodes: MNL and non-MNL. The categorical cross-entropy 
loss function adopted the Root Mean Square Prop algo-
rithm for optimization. The hyper-parameters of the deep 
learning model were selected according to the reference 
(Karim et al., 2019; Radford et al., 2016) and determined 
by many empirical trials. 

Validation 

We input phases of 5 seconds for AI detection. Eye 
metrics during these phases (5-second windows), includ-
ing features of eye movement data, were fed to LSTM for 
classifying the MNL and non-MNL. Here, we compare 
the LSTM outcomes to human judgment on MNL and 
non-MNL. Specifically, the accuracy, sensitivity, and 
specificity of LSTM outcomes were reported for three 
data feeding strategies. We also examined the improve-
ment of classification outcomes after adding computer 
synthesizing data. In this paper, we reported outcomes 
using human data only, human data plus 200 synthesized 
data points, and human data plus 1000 synthesized data 
points. 

Results 
Eye Gaze Difference 
Time and frequency in saccade and fixation 

Table 1 shows the comparison between time and fre-
quency measures of eye movement during MNLs and 
during non-MNLs. The MNL had a significantly shorter 
duration than non-MNL. The saccade durations in MNL 
were significantly shorter than in non-MNL. The saccade 
and fixation number in MNL was significantly less than 
in non-MNL. 
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Saccade amplitude 

Table 2 shows the comparison between saccade am-
plitude during MNLs and non-MNLs. The saccade ampli-
tude was significantly larger in MNL than in non-MNL. 

The largest difference between the cumulative frequency 
of saccadic amplitude in NML and non-NML was ob-
served when the saccadic amplitude was above 2.5 de-
grees (highlighted in bold in Table 2). 

Table 1. Time and frequency of saccade and fixation compared between MNL and non-MNL. 

Parameters 
MNL non-MNL 

P-value 
Mean ± SE Mean ± SE 

phase duration (s) 12.53 ± 1.45 22.97 ± 2.01 < 0.001 
saccade duration (s) 5.49 ± 1.00 10.78 ± 1.44 0.003 
saccade number 52.06 ± 7.91 101.19 ± 9.36 < 0.001 
fixation number 23.69 ± 2.77 40.94 ± 3.89 < 0.001 
saccade frequency (#/s) 4.29 ± 0.26 4.60 ± 0.18 0.329 
fixation frequency (#/s) 2.04 ± 0.08 1.95 ± 0.08 0.406 
gaze event frequency (#/s) 6.34 ± 0.28 6.55 ± 0.20 0.530 
mean duration of saccade for each time (s) 0.10 ± 0.00 0.09 ± 0.00 0.474 
mean duration of fixation for each time (s) 0.30 ± 0.02 0.28 ± 0.01 0.490 
saccade duration percent (%) 41.19 ± 3.07 44.10 ± 2.91 0.506 
saccade number percent (%) 65.36 ± 1.51 68.91 ± 1.31 0.082 
fixation number percent (%) 34.64 ± 1.51 31.09 ± 1.31 0.082 

 

Fixation distance 

Cumulative frequency of fixation distance was small-
er in MNL than in non-MNL in [0, 25], [0, 50], [0, 75], 
and [0, 100] pixels, and the largest difference was in [0, 
75] pixels (63.60 ± 3.02 % vs. 82.53 ± 1.68 %, P < 0.001). 
Figure 3 shows Subject 1’s fixation trajectory in MNL (A) 
and non-MNL (B). The fixation positions were more 
concentrated in non-MNL. 

Pupil size 

Analysis of the adjusted pupil size revealed signifi-
cantly smaller APStrial, APSsac, and APSfix in MNL than in 

non-MNL and the APS is asymmetric between left and 
right eye (Table 3). The percentage of APS in [55%, 
100%] was significantly smaller in MNL than in non-
MNL. Figure 3(C) shows subject 5’s cumulative frequen-
cy of APS in [55%, 100%]. Compared to MNL, the cu-
mulative frequency of APS in [55%, 100%] was obvious-
ly higher in non-MNL. The maximum cumulative fre-
quency of APS in MNL was observed at [45%, 50%] 
interval (the interval’s index is 10), and in non-MNL was 
at [65%, 70%] interval (the interval’s index is 14) (P < 
0.001, Table 3). 
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Table 2. Saccade amplitude and fixation distance compared over MNL and non-MNL. 

