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ABSTRACT 

Purpose: Radiation pneumonitis (RP) is a potentially fatal side effect arising in lung cancer patients who receive 
radiotherapy as part of their treatment. For the modeling of RP outcomes data, several predictive models based on 
traditional statistical methods and machine learning techniques have been reported. However, no guidance to variation in 
performance has been provided to date. 

Materials and methods: In this study, we explore several machine learning algorithms for classification of RP data. The 
performance of these classification algorithms is investigated in conjunction with several feature selection strategies and 
the impact of the feature selection strategy on performance is further evaluated. The extracted features include patient’s 
demographic, clinical and pathological variables, treatment techniques, and dose-volume metrics. In conjunction, we 
have been developing an in-house Matlab-based open source software tool, called dose-response explorer system 
(DREES), customized for modeling and exploring dose response in radiation oncology. This software has been upgraded 
with a popular classification algorithm called support vector machine (SVM), which seems to provide improved 
performance in our exploration analysis and has strong potential to strengthen the ability of radiotherapy modelers in 
analyzing radiotherapy outcomes data. These tools are demonstrated on an institutional non-small cell lung carcinoma 
(NSCLC) dataset of patients who received radiotherapy. 

Results: Our methods were applied to an NSCLC dataset that consists of 209 patients’ information, each having 160 
variables. Using several feature selection methods, relevant features were searched. Subsequently, with the selected 
features, various classification algorithms were tested. Through these experiments, we showed the usefulness of machine 
learning methods in the analysis of radiation oncology dataset. 

Conclusions: We have presented an open-source software tool and several machine learning algorithms for analyzing 
radiotherapy outcomes. We demonstrated the tool on a lung cancer patient dataset. We believe that the improved tool 
will provide radiation oncology modelers with new means to analyze radiation response data. 

Keywords:  radiation pneumonitis, machine learning, informatics, DREES 
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1. INTRODUCTION
Lung cancer is a leading cause of cancer-related death in both men and women in the world with a low five-year survival 
rate of 15% (American Cancer Society 2008). Two main types of lung cancer are small cell lung carcinoma (SCLC) and 
non-small cell lung carcinoma (NSCLC). Approximately, 80% of lung cancer cases are classified as NSCLC. About 
50% of lung cancer patients receive radiotherapy in addition to or instead of surgery and it is the main treatment for 
patients with advanced and inoperable stages (American Cancer Society 2008). One of the potentially fatal side effects 
of radiotherapy in lung cancer is radiation-induced lung injury known as radiation pneumonitis (RP) that results from 
over-dosage of surrounding normal tissues (Deasy et al. 2002; El Naqa et al. 2006a, 2006b; Spencer et al. 2009). Thus, 
the optimization of treatment planning dose distributions is crucial for providing tumor tissues with sufficient doses 
while sparing normal tissues from excessive radiation effects. Recent advances in radiotherapy and biotechnology such 
as highly advanced 3D treatment planning systems provide new opportunities to precisely estimate tumor local control 
probability and complication risk to surrounding normal tissues, which allows for not only improvements of tumor 
localization and dose distribution but also individualized and patient-specific treatment planning decisions (Hope et al. 
2006). Nevertheless, the lack of dedicated informatics tools for extracting and analyzing metrics that could be related to 
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radiotherapy outcomes such as RP poses challenges for prediction of such effects and customization of treatment plan 
design based on expected risk. We demonstrate the development of such tools in this study by comparing different 
machine learning strategies for identification of factors that could be associated with RP. This process is composed of 
three steps: (1) selecting relevant variables, (2) building appropriate classifiers based on supervised learning, and (3) 
presenting robust tools to the radiation oncology community through our open-source software. 

