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We use simulations to investigate the effect of sampling frequency on common
dependent variables in eye-tracking. We identify two large groups of measures
that behave differently, but consistently. The effect of sampling frequency on these
two groups of measures are explored and simulations are performed to estimate
how much data are required to overcome the uncertainty of a limited sampling
frequency. Both simulated and real data are used to estimate the temporal uncertainty
of data produced by low sampling frequencies. The aim is to provide easy-to-
use heuristics for researchers using eye-tracking. For example, we show how to
compensate the uncertainty of a low sampling frequency with more data and post-
experiment adjustments of measures. These findings have implications primarily
for researchers using naturalistic setups where sampling frequencies typically are low.
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Introduction

The role of sampling frequency and its mathemati-
cal implications to the resulting data may be common
knowledge to statisticians, but in the eye-tracking com-
munity, sampling frequency is rarely highlighted in the
methodological discussions. Sampling frequency is not
the only important property of eye-trackers (precision,
accuracy and versatility on participants are others), but
it is definitely the most, by manufacturers, highlighted
technical property. Manufacturers use sampling fre-
quency as a major sales argument, and sampling fre-
quency is the most mentioned technical property of
eye-trackers in journal papers. There are good reasons
for this: Sampling frequency affects what you can do
with your eye-tracker in a number of ways. Some uses,
such as precise measurements of small saccades, are so
sensitive that a higher sampling frequency (and preci-
sion) is necessary to estimate them accurately (see e.g.
the discussion in the supplemental methods of Kagan,
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Gur, & Snodderly, 2008). However, there are also cases
where a naturalistic setup demands eye-trackers that
currently lack the speed of their stationary counter-
parts. Consider the following quote from Green (2002):

Similarly, Crundall & Underwood (1998) re-
ported that experienced drivers had shorter
fixation durations for suburban roads (324
versus 335 ms) and divided highways (349
versus 395 ms), but not for rural roads (381
versus 364 ms). Although statistically sig-
nificant differences are claimed, these dif-
ferences are at the limits of recording ac-
curacy at 30 Hz (33 milliseconds per video
frame).

Sampling frequency is measured using the unit Hertz
(Hz), which refers to the number of samples per sec-
ond. Most modern eye-trackers have sampling fre-
quencies ranging from 25 - 2000 Hz. For the many 50
Hz eye-trackers, a sample is registered once every 20
ms, whereas a 250 Hz eye-tracker samples every 4 ms.
We seem to think that faster is automatically better, like
we think more pixels in a digital camera is always bet-
ter, but it is also reasonable to expect the marginal ben-
efit for every further Hz to diminish at some level. For
instance, the benefit of a 2000 Hz system over a 1000 Hz
system should not equal that of a 100 Hz over a 50 Hz
eye-tracker, even though both constitute a doubling of
the frequency. It is currently not clear what sampling
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frequency is necessary for what effect size, and stan-
dards vary.

This points to the question: what sampling fre-
quency and/or data amount is necessary to be certain
of eye-tracking results where the sampling-related un-
certainty exceeds the effect magnitudes found?

For oscillating eye-movements, such as tremors, we
can argue based on the Nyquist-Shannon sampling
theorem (Shannon, 1949) that the sampling frequency
should be at least twice the speed of the particular eye
movement (e.g., behaviour at 150 Hz requires >300
Hz sampling frequency). Other than that, the typi-
cal practice is to use whatever is used in your partic-
ular field of research or faster. Low-level visual cog-
nition research can use constraining setups favouring
systems with speeds from 1000 Hz to 2000 Hz, as nat-
uralism is not typically a primary concern, but rather
to maintain control over the variables. Research using
gaze-contingent display changes, for example in real-
time exchanging peripheral letters with ’x’ to manipu-
late parafoveal preview benefits in a reading task (e.g.,
McConkie & Rayner, 1975), are usually the most de-
manding experiments in terms of frequency. This is
because high speeds allow the system to detect sac-
cade launches earlier and provide the display changes
even faster, which minimizes the risk of the partici-
pant noticing the manipulation. Research investigating
higher-level cognition and using naturalistic tasks com-
monly prefer systems allowing free movement of the
head, either by remote eye-tracking or head-mounted
and mobile eye-tracking. These systems typically op-
erate at speeds from 25 Hz to 250 Hz. A specific
community of researchers choose to use web-cameras
as eye-trackers, with the goal of bringing inexpensive
gaze-interfacing capabilities to the masses, and these
cameras typically have sampling frequencies below or
equal to 30 Hz. Also, analyses using video are typically
limited the frame speed, which most often is around
24 fps/Hz. But even high-end eye-tracking systems al-
low different setups that exchange sampling frequency
for binocularity or remote filming. This requires us
to know what speeds we need for our particular re-
search questions and also to know when it yields a
net improvement to sacrifice speed in order to capture
the behaviour in a more naturalistic setting, e.g., using
the less intruding remote filming for slower eye move-
ments.