Parameters 
MNL non-MNL 

Diff. of Mean P-value 
Mean ± SE Mean ± SE 

FixDis in [0,25] pixels (%) 29.05 ± 2.61 43.22 ± 2.33 -14.18 < 0.001 
FixDis in [0,50] pixels (%) 48.70 ± 3.28 66.67 ± 2.22 -17.97 < 0.001 
FixDis in [0,75] pixels (%) 63.60 ± 3.02 82.53 ± 1.68 -18.92 < 0.001 
FixDis in [0,100] pixels (%) 75.80 ± 2.89 90.35 ± 1.22 -14.56 < 0.001 
SacAmp (degrees) 2.48 ± 0.19 1.45 ± 0.08 - < 0.001 
SacAmp > 1.5° (%) 61.38 ± 2.98 44.13 ± 2.29 17.26 < 0.001 
SacAmp > 2.0° (%) 54.22 ± 2.96 34.41 ± 2.17 19.82 < 0.001 
SacAmp > 2.5° (%) 46.60 ± 2.96 25.12 ± 1.83 21.48 < 0.001 
SacAmp > 3.0° (%) 39.26 ± 2.84 19.33 ± 1.62 19.93 < 0.001 
SacAmp > 3.5° (%) 32.17 ± 2.66 14.08 ± 1.36 18.09 < 0.001 
SacAmp > 4.0° (%) 25.33 ± 2.71 11.14 ± 1.16 14.19 < 0.001 
SacAmp > 4.5° (%) 21.66 ± 2.37 8.36 ± 1.11 13.29 < 0.001 
SacAmp > 5.0° (%) 18.78 ± 2.27 6.48 ± 0.95 12.30 < 0.001 
SacAmp > 5.5° (%) 16.17 ± 2.01 5.01 ± 0.83 11.15 < 0.001 
SacAmp > 6.0° (%) 12.99 ± 1.86 4.15 ± 0.81 8.84 < 0.001 
SacAmp > 6.5° (%) 11.91 ± 1.73 3.65 ± 0.78 8.25 < 0.001 
SacAmp > 7.0° (%) 11.03 ± 1.69 2.69 ± 0.64 8.33 < 0.001 
SacAmp > 7.5° (%) 9.84 ± 1.62 2.03 ± 0.54 7.81 < 0.001 
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Figure 3. Fixation distance and adjusted pupil size in MNL and non-MNL. A-B): Subject 1’s fixation trajectory in MNL and non-
MNL during a colonoscopy; C) Subject 5’s cumulative frequency of APS in the range of [55%, 100%]. From 1 to 26 (horizontal 
axis) are the cumulative frequency in 13 MNL phases; from 27 to 52 (horizontal axis) are the cumulative frequency in 13 non-MNL 
phases. Here, an odd number in the horizontal axis represents the left eye; an even number represents the right eye. 

Table 3. Pupil size compared between MNL and non-MNL. 

Parameters 
MNL non-MNL 

P-value 
Mean ± SE Mean ± SE 

APS of left eye in trial (%)	 46.96 ± 1.54 64.38	±	1.43 < 0.001	

APS of right eye in trial (%)	 46.99 ± 1.45 62.52 ± 1.60 < 0.001	
APS of left eye in saccade (%)	 46.22 ± 1.52 63.50 ± 1.49 < 0.001	
APS of right eye in saccade (%)	 46.80 ± 1.41 61.75 ± 1.63 < 0.001	
APS of left eye in fixation (%)	 47.61 ± 1.58 65.16 ± 1.39 < 0.001	
APS of right eye in fixation (%)	 47.28 ± 1.47 63.31 ± 1.60 < 0.001	
cumulative frequency of APS in [55%,100%] (left eye) (%)	 25.88 ± 4.03 72.07 ± 3.21 < 0.001	

cumulative frequency of APS in [55%,100%] (right eye) (%)	 26.53 ± 3.80 68.01 ± 3.45 < 0.001	
index of maximum cumulative frequency of APS (left eye)	 10.05 ± 0.33 13.71 ± 0.31 < 0.001	
index of maximum cumulative frequency of APS (right eye)	 9.93 ± 0.33 13.43 ± 0.36 < 0.001	
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Intelligent Classification 
Feature selection 