Proper feature selection is a major challenge in machine learning and is posed as the ability to select a subset of features 
that will represent the dataset or distinguish one patients’ group from another group. The objectives of feature selection 
are manifolds: to improve the learner (i.e., classifier) performance such as its accuracy or speed and to understand the 
underlying process that generates the data. Feature selection strategies designed with different evaluation criteria are 
mainly divided into two categories: the filter approach and the wrapper approach. The criteria used by these approaches 
include distance measures (Bins & Draper 2001; Sebban & Nock 2002), dependency measures (Yu & Liu 2004), 
consistency measures (Dash & Liu 2003; Lashkia & Anthony 2004), and information measures (Battiti 1994; Kwak & 
Choi 2002). The filter method selects relevant feature subsets based upon characteristics of the data without involving 
any classification algorithm. In contrast, the wrapper method employs a predetermined classification algorithm to 
evaluate the quality of features. It tends to require intensive computations while it outperforms the filter method in 
general. In order to use advantages of both the filter and wrapper methods, hybrid approaches have been also proposed. 
These methods not only improve the performance but speed up the feature selection task. In a variety of bioinformatics 
areas, the feature selection methods have been used, including sequence analysis (Salzberg et al. 1998; Delcher et al. 
1999), microarray analysis (Alon et al. 1999; Ben-Dor et al. 2000; Golub et al. 1999), mass spectra analysis (Petricoin & 
Liotta 2003; Oh et al. 2009), single nucleotide polymorphism (SNP) analysis (Daly et al. 2001), and text mining (Cohen 
& Hersch 2005; Jensen, Saric & Bork 2006; Saeys, Inza & Larrañaga 2007). 

Classification is a problem of assigning a sample to a predefined class based on conditional features. Many common 
classification techniques, including linear discriminate analysis (LDA), decision tree, neural networks, SVM, k-nearest 
neighbor (kNN), and Bayesian classifiers, have been proposed in a variety of applications. LDA and SVM are two main 
kinds of linear classifiers. That is, they seek to find a hyperplane for which one group can be correctly separated from 
another group as much as possible (Lotte et al. 2007). SVM proposed by Vapnik and his colleagues is a novel approach 
for solving classification problems. It is based on the structural risk minimization principle to minimize an upper bound 
of the generalization error (Vapnik 1995; Jeng 2006).  

A major part of our informatics efforts is focused towards providing better tools to the radiotherapy outcome analyst to 
gain a more insightful understanding of complex variable interactions that affect outcome and support treatment 
planning systems with improved predictive models of response. Therefore, we have upgraded our in-house software tool 
DREES (dose-response explorer system) with several statistical and graphical tools; in particular, we have added a new 
machine learning module based on SVM as discussed further below. 

The remainder of this paper is organized as follows. In Sections 2 and 3, we introduce feature selection and classification 
algorithms investigated in this study. In Section 4, we present a new version of DREES that is equipped with SVM. 
Experimental results with dose-volume data in lung cancer are shown in Section 5. Finally, we summarize our 
conclusions in Section 6. 

2. FEATURE SELECTION TECHNIQUES 
 
2.1 SVM-Recursive Feature Elimination (SVM-RFE) 

SVM-RFE, proposed by Guyon et al., is a sequential backward feature elimination method based on SVM (Guyon et al. 
2002). In SVM-RFE, features are ranked in a way that the least important feature is removed after iteratively training a 
SVM classifier with existing features. To determine a feature to be eliminated at each iteration, the weights (wi) are 
estimated (see below) and a feature with the smallest wi

2 value in the weight vector is removed. 

2.2 Correlation based Feature Selection 

A correlation based feature selection method measures correlations between features and tries to find the best feature 
subset by using a heuristic search strategy in a manner of the forward best first search (Hall & Smith 1999). The 
fundamental idea behind the method is that good features are highly correlated with the class, but uncorrelated with each 
other. The evaluation function of a subset of features is: 
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where EVS represents the heuristic evaluation of a feature subset S containing h features; cfr  and ffr  are the mean 
feature-class correlation and the mean feature-feature intercorrelation, respectively. 

2.3 Chi-square Feature Selection 

A Chi-square feature selection method is a simple algorithm based on the !2 statistic to discretize features repeatedly 
until some inconsistencies are found in the data (Liu & Setiono 1995). As a result of discretization, the feature selection 
is completed. The measure of the Chi-square is defined to be: 
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where, 

k is the number of classes, 

Aij is the number of patterns in the ith interval, jth class, 

Ri is the number of patterns in the ith interval = $ #

k

j ijA
1 ,  

Cj is the number of patterns in the jth class = $#

2
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N is the total number of patterns = $#

2
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Eij is the expected frequency of Aij = Ri×Cj/N. 