Additionally, sampling frequency heavily affects
many measures we use, and what we can use them
for. For instance, Enright (1998) provides evidence that
saccadic peak velocity can be well estimated in 60 Hz
data from eye-trackers using the relation between pupil
and corneal reflection, but only for saccades larger than
10◦. For saccades shorter that 10◦, typical of reading,
the peak velocity calculation is not accurate with 60
Hz data. Juhola, Jäntti, and Pyykkö (1985), using Elec-
trooculography (EOG) and photoelectric eye-trackers
to study 20◦ saccades, argue that sampling frequency
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Figure 1. Consider the measurement of the event that trig-
gers a saccade velocity criterion (dashed line). The temporal
sampling error occurs when the eye increases velocity after a
recent sampling of the eye, n, resulting in changes not being
registered until the next sample n+ 1. Case a) shows a large
error when the eye accelerates right after it just having been
sampled, resulting in an error equal to almost the duration
of one sample. Case b) shows a small error, where the eye
accelerates at the end of the current sample and just before
the next sample.

should be higher than 300 Hz to accurately calculate
the maximum saccadic velocity. Inchingolo and Spanio
(1985) found that saccadic duration and velocity data
from a 200 Hz EOG system that they tested are equiva-
lent to the same data from a 1000 Hz system, but only
for saccades larger than 5◦.

Whereas previous studies have focused on sampling
frequency and its role for particular, often saccade-
related, measures, we explore the effect of sampling-
related errors more generally. Our aim is to explain the
source of these errors, describe them mathematically,
simulate their effects in actual experiments and pro-
vide easy-to-follow heuristics to compensate for these
effects.

The source of the error

As it is impossible to have an infinite sampling
frequency, each eye-tracker instead takes an instanta-
neous snapshot of the eye at a fixed rate (typically 25-
2000 Hz). Each snapshot is a point in time, taken to
be representative of a whole interval of time. For in-
stance, with a 50 Hz system, the position of the eye at
each sample is assumed to be valid for the whole 20 ms,
even if it is very likely that the eye did not have that ex-
act position just before the moment of sampling. The
eye-tracker cannot sample the eye in a position which
it has not moved to yet, but the system may sample
the eye in the correct position or a position it recently
had. By necessity, sampling always lags behind the po-
sition of the eye because the eye is constantly moving
to some extent. Figure illustrates the resulting tempo-
ral sampling error, where the eye-tracker mis-estimates
the correct point in time that a particular event (the trig-
gering of a velocity criterion) takes place.

It should be noted that this paper addresses tempo-
ral measures, i.e., any measures that tries to estimate ei-
ther the duration of an event or the point in time when
an event takes place. These temporal measures are es-
timated using two reference points in time. The two
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points we will call the start criterion and the stop cri-
terion. The exact operationalization of the criteria will
vary with the specific measures, but typically we focus
on the system clock time of these events as they occur.
For example, if an event starts at time 1 and it stops
at time 10, then the resulting duration of the event is
10− 1 = 9 in whatever time unit we are measuring in.
If we want to estimate a point in time when something
occurs rather than a duration, we typically set the start
event criterion to be the point when we start counting
the time from 0. For example, if we want to estimate the
point in time when the eye makes a particular move-
ment in a trial, then typically we start counting the time
from the beginning of the trial (our zero point). In this
case, the trial start is our start criterion.