Based on the significant statistical tests mentioned 
above, we chose the measures for feature selection. Spe-
cifically, the selected features included 4 significantly 
different time and frequency measures in Table 1 (MNL 
& non-MNL duration, saccade duration, and sac-
cade/fixation number), 3 significantly different gaze 
traveling measures in Table 2 (cumulative frequency of 
fixation distance in [0, 75] pixels, saccadic amplitude, 
cumulative frequency of saccadic amplitude above 2.5 
degrees), and 5 significantly different pupil adjustment 
measures in Table 3 (APStrial, APSsac, APSfix, cumulative 
frequency of APS in [55%, 100%], and index of maxi-
mum cumulative frequency of APS). 

Validity of synthesized data points 

Figure 4 shows the visualization of real eye data (A), 
real eye data and 200 randomly selected synthesized eye 
data (B), real eye data and 1000 synthesized eye data (C) 

over three different data feeding strategies reported by t-
SNE. The synthesized eye data overlapped with the same 
class of real eye data. There is a similar pattern between 
synthesized and real eye data. 

MNL and non-MNL classification 

The classification outputs by the LSTM algorithm are 
shown in Table 4 and the ROC curves for the MNL and 
non-MNL classification are shown in Figure 5. A training 
set of only the real data did not yield adequate classifica-
tion outcomes. The accuracy, sensitivity, and specificity 
are moderate. When we included 200 synthesized data 
points for training, the outcome was improved. With a 
training set of 1000 synthesized data points, the detection 
accuracy, sensitivity, and specificity improved dramati-
cally. The accuracy (91.80%), the sensitivity (90.91%), 
and specificity (94.12%) were both well. When we added 
more synthesized data points (1600, 2000), the perfor-
mance of the LSTM algorithm declined (Table 4). So, the 
acceptable option is the real and 1000 synthesized eye 
data. 

 

Figure 4. Verification of synthesized to the real human eye data by t-SNE-based visualization. 

Table 4. MNL and non-MNL classification results. R represents real eye data; S represents synthesized eye data. 

Training Set Test Set Accuracy Sensitivity Specificity 
MNL: 51 (R) 
non-MNL: 77(R) 

MNL: 17(R) 
non-MNL: 44(R) 81.96% 79.55% 88.24% 

MNL:51(R)+200(S) 
non-MNL: 77(R)+200(S) 83.61% 79.55% 94.12% 

MNL: 51(R)+1000(S) 
non-MNL: 77(R)+1000(S) 91.80% 90.91% 94.12% 

MNL: 51(R)+1600(S) 
non-MNL: 77(R)+1600(S) 

 88.52% 95.45% 70.59% 

MNL: 51(R)+2000(S) 
non-MNL: 77(R)+2000(S) 

 83.61% 86.36% 76.47% 

 

（A） （C） （B） 
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Figure 5. ROC curves for MNL and non-MNL classification. 

Discussion 
We are delighted that the deep learning algorithm can 

identify the moment of task difficulty from eye-tracking 
data recorded in multiple long colonoscopic procedures. 
Colonoscopic videos were only used for verifying the 
outcomes. The eye-tracking provides rich and continuous 
streams of data for identifying different behaviors be-
tween the MNL and non-MNL.  

In this study, we took a step to optimize the feeding 
data by pre-selecting key features for deep learning. Spe-
cifically, we screened several features and selected those 
displaying significant differences between the different 
statuses of navigation (MNLs or non-MNLs). Contradict-
ing our expectation, performers’ pupil size was smaller in 
MNL than in non-MNL. The exact reason behind this 
finding is unknown to us. Graphic scenes during non-
MNL often included darker areas (lumen and surrounding 
structure than scenes in MNL (Figure 1), which may be a 
reason for the larger pupil dilation in non-MNL. In addi-
tion, performers in non-MNL might be more engaged in 
the colonoscopic tasks as they vigorously manipulated 
the scope to move it forward. They might also need to 
enlarge their pupil to inspect the interior GI structure to 
find polyps or other abnormalities. Increasing pieces of 
evidence have shown that pupil dilation is affected by 
how visual input is collected, processed and used for 

guiding the movement (Mathôt, 2018). Nevertheless, the 
pupil still displayed a difference between normal and 
poor performance, providing a source of data to train the 
computer algorithm for classifying behaviors in colonos-
copy.  