 

2.4 Information Gain based Feature Selection 

An information gain based feature selection is an algorithm based on information theory for feature selection in multi-
class problems. Let S be the set of instances from k classes, i.e., c1, c2, …, ck. The entropy of the class distribution in S is 
defined as follows: 
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Then, the information gain of instance set S based on attribute Fi is calculated as 
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where t is the set of all the possible values of feature Fi. The information gain reflects the reduction in uncertainty about 
the overall class entropy when a certain feature Fi is given. In other words, features with zero information gain indicate 
the inability to reduce such uncertainty and should be removed (Oh et al. 2008). 

3. CLASSIFICATION METHODS 
 



 
 

  
Hun Oh et al.: Prediction of Rad. Pneumonitis Arising from Lung Ca. Pts Using Mach. Learning Approaches 4 
 

J Radiat Oncol Inform 2009; 1:1:30-43 

3.1 Support Vector Machine 

SVM is a supervised learning algorithm, originally designed to solve two-class classification problems (Burges 1998; El 
Naqa et al. 2002; El Naqa et al. 2009; Oh et al. 2006). The basic idea behind SVM is to find an optimal hyperplane for 
which a given training data are well separated. It is achieved by maximizing the margin between the two classes after 
mapping the training data x into a higher dimensional space via a mapping function "(x). As a result, a decision function 
is as follows: 

                                                        ,)x(,w)x( bf "'(#)                                                           (5) 
where w is a weight vector and b is a scalar. 

Suppose that there are n training samples {(xi, yi), 1 # i # n} where xi is the ith training sample consisting of an m-
dimensional feature vector and yi!{–1, 1} is the class label of xi. The problem of finding the optimal hyperplane can be 
formulated as the following optimization problem 
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where !i is a slack variable and C is a user defined soft-margin constant which regularizes the trade-off between training 
error and margin maximization. This optimization problem can be solved in its Wolfe dual form with respect to 
Lagrange multipliers and can be reduced to a quadratic programming problem:  
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Here, we can compute the weight vector as w: 
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where "i is Lagrange multipliers and l is the number of support vectors. In Eq. (7), "(xi)T "(xj) is substituted with a 
kernel function K(xi,xj) by the kernel trick. Note that for the linear case K(xi,xj) = xi·xj. Two typical kernels are 
polynomial: K(xi,xj) = (e + xi·xj)d and radial basis function (RBF): K(xi,xj) = exp(–1/(2#2)||xi – xj||2) where e, d, and # are 
adjustable kernel function parameters (El Naqa, Bradley & Deasy 2008). 

3.2 Decision Trees 

A decision tree classifier has a hierarchical structure in which the data set is recursively partitioned until each partition 
consists entirely or almost entirely of samples from one class. In the tree, leaf nodes represent classes and non-leaf nodes 
indicate selected decision rules. Starting at the root node, one sample is evaluated by the decision rule. It keeps moving 
down the tree branch until it reaches a leaf node. We used J48 that is implemented as a decision tree classifier in WEKA 
(Witten & Frank 2005). 

3.3 Random Forest 

A random forest classifier is an ensemble of classification trees grown on bootstrap samples of the training data in 
conjunction with a random feature selection in the tree induction process. Given a new input, each tree casts a vote and 
the class having the most votes is chosen (Rodriguez, Kuncheva & Alonso 2006).  
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3.4 Naive Bayes 

In a naive Bayes classifier, it is assumed that all features are mutually independent given a class label, that is, each 
feature has the class variable as its parent (Friedman, Geiger & Goldszmidt 1997). In practice, despite its simplified 
assumption the naive Bayes classifier has often shown good performance compared to sophisticated classification 
methods in a variety of applications. In the naive Bayes classifier, the most probable class is obtained by using the 
Bayes’ theorem:  
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(a) Parameters for SVM (b) The results of SVM classification 
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Figure 1. SVM classification in DREES 