Throughout this paper, we will use the term sampling
point to refer to that particular point in time when the
eye image is captured by the eye-tracker. We use the
term sample to refer to the eye image and the resulting
coordinate pair that is taken to be valid for a period
of time related to the sampling frequency of the eye-
tracker. We use the term window of no sampling to re-
fer to the time that passes between the two sampling
points. The term temporal sampling error, or simply er-
ror, will refer to the time between the point of actual
objective occurrence of an event and the detected oc-
currence of an event, e.g., the time between the point
where the gaze enters an area of interest and the point
the system actually registers the gaze inside the area.
What is referred to as a temporal sampling error in this
paper seems to be same phenomenon that Kagan et al.
(2008) calls ”temporal offset´´ (in the caption of Supple-
mental Figure 6). Do not confuse this temporal sam-
pling error with other errors of measurements, such as
spatial offset. The distribution of means of temporal
sampling errors will often be modulated by the amount
of data we have, and we will use the term data points
to refer to the number (count) of a particular measure
we have recorded, for example the number of fixation
durations, dwell times, saccade durations and so on.

We make the very plausible assumption that a true
oculomotor event, e.g. the eye passing a 60◦/s velocity
criterion of saccade detection, is equally likely to occur
anytime between two sampling points (i.e., uniformly
distributed). For this paper, we also assume an eye-
tracking system with zero system latency and cameras
which take snapshots of the eye rather than continu-
ously transmitting camera pixels going from the top-
left corner to the bottom-right corner.

The one-point temporal
sampling error

Consider a visual search task where we are inter-
ested in how fast participants can locate a target object
in a cluttered scene. We may use, as a dependent vari-
able, a saccadic latency measure where we measure the
duration from the onset of a stimulus until a saccade

is launched towards a designated target on the screen
(duration = timestop− timestart ). If the time-stamp of the
stimulus onset is 5674 ms and the saccade to the target
is detected to be launched at 6743 ms, then the result-
ing saccadic latency is 6743−5674 = 1069 ms. This pre-
cise saccadic latency value, however, assumes that we
correctly detected the saccade launch at exactly 6743
ms. We will now describe how a temporal sampling
error occurs for this example. Assuming no system la-
tency, the onset of the stimulus will appear at the same
time as the system timer starts counting the designated
trial durations. The control computer records the pro-
cessed eye-images from the onset of the stimulus until
the offset of the same. During our analysis, we extract
only the eye data corresponding to the time between
the stimulus onset and until the first saccade to the tar-
get. When the system detects the eye making a saccade,
the qualifying velocity criterion happens somewhere
between two sample points, one on each side of the
velocity criterion. This in turn gives us our temporal
sampling error which will be, on average, half a sam-
ple in time (the expected mean of the uniform distribu-
tion [0,1]). As a result, our measured saccadic latency
is the time from the stimulus onset to the true trigger-
ing of the saccade criterion plus the temporal sampling
error. In Figure 2, this is the temporal error resulting
from measuring the start of the trial, a, to the registered
gaze criterion, c, and not the true saccadic latency that
occurs between point a and point b. The temporal sam-
pling error is the time between points b and c.

This form of temporal error is the same for a large
group of measures we choose to call one-point measures.
These measures have, by our definition, either the start
criterion or the stop criterion of the measure defined by
a frequency-independent system event and the other
criterion defined by a sampled gaze criterion, but both
criteria can not be determined by the same type of qual-
ifying event.

The temporal sampling error caused by a finite sam-
pling frequency where the true oculomotor events are
uniformly distributed between sampling points can be
described mathematically as follows. If the sampling
interval spans the interval [0, 1

fs
], the sampling error can

be described mathematically as

ε = tMeasured− tTrue,ε∼U(0,
1
fs
) (1)

where ε represents the error between the time (tTrue)
for the oculomotor movement and the time (tMeasured)
when the movement was registered by an eye-tracker
with sampling frequency fs. U(a,b) denotes the uni-
form distribution on the interval [a,b]

The net effect of the temporal sampling error on
our desired measure depends on the particular mea-
sure. Specifically, the error will be positive or nega-
tive depending on whether the sampled gaze criterion
constitutes the start criterion or the stop criterion in
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the measure. This is because only sampled gaze cri-
teria have temporal sampling errors, whereas system-
generated criteria (which do not depend on a sampling
frequency) have no such errors. The two possible out-
comes that can result from a one-point measure can be
expressed in the following way, where d is the duration
estimated, s and g denotes system-generated and gaze
sampled events respectively.