Once we selected the appropriate set of feeding data, 
we need to increase the volume of the data for deep learn-
ing. In reality, it is difficult for us to recruit a large group 
of participants from a single health organization. It is not 
uncommon that deep learning algorithms have to run on 
data with a relatively small sample size. To compensate 
for the small volume of real data, we introduced the 
DCGANs to learn characteristics of real human data, then 
generated a new set of data.  

Regardless of the type of algorithms used for data 
synthesis, a validity checking on the synthesized data 
points is necessary (Dimitriadis, Neto, & Kampff, 2018; 
Salehinejad et al., 2019). In this study, data synthesized 
by the DCGANs were augmented nicely to real human 
data (Figure 4), which constructed a sound foundation for 
later data classification. The total number of synthesized 
data points used for deep learning also needs to be care-
fully determined. In our practice, feeding 1000 synthe-
sized data points dramatically increased the accuracy 
(91.80%), sensitivities (90.91%), and specificity 
(94.12%). Adding 1000 synthesized data points to the 
human data produced a balanced outcome (Table 4). 

Past researches on eye-tracking have proved that eye 
signals can report performers’ visual searching strategies 
(He et al., 2020), eye-hand coordination patterns, and 
workload levels (Biondi, Balasingam, & Ayare, 2020; 
Henneman, Marquard, Fisher, & Gawlinski, 2017). Our 
goal is to develop an AI-based teaching platform for 
training healthcare skills with minimal engagement from 
faculty members. This teaching system will detect the 
moment of trainee’s task difficulty and provide an in-
structional message to a trainee when needed. We are 
glad to see our current research demonstrate that the eye-
tracking signals are sufficient to identify the moment of 
navigation loss. Computer outputs are matched to ex-
perts’ judgment. Eye-tracking data enable us to rapidly 
examine the performance and spontaneously report those 
behaviors that connect to trainees’ performance during 
colonoscopy.  

This study focuses on one aspect of trainees’ behav-
iors (i.e., navigation loss) that connects to their task diffi-
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culty during endoscopy. The achievement of this study is 
not the endpoint of our research as trainees’ task difficul-
ties are multifarious. By closely working with endosco-
pists, we will extend our research to inspect more behav-
iors during endoscopic procedures.  

There are some limitations to this study. First, eye-
tracking data was collected from a colonoscopic simula-
tor. Caution is needed when applying our results to clini-
cal scenarios. Second, the volume of real human data was 
relatively small. We expect to see an improved outcome 
when we enlarge our sample size in future studies. Third, 
navigation loss in any colonoscopy is a sign of incompe-
tent practice, but there are other behavioral markers for 
describing the skill level of the performers. Moreover, we 
notice the limitation in calculating pupil responses when 
the sampling frequency of eye-tracking is low. We plan 
to include more behavioral indicators in the future for 
detecting the moment of performance difficulty, such as 
navigation losing, scope withdrawing (zoom-out), and 
incorrect angulation movement. Knowledge gained from 
this series of studies makes a steadily forward step to our 
research goal, but we still have a way to go before we can 
confidently design an education system using AI technol-
ogy. 

Conclusions 
In conclusion, a series of specific indicators on eye 

gaze pattern and pupillary response on the MNL was 
founded; the real measures displaying significant differ-
ences with 1000 synthesized data points generated a bet-
ter outcome by the deep learning algorithms, which 
helped us to identify the moment of task difficulty during 
colonoscopy. This project is the first step to our goal of 
creating an intelligent skill training system where it can 
automatically detect the task difficulty and deliver appro-
priate instructional messages at the right moments. We 
believe the same AI approach can be further applied to 
inspect target behaviors from other healthcare procedures. 
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