4. DREES SOFTWARE 
Towards fulfilling our objective to provide clinicians and scientists with an accurate, flexible and user-friendly tool to 
explore radiotherapy outcomes data and model the statistical tumor control or normal tissue complication, we have 
developed an open-source software called DREES that enables clinical researchers to customize the function for 
radiotherapy outcome modeling (El Naqa et al. 2006b). DREES is available from http://radium.wustl.edu/drees/. 
Recently, we incorporated a popular SVM code called LibSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm) into DREES 
so that it can provide more powerful ability for the analysis of radiotherapy data (Chang & Lin 2001). Figure 1 illustrates 
a screenshot of the interface for using SVM in DREES. The results of SVM classification are shown in ‘Command 
Window’ of Matlab. In addition, new visual representation using SVM was developed as shown in Figure 1. The figure 
shows the contour plot of SVM for two features, that is, the contour plot represents the kernel-based pneumonitis 
nonlinear prediction model. The gray line indicates the hyperplane of the SVM classifier. The software is shared based 
on the GNU General Public License (GPL) v3. 
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Table 1. Top ranked 10 features for each feature selection strategy. For CFS, only 5 features were found by its criterion. 

Ranking  IG Chi-square SVM-RFE CFS 

1 Followup Followup D10_heartMC COMSI 

2 COMSI MOH10_heartMC V40_heartMC PerformanceStatus 

3 V55_heartMC MOH5_heartMC V5_heartMC Followup 

4 MOH5_heartMC V55_heartMC DCOMSI_heart D20_lungMC 

5 MOH10_heartMC D5_heartMC D55_lungMC MOH10_heartMC 

6 D10_heartMC COMSI maxDose  

7 D35_lungMC D10_heartMC PerformanceStatus  

8 D5_heartMC MOH20_heartMC V30_heartMC  

9 MOH20_heartMC D35_lungMC TimeAxis  

10 MOH15_heartMC V65_heartMC D15_heartMC  

 
 

Table 2. The performance when the correlation based feature selection is used. 

Methods MCC Accuracy Sensitivity Specificity AUC 

Naïve Bayes 0.3881 0.7795 0.5253 0.8552 0.7615 

Random Forest 0.2998 0.7671 0.3912 0.8790 0.6671 

Decision Tree 0.2935 0.7944 0.2527 0.9555 0.5952 

RBF-SVM 0.4131 0.7474 0.6957 0.7627 0.7292 

P-SVM 0.4118 0.7362 0.7240 0.7400 0.7320 

L-SVM 0.3222 0.6624 0.7300 0.6425 0.6863 

 

5. EXPERIMENTAL RESULTS 
 

5.1 The Data Set 

In this study, we analyzed an NSCLC dataset that consists of information obtained from 209 patients at Washington 
University School of Medicine, who had received radiotherapy with median doses around 70 Gy as part of their 
treatment. The dose distribution was recalculated using Monte Carlo methods (MC). The number of patients diagnosed 
with RP was 48 patients called the disease group. The remaining 161 patients belong to the control group. The data 
obtained from each patient is composed of clinical features (age, gender, race, chemo, stage, smoke, treatment, etc.), 
relative location of the tumor within the lung or nearby heart, and dosimetric features, including mean dose, maximum 
dose, minimum dose, Vx (volume getting at least x Gy), Dx (minimum dose to the hottest x% volume), MOHx (mean dose 
to the hottest x% volume), MOCx (mean dose to the coldest x% volume) and GEUD (generalized equivalent uniform 
dose). In this study, we included heart related variables due to the fact that in the radiotherapy of lung cancer, a portion 
of the heart is typically exposed to a relatively high dose of radiation that causes heart injury (Shafman et al. 2004). 
Recently, Deasy et al. have reported that heart dose-volume metrics may play a role in RP (Deasy et al. 2008). 
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Table 3. The performance when the Chi-square feature selection is used. 