Overestimation : d + ε = (stopg + ε)− starts (2a)

Underestimation : d− ε = stops− (startg + ε) (2b)

An overestimated d would result from any measure
that use a sampled gaze property as a stop criterion, for
example saccadic latency where the stop is the trigger-
ing of the saccade or time to target where the stop is
the position of the eye inside the target area of interest.
An underestimated d, on the other hand, would result
from measures that uses a sampled gaze property as
the start criterion, but a system generated event as the
stop criterion. An example would be a measure we can
call “time from decision”, where we measure the time
from when the participant gazed at a particular area of
interest, to when the trial ends and the participant is
forced to make a choice. In this case, the start event
is sampled and the stop event is system generated (the
end of the trial). This measure would result in an un-
derestimated latency.

One-point measures that use a gaze sampled stop
criterion are much more common than measures using
only a gaze sampled start criterion. Therefore, we will
primarily focus on the former type in this paper, but the
equations and simulations can very easily be adjusted
to accommodate those measures as well. Overesti-
mated one-point measures have errors within the inter-
val [0, 1

fs
] whereas the underestimated one-point mea-

sures are the mirror image with errors within [− 1
fs
,0].

This means that, on average, the sampling error
(whether it be overestimated or underestimated) will
amount to half a sample worth of time. With a 50 Hz
system, half a sample would amount to 1

50/2 = 0.01 s =
10 ms.

The two-point temporal
sampling error

There is another large group of measures that behave
differently from the one-point measures. We choose to
call them two-point measures, because they are qualified
by two gaze-related criteria. These measures are both
initiated and concluded by events determined from
eye-movements and as such they contain sampling er-
rors at both events. Their duration is determined by
simply taking the end time of the event and subtract-
ing the start time of the same event, and the resulting
difference is the duration of the event. What differen-
tiates these measures from one-point measures is that
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Figure 2. The x-axis shows continuous time with regularly
occurring sampling points as brief vertical lines, starting from
the start of the trial, a. The curved line crossing the x-axis
shows the eye-movement fulfilling some gaze-based crite-
rion, e.g. eye velocity or position in relation to an area of in-
terest. This precise moment happens when the curve crosses
the x-axis, b. This event is briefly after registered by the eye-
tracker, in c. Similarly, another fulfilled criteria may happen
later in d, but is registered only a while after, in e. The tem-
poral sampling error is the difference between the true event
and the registered event, e.g. c-b or e-d

two gaze-generated criteria results in two sampling er-
rors within the same event. Consider Figure 2 and as-
sume the gaze-based criteria to be the entering and the
exit of an area of interest. Our measure will be time
spent gazing at an area of interest in one visit, and we
call this measure the dwell time. The dwell time can
be expressed as ddwell = tdwell

stop − tdwell
start , where d and t de-

note duration and point in time, respectively. In one
end of this measure we have an entering event that oc-
curs slightly before the registration of that event, and
in the other end we have an exiting event which occurs
slightly before the registration of the exit. The tempo-
ral sampling error can occur in both ends, i.e. at both
qualifying criteria. The start of the measure is overes-
timated, yielding a later/higher start time, which re-
sults in a shorter dwell time (more is subtracted), but
on the other hand we also overestimate the end of the
measure, yielding a later/higher stop time and conse-
quently a longer dwell time (more to subtract from).
Thus, we can summarize the error of the dwell time, in
this case, as εdwell = εstop−εstart . As the events are equal
in their distributions of the temporal sampling error,
we expect that, on average, the net temporal sampling
error will be zero - the two errors will cancel each other
out. A net error of zero results when the error in es-
timating the start time and stop time of the two event
criteria are exactly equal. However, the net error is not
always zero, but is located between two extreme values
εdwell ∈ [− 1

fs
, 1

fs
]. The first extreme value, a maximal un-

derestimation of the dwell duration (−1 sample) occurs
when we correctly capture the dwell stop as is occurs
(εstop = 0), but we overestimate the dwell start by (al-
most) a complete sample (εstart =