 
5.2 Machine Learning Methods 

For analysis of the dataset, a variety of machine learning methods for feature selection and classification were tested. For 
feature selection, information gain (IG) based feature selection, chi-square feature selection, correlation based feature 
selection (CFS), and SVM-RFE were used. For classification, random forest (RF), naive Bayes (NB), decision tree (DT), 
and SVM were employed. In SVM, the experiments were carried out changing parameters. The parameter values used in 
this study are as follows: # in radial basis function SVM (RBF-SVM) varies in {0.5, 1, 2, 3, 4, 5}; degree d and 
coefficient e in polynomial SVM (P-SVM) vary in {1, 2, 3, 4} and {0, 1}, respectively; for C, {1, 10, 100} are set. By 
combining these parameters, 18 RBF-SVMs, 24 P-SVMs, and 3 linear SVMs (L-SVMs) are formed. Since the dataset is 
imbalanced in size, in SVMs weighting values of 3 and 1 were placed into the disease group and control group, 
respectively. 
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Table 4. The performance when SVM-RFE is used. 

 
5.3 Performance Metric 

Our comparative experiments were performed using the WEKA software package 
(http://www.cs.waikato.ac.nz/ml/weka/). For the unbiased performance estimate, all measurements were averaged after 
30 iterations of 10-fold cross-validation (CV) for each classification algorithm. 

In the analysis of imbalanced data set, Matthew's correlation coefficient (MCC) is widely used as a performance 
evaluation metric. MCC is calculated as follows: 
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where TP and TN are the number of patients correctly classified in the disease and control group, and FN and FP are the 
number of patients falsely classified in the disease and control group, respectively. r takes a real value in [–1.0, 1.0]. A 
coefficient of +1 means a perfect classification. In contrast, –1 represents a perfect inverse prediction. A coefficient of 
zero indicates an average random prediction. In addition, we measured accuracy, sensitivity, specificity, and AUC (area 
under the ROC curve) as performance evaluation metrics. The accuracy, sensitivity and specificity are defined as 
follows:  
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Table 5. The performance when the information gain based feature selection is used. 

 
Table 6.  The performance when all features without feature selection are used. 

Methods MCC Accuracy Sensitivity Specificity AUC 

Naïve Bayes 0.2477 0.6411 0.6462 0.6399 0.6822 

Random Forest 0.1562 0.7254 0.2850 0.8567 0.6401 

Decision Tree 0.2564 0.7511 0.3730 0.8638 0.6191 

RBF-SVM 0.2595 0.6388 0.6712 0.6298 0.6505 

P-SVM 0.1568 0.6476 0.4758 0.6989 0.5874 

L-SVM 0.1568 0.6476 0.4758 0.6989 0.5874 
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5.4 Feature Selection and Classification 

Table 1 displays the top ten features selected by the three feature selection algorithms. For CFS, only five features were 
chosen by its criterion. It is worthy to note that some features were commonly found in different feature selection 
methods. For example, 'Followup', 'COMSI' (center-of-mass of tumor location in the superior inferior direction), and 
'MOH10_heartMC' were selected in IG, Chi-square, and CFS. 'D10_heartMC' was found in IG, Chi-square, and SVM-
RFE. It suggests that the features are important for distinguishing the disease (RP) group from the control (no RP) group. 

Table 2 through Table 5 show the performance in classification algorithms for four different feature selection strategies 
with the top one, then the top two, and so forth up to the top ten features. Note that Table 2 illustrates the results obtained 
using all five features that were searched by CFS. Interestingly, in all cases kernel SVMs (RBF-SVM and P-SVM) 
achieved the best MCC on this dataset. In particular, with features found by SVM-RFE, the performance of RBF-SVM 
and P-SVM outperformed considerably other methods. As shown in Table 2, the best MCC was obtained when CFS was 
exploited with RBF-SVM, resulting in 0.4131. Also, P-SVM  gained comparable MCC (0.4118). Table 6 shows the 
MCC values when all features were used without feature selection. As can be seen in the table, in all cases MCC values 
were much lower than those gained when only a few important features were utilized.  It justifies the importance of 
feature selection in classification algorithms. Figure 2 displays the maximum MCC values across all classification 
algorithms for each feature selection method. The first bar in the figure represents the MCC value when all features were 
used. The highest MCC value (0.4131) was achieved when RBF-SVM with C = 100, # = 2, and the five features in 
conjunction with CFS were employed. Also, accuracy, sensitivity, specificity, and AUC obtained with these parameters 
were 74.74%, 69.57%, 76.27%, and 0.7292, respectively. 

 
(a) The maximum MCC for each feature selection method 

 

Feature Selection Max-MCC Method No. of features C # d e 
w/o FS 0.2595 RBF-SVM 160 1 5   

CFS 0.4131 RBF-SVM 5 100 2   
Chi-square 0.3653 P-SVM 2 100  3 1 

IG 0.3428 RBF-SVM 2 10 2   
SVM-RFE 0.3928 P-SVM 9 100   3 1 

(b) Parameter values used for achieving the maximum MCC 

 
Figure 2. The comparison of the maximum MCC across all classification algorithms for each feature selection method. Note 
that ‘w/o FS’ means ‘without feature selection’. 



 
 

  
Hun Oh et al.: Prediction of Rad. Pneumonitis Arising from Lung Ca. Pts Using Mach. Learning Approaches 12 
 

J Radiat Oncol Inform 2009; 1:1:30-43 

6. CONCLUSION 
We have compared the performance of different machine learning algorithms in identifying significant features that are 
related to RP and could be used in building patients’ classification risk models of this disease. In our classification 
experiments with the selected features, the kernel SVMs showed a higher MCC than not only linear SVM but also other 
competing classification algorithms after correction for imbalance effect. It is our expectation that the application of 
machine learning methods to the analysis of post-radiotherapy data will shed more light on a better understanding of 
underlying mechanisms in normal tissue toxicities and advance the clinical translational goal of individualizing 
radiotherapy in NSCLC patients. To support this goal, we have developed a graphical user interface (GUI) tool to 
explore radiotherapy outcomes data and build data-driven statistical tumor control or normal tissue complications. We 
will continue to develop DREES based on user’s feedback, as an informatics tool to aid medical physicists and clinical 
researchers to build more predictive radiotherapy outcome models. 

7. ACKNOWLEDGEMENTS 
We thank Dr. Joseph Deasy for valuable suggestions. This work was partially supported by NIH grant 1K25CA128809. 

8. REFERENCES 
[1] Alon, U, Barkai, N, Notterman, DA, Gish, K, Ybarra, S, Mack, D & Levine, AJ 1999, 'Broad patterns of gene 

expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays', 
Proc. Nat. Acad. Sci., vol. 96, 6745–50. 

[2] American Cancer Society 2008, Cancer Facts and Figures, Atlanta, GA: American Cancer Society. 
[3] Battiti, R 1994, 'Using mutual information for selecting features in supervised neural net learning', IEEE Trans. 

Neural Networks, vol. 5, no. 4, pp. 537–50. 
[4] Ben-Dor, A, Bruhn, L, Friedman, N, Nachman, I, Schummer, M & Yakhini, Z 2000, 'Tissue classification with gene 

expression profiles', J. Comput. Biol., vol. 7, 559–84. 
[5] Bins, J & Draper, B 2001, 'Feature selection from huge feature sets', in Proc. Int. Conference Computer Vision, pp. 

159–65. 
[6] Burges, C 1998, 'A tutorial on support vector machines for pattern recognition', Data Mining and Knowledge 

Discovery, vol. 2, pp. 121–67. 
[7] Chang, C & Lin, C 2001, LIBSVM: A Library for Support Vector Machines, software available at 

http://www.csie.ntu.edu.tw/~cjlin/libsvm.  
[8] Cohen, A & Hersch, W 2005, 'A survey of current work in biomedical text mining', Brief. Bioinformatics, vol. 6, 

57–71. 
[9] Daly, MJ, Rioux, JD, Schaffner, SF, Hudson, TJ & Lander, ES 2001, 'High-resolution haplotype structure in the 

human genome', Nat. Genet., vol. 29, 229–32. 
[10] Dash, M & Liu, H 2003, 'Consistency-based search in feature selection', Artificial Intelligence, vol. 151, pp. 155–76. 
[11] Deasy, JO, Niemierko, A, Herbert, D, Yan, D, Jackson, A, Haken, RT, Langer, M, Sapareto, S & AAPM/NIH 2002, 

'Methodological issues in radiation dose-volume outcome analyses: summary of a joint AAPM/NIH workshop', 
Medical Physics, vol. 29, no. 9, pp. 2109–27. 