1
fs

) – the real dwell
starts immediately after we just sampled the eye, so we
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Figure 3. The triangular probability function for dwell time
measurement error at a given sampling frequency, which is
the distribution of the absolute difference between two uni-
form variables.

have to wait a complete sample to capture it inside the
target area of interest. The net result (εdwell = 0− 1

fs
))

is an underestimation of the dwell duration by a com-
plete sample worth of time. The other extreme point is
the maximal overestimation of the dwell duration (+1
sample), which is the opposite event. Then, we cor-
rectly capture the dwell start as it occurs (εstart = 0), but
we overestimate the stop of the dwell because the trig-
gering criterion happens immediately after we already
sampled the eye, making us wait a complete sample for
it (εstop =

1
fs

). The net result (εdwell = 1
fs
− 0) is an over-

estimation of the dwell duration by a complete sample
of time.

A two-point sampling error is essentially the net re-
sult of subtracting a one-point temporal sampling er-
ror from another one-point error. For two-point sam-
pling errors, the error distribution is no longer uniform,
but assume the form in Figure 3. This distribution is
the distribution of the absolute difference between two
uniform variables.

Figure 3 shows us that at 50 Hz, the temporal error in
a single dwell can be as large as 20 ms (a whole sample)
in either direction, but that is very unlikely. In fact, a 0
ms error is much more likely, and the probability of the
error being between -0.5 and +0.5 samples is as large as
75 %.

As the number (n) of dwells increases, the Central
Limit Theorem (CLT) states that the temporal sampling
error in the dwell time follows a Gaussian distribution
with the average given by

ε̄
dwell =

εdwell
1 + εdwell

2 + . . .+ εdwell
n

n

∼ N(µ,
σ2

n
)

(3)

where µ and σ > 0 are, respectively, the mean and stan-
dard deviation of the error εdwell .

Since the variance of a triangular distribution over
an interval [a,b] with mode c is a2+b2+c2−ab−ac−bc

18 , the
distribution of the average error can be expressed as

ε̄
dwell ∼ N(0,

1
18n f 2

s
) (4)

As we add data (e.g. dwells) the error distribution
assumes an increasingly more pointy Gaussian distri-
bution, making it less likely that the error will deviate
from zero. Theoretically, with a large enough number
of dwells, the average sampling error in your data goes
to zero irrespective of sampling frequency.

From theory to practice

The theoretical relationship between sampling fre-
quency and actual dependent variables in experiments
may have large implications, especially for researchers
using setups which favour naturalistic settings over
higher sampling speeds, or researchers using video
analyses. To test the theoretic predictions, we proceed
to simulate these implications and to explore any real-
world practical consequences this may have. The par-
ticular implications and questions to replicate and an-
swer using these simulations are the following:
• How much data do we need in order to reduce the

sampling error, for either a one-point or two-point mea-
sure, to a level comparable to a system sampling at 1000
Hz?
• How much more data do we need in order to over-

come the sampling error and get the average t-test sig-
nificant, for either a one-point or two-point measure?
• Is the empirical distribution of a two-point tem-

poral sampling error the same as the distribution pre-
dicted in Figure 3?
• How large are the effects of temporal sampling er-

rors in relation to the effects of sampling frequency on
event detection algorithms and their particular param-
eter settings? Which error is worse?

Simulation 1 - one-point error
reduction

The aim of this simulation is to explore how much
data we need to reduce the variance of the temporal
sampling error for one-point measures to a level where
it is easy to estimate and compensate for. The goal is
that 95 % of all temporal sampling errors should be
within the same 1 ms span. The 1 ms span is selected
as a baseline because eye-tracking research seldom tries
to estimate effects under 1 ms. A 1 ms error would cor-
respond to the maximal one-point temporal sampling
error caused by a 1000 Hz eye-tracker. This simulation
tells us at what data amount we can simply subtract
the expected temporal sampling error from the means
to get the true estimate.

Procedure

The acceptance level is an average deviation from
the expected mean of the temporal sampling error
within 1 ms for 95 % of all iterations. For example,
at 50 Hz, the expected mean of the sampling error is
1
50/2 = 0.01 s = 10 ms. If the mean of the tested data
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amount is within the interval [9.5, 10.5] for 95 % of the
iterations and no smaller data amount fulfill the same
criteria, we accept that data amount as the optimal level
for reducing the one-point temporal sampling error.

The pseudo-code for Simulation 1 describes how the
simulation was performed at implementation level.

Simulation 1 Pseudo code for Simulation 1.
for fs = 10 to 2000 in steps of 10 (sampling frequency)
do

i = 1 (data amount, i.e. number of one-point mea-
sures)
E(ε) = 1

fs
/2 (expected temporal sampling error)

while 1 do
Generate 10000 one-point error vectors ~ε =
{ε1,ε2, . . . ,εi} from eq. (1) of length i
if 95 % of the ~ε have means within [E(ε) −
0.5,E(ε)+0.5)] ms then

store i and fs
Break while-loop

else
i = i+1

end if
end while

end for

Results & Discussion

Figure 4 shows the relationship between sampling
frequency and the required data amounts to contain the
temporal error within 1 ms of the expected mean of the
error. The data requirements to reduce the temporal er-
rors are very steep for lower sampling frequencies, but
as the frequencies approach 200 Hz, the requirements
level out and differ very little between 200 Hz and 1000
Hz.

We managed to fit the simulation results near per-
fectly (r2 = .99) to Equation (5) where N is the data
points required, c is the constant 1208500 and fs is the
sampling frequency.

N = c f−2
s (5)

fs =
2

√
c
N

Given the sampling frequency, we can solve for the
minimum number of data points required to contain
the temporal sampling error within 1 ms of the ex-
pected mean of the error. Similarly, if we have the num-
ber of data points, we can solve for the minimum sam-
pling frequency needed in order to contain the tempo-
ral sampling error within 1 ms of its expected mean.
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Figure 4. The number of one-point measures we need in or-
der for the mean temporal error to be less than 1 ms. The
line shows the fixations needed for all simulated frequencies
(left and bottom scales). The dots show the fixations needed
for typical frequencies of modern eye-trackers (top and right
scales, base 10 log-transformed).

Simulation 2 - one-point data
compensation

However, we are often not interested in reducing the
temporal sampling error to within 1 ms, but just get-
ting a significant difference between an experimental
condition and a control condition. Therefore, a more
practical question would be: Given a particular effect
magnitude, how much data (data points of a one-point
measure) do we need in order to find a significant dif-
ference between the two conditions?

Procedure

This simulation tested every sampling frequency
from 10 Hz to 2000 Hz in steps of 10 Hz and fixed (as
in no variance) effect sizes of 5, 20 and 50 ms. Ran-
dom one-point sampling errors were generated into
two sets: one containing only the base error, and the
other containing the base error with the added constant
effect. Data set sizes were gradually increased one data
point at a time and data were generated until the two
sets were significantly different at a 95 % confidence
level using a two-sample t-test. Each unique param-
eter combination was repeated 10,000 times and t-test
results were only accepted if 95 % of all 10,000 t-tests
were significant to avoid a multiple comparisons prob-
lem.

Results & Discussion

The results, which are shown in Figure 5, show that
on a log-log scale, there seems to be a perfectly lin-
ear relationship between the sampling frequency and
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Simulation 2 Pseudo code for Simulation 2. c is the
effect size.

for fs = 10 to 2000 in steps of 10 do
for c = 5,10,20 ms do

i = 1
while 1 do

Generate 10000 error vectors pairs ~ε1 =
{ε1,1,ε1,2, . . . ,ε1,i} and ~ε2 = {ε2,1 + c,ε2,2 +
c, . . . ,ε2,i + c} from eq. (1) + c of length i.
if 95% of the pairs are significantly different at
a 5 % level then

store i, fs and c
Break while-loop

else
i = i+1

end if
end while

end for
end for

the number of data points you need. As you investi-
gate smaller effects, the curve will shift outwards and
increase your data requirements. For small effects at
5 ms, a 100 Hz system needs around 10 data points.
Lowering the speed to 50 Hz, increases the data re-
quirements to around 40 data points. It is important
to point out that these effects are constant, i.e. always
5/20/50 ms for each measure in one of the vectors.
Real effects are seldom constant, but rather normal in
their distribution, which means these results represent
an optimistic minimal-requirements case for these ef-
fect magnitudes. The absolute levels are not the main
focus here, but rather the relation between sampling
frequency and data requirements.