[12] Deasy, JO, Trovo, M, Huang, EX, Mu, Y, El Naqa, I, Bradley, JD 2008, 'High-dose heart irradiation is a statistically 
significant risk factor for radiation pneumonitis within logistic-multivariate modeling', ASTRO 2008. 

[13] Delcher, A, Delcher, AL, Harmon, D, Kasif, S, White, O & Salzberg, SL 1999, 'Improved microbial gene 
identification with GLIMMER', Nucleic Acids Res., vol. 27, 4636–41. 

[14] El Naqa, I, Yang, Y, Wernick, M, Galatsanos, N & Nishikawa, R 2002, 'A support vector machine approach for 
detection of microcalcifications', IEEE Trans. Medical Imaging, vol. 21, no. 12, pp. 1552–63. 

[15] El Naqa, I, Bradley, J, Blanco, A, Lindsay, P, Vicic, M, Hope, A & Deasy, J 2006, 'Multivariable modeling of 
radiotherapy outcomes, including dose-volume and clinical factors', Int. J. Radiat. Oncol. Biol. Phys., vol. 64, no. 4, 
pp. 1275–86. 

[16] El Naqa, I, Suneja, G, Lindsay, P, Hope, A, Alaly, J, Vicic, M, Bradley, J, Apte, A & Deasy, J 2006, 'Dose response 
explorer: an integrated open-source tool for exploring and modelling radiotherapy dose-volume outcome 
relationships', Physics in Medicine and Biology, vol. 51, no. 22, pp. 5719–35. 

[17] El Naqa, I, Bradley, J & Deasy, J 2008, 'Nonlinear kernel-based approaches for predicting normal tissue toxicities', 
in Proc. of 7th Int. Conference on Machine Learning and Applications, pp. 539–44. 



 
 

  
Hun Oh et al.: Prediction of Rad. Pneumonitis Arising from Lung Ca. Pts Using Mach. Learning Approaches 13 
 

J Radiat Oncol Inform 2009; 1:1:30-43 

[18] El Naqa, I, Bradley, JD, Lindsay, PE, Hope, AJ & Deasy, JO 2009, 'Predicting radiotherapy outcomes using 
statistical learning techniques', Physics in Medicine and Biology, vol. 54, pp. S9–S30. 

[19] Friedman, N, Geiger, D & Goldszmidt, M 1997, 'Bayesian network classifiers', Mach. Learn., vol. 29, no. 2, pp. 
131–64. 

[20] Golub, TR, Slonim, DK, Tamayo, P, Huard, C, Gaasenbeek, M, Mesirov, JP, Coller, H, Loh, ML, Downing, JR, 
Caligiuri, MA, Bloomfield, CD & Lander, ES 1999, 'Molecular classification of cancer: class discovery and class 
prediction by gene expression monitoring', Science, vol. 286, 531–7. 

[21] Guyon, I, Weston, J, Barnhill, S & Vapnik, V 2002, 'Gene selection for cancer classification using support vector 
machines', Machine Learning, vol. 46, pp. 389–422. 

[22] Hall, MA & Smith, LA 1999, 'Feature selection for machine learning: comparing a correlation-based filter approach 
to the wrapper', in Proc. of FLAIRS Conference, pp. 235–9.  

[23] Hope, A, Lindsay, P, El Naqa, I, Alaly, J, Vicic, M, Bradley, J & Deasy, J 2006, 'Modeling radiation pneumonitis 
risk with clinical, dosimetric, and spatial parameters', Int. J. Radiat. Oncol. Biol. Phys., vol. 65, no. 1, pp. 112–24. 

[24] Jeng, JT 2006, 'Hybrid approach of selecting hyperparameters of support vector machine for regression', IEEE 
Trans. Syst. Man Cybern. B, Cybern., vol. 36, no. 3, pp. 699–709. 

[25] Jensen, LJ, Saric, J & Bork, P 2006, 'Literature mining for the biologist: from information retrieval to biological 
discovery', Nat. Rev. Genet., vol. 7, 119–29. 

[26] Kwak, N & Choi, CH 2002, 'Input feature selection for classification problems', IEEE Trans. Neural Networks, vol. 
3, no. 1, pp. 143–59. 

[27] Lashkia, G & Anthony, L 2004, 'Relevant, irredundant feature selection and noisy example elimination', IEEE 
Trans. Syst. Man Cybern. B, Cybern., vol. 34, no. 2, pp. 888–97. 

[28] Liu, H & Setiono, R 1995, 'Chi2: feature selection and discretization of numeric attributes', in Proc. of 7th Int. 
Conference on Tools with Artificial Intelligence, pp. 388–91. 

[29] Lotte, F, Congedo, M, Lécuyer, A, Lamarche, F & Arnaldi, B 2007, 'A review of classification algorithms for EEG-
based brain-computer interfaces', J. Neural Eng., vol. 4, R1–13. 

[30] Oh, JH, Nandi, A, Gurnani, P, Knowles, L, Schorge, J, Rosenblatt, KP & Gao, J 2006, 'Proteomic biomarker 
identification for diagnosis of early relapse in ovarian cancer', J.of Bioinformatics and Computational Biology, vol. 
4, no. 6, pp. 1159–79. 

[31] Oh, JH, Kim, YB, Gurnani, P, Rosenblatt, KP & Gao, J 2008, 'Biomarker selection and sample prediction for 
multicategory disease on MALDI-TOF data', Bioinformatics, vol. 24, pp. 1812–8. 

[32] Oh, JH, Gurnani, P, Schorge, J, Rosenblatt, KP & Gao, JX 2009, 'An extended Markov blanket approach to 
proteomic biomarker detection from high-resolution mass spectrometry data', IEEE Trans. Inf. Technol. Biomed., 
vol. 13, pp. 195–206. 

[33] Petricoin, E & Liotta, L 2003, 'Mass spectrometry-based diagnostic: the upcoming revolution in disease detection', 
Clin. Chem., vol. 49, 533–4. 

[34] Rodriguez, JJ, Kuncheva, LI & Alonso, CJ 2006, 'Rotation forest: a new classifier ensemble method',  IEEE. Trans. 
Pattern Analysis and machine Intelligence, vol. 28, pp. 1619–30. 

[35] Saeys, Y, Inza, I & Larrañaga, P 2007, 'A review of feature selection techniques in bioinformatics', Bioinformatics, 
vol. 23, 2507–17. 

[36] Salzberg, SL, Delcher, AL, Kasif, S & White, O 1998, 'Microbial gene identification using interpolated Markov 
models', Nucleic Acids Res., vol. 26, 544–8. 

[37] Sebban, M & Nock, R 2002, 'A hybrid filter/wrapper approach of feature selection using information theory', 
Pattern Recognition, vol. 35, no. 4, pp. 835–46. 

[38] Shafman, T, Yu, X, Vujaskovic, Z, Anscher, MA, Miller, K, Prosnitz, RG & Marks, LB 2004, ‘Radiation-induced 
lung and heart toxicity’, Advances in Radiation Oncology  in Lung Cancer. New York: Springer-Verlag. 

[39] Spencer, S, Bonnin, D, Deasy, J, Bradley, J & El Naqa, I 2009, 'Bioinformatics methods for learning radiation-
induced lung inflammation from heterogeneous retrospective and prospective data', J. of Biomedicine and 
Biotechnology. 

[40] Vapnik, V 1995, The Nature of Statistical Learning Theory. New York: Springer-Verlag. 
[41] Witten, I & Frank, E 2005, Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed. San Francisco: 

Morgan Kaufmann. 
[42] Yu, L & Liu, H 2004, 'Efficient feature selection via analysis of relevance and redundancy', J. Machine Learning 

Research, vol. 5, pp. 1205–24. 