Simulation 3 - two-point
temporal error reduction

In this simulation, we investigate how many data
points from a two-point measure we need, given a par-
ticular sampling frequency, in order for the temporal
sampling error be limited to maximally 1 ms (we se-
lect the same span as in the one-point simulation - for
comparison). This is similar to convolving the distri-
bution in Equation (4) until it reaches such a narrow
Gaussian form that it is very unlikely (p <.05) that the
sampling error is within 1 ms (.5 ms in either direction
of the mean).

Procedure

The same procedure as in Simulation 1 was used, but
the two-point temporal sampling error was instead cal-
culated by Equation (3). Note that the expected tempo-
ral sampling error for a two-point measures is zero, so
the resulting error distribution will be centered on zero.
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Figure 5. The number of one-point measures we need in or-
der get a two-sample t-test significant at the 95 % level for
three different effect magnitudes. Values below 5 data points
are not shown as t-tests are not reliable for such small sam-
ples.

Results & Discussion

The results in Figure 6 indicate that for very low
sampling frequencies, the data requirements to greatly
reduce the sampling errors are enormous, but these
requirements drop off very quickly as the frequency
increases. At around 200 Hz or above, there is little
marginal benefit of higher sampling frequencies with
regard to reducing sampling errors. Furthermore, we
managed to fit the data near perfectly (r2 = 1.00) using
Equation (5), where N is the data points required, fs
is the sampling frequency, but with c as the constant
2429400 (which differs from the constant for solving
one-point errors).

Given the sampling frequency, we can solve for the
minimum number of data points required to contain
the temporal sampling error within 1 ms of the ex-
pected mean of the error. Similarly, if we have the num-
ber of data points, we can solve for the minimum sam-
pling frequency needed in order to contain the tempo-
ral sampling error within 1 ms of its expected mean.

Simulation 4 - two-point data
compensation

Of course, the typical researcher is often not inter-
ested in completely cancelling this sampling error, but
rather to show that her experimental manipulation has
a statistically significant effect. In this simulation we
investigate, given a particular sampling frequency and
a particular effect magnitude, how many pairs of data
points from a two-point measure will suffice in order
to achieve a significant two-sample t-test on the aver-
age comparison. This simulation will show how large a
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Figure 6. How many two-point measures we need in or-
der for the mean temporal noise to be less than 1 ms. The
line shows the fixations needed for all simulated frequencies
(left and bottom scales). The dots show the fixations needed
for typical frequencies of modern eye-trackers (top and right
scales, base 10 log-transformed).

role this sampling error has in adding noise to two data
sets and how this error consequently affects hypothesis
tests.

Procedure

The same procedure as in Simulation 2 was used, but
the errors were generated for a two-point measure us-
ing Equation (4).

Results & Discussion

Results in Figure 7 show the same relation between
sampling frequency and data requirements as Sim-
ulation 2, which was the same simulation for one-
point measures. However, the absolute values are
slightly different, reflecting the fact that two-point tem-
poral sampling errors span a larger interval, and con-
sequently require more data to obtain a mean near
zero. The same reservation as for the one-point mea-
sures remain – that this reflects an optimistic minimal-
requirements case only.

Simulation 5 - real-world data

In this simulation, we resample real eye-tracking
data from a reading task to quantify the sampling error
and verify the predicted shape of the two-point error
distribution in Figure 3. This is done in order to show
that this is not only a purely theoretical effect, but it can
also affect actual recorded data

10 100 1000

10

100

1000

10000

N
u
m
b
e
r
 
o
f
 
d
a
t
a
 
p
o
i
n
t
s
 
n
e
e
d
e
d

Sampling frequency (Hz)

2−point signficant effects

 

 

Effect magnitude 5 ms

Effect magnitude 20 ms

Effect magnitude 50 ms

Figure 7. Number of two-point measures needed for two
samples to be significantly different at various effect magni-
tudes. The two samples compared are one with a base two-
point sampling error and another with a base sampling error
plus the added constant effect. Data below 5 data points are
not shown as t-tests are not reliable for very small data sets.

Procedure

We used real eye-tracking data from the large read-
ing experiment described in Nyström and Holmqvist
(2010). In short, eye-movements were recorded at 1250
Hz while University students read texts on a com-
puter screen. The text was divided into 16 screens (im-
ages), and for each screen we defined an area of interest
around a single high-frequency word near the center
of the screen. We used this area of interest to calcu-
late the time spent gazing inside this area in one single
visit from entry to exit, referred to as a dwell, and the
resulting dwell time. We estimated dwell time using
the original 1250 Hz raw data and only included dwells
that were longer than 50 ms (similar to the shortest fix-
ations, see e.g. Rayner, 1998:376) and were separated
by at least 20 ms. The 20 ms criterion corresponds to
the minimum duration of a saccade, which is 10 ms ac-
cording to Nyström and Holmqvist (2010), rounded up
to 20 ms to equal a full 50 Hz sample. This allowed
us to ignore high-frequency noise such as visits due
to passing saccades and eye-tracker imprecision. We
then downsampled this data to 50 Hz data by using
every 25th coordinate pair. The 1250 Hz data function
as a baseline that we, for sake of argument, assume are
identical to the objective sampling of an unlimited sam-
pling frequency. The differences that arise are thus due
to the longer sampling intervals of the 50 Hz system,
essentially showing the sampling error of a 50 Hz sys-
tem relative to a 1250 Hz system.
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Figure 8. The empirical distribution of a two-point dwell
time sampling error.

Results & Discussion

Figure 8 shows our obtained sampling error of a
two-point measure, which in our case was dwell time.
This replicates the distribution predicted in Figure 3.
The isolated two-point temporal sampling errors are
constrained within ± 1 sample, and show that mea-
sures generated from real data are subject to the effects
demonstrated in Simulation 2. The algorithm identi-
fied 6804 dwells, and they were on average 224.94 ms
(std 141.60) for the 1250 Hz system, and 224.84 ms (std
141.88) for the 50 Hz system.

Simulation 6 - event detection

Up to this point, we have assumed that the only
source of error when estimating dependent measures
is the temporal sampling error resulting from the lim-
ited sampling frequency of the eye-tracker. In prac-
tice, however, fixations and saccades are identified by
event detection algorithms, and sampling frequency is
only one of the factors that affect how reliably fixations
and/or saccades are detected. Other factors include the
precision of the data, methods used to calculate eye-
movement velocity and acceleration, type of algorithm,
algorithmic settings, and thresholds (Salvucci & Gold-
berg, 2000; Shic, Scassellati, & Chawarska, 2008; Blig-
naut, 2009; Nyström & Holmqvist, 2010). The aim of
this simulation is not to thoroughly examine all the ef-
fects that sampling frequency may have on event detec-
tion, which is a large question itself, but rather to put
the sampling error in perspective against another error
source which also depend on sampling frequency.

Procedure

To investigate the effect sampling frequency has on
event detection, data collected at 1250 Hz (same as in
Simulation 3) was used as a baseline, and then com-
pared to the same data resampled to 250 and 50 Hz,
respectively. Resampling was made by first downsam-
pling the baseline data with factors 5 and 25, and then
upsampling it back to its original size using nearest-
neighbour interpolation. This way, three data sets of
the same size were generated.

Traditional methods for fixation and saccade detec-
tion typically use fixed thresholds to detect saccades
and/or fixations (e.g., everything above/below a cer-
tain velocity threshold is a saccade/fixation) . Since the
resampling process changes the signal characteristics,
these thresholds would need to be modified in order
to accurately detect events. This is particularly true
for the resampled 50 Hz data. Based upon these argu-
ments, fixation and saccade detection was performed
with the algorithm by Nyström and Holmqvist (2010)
using a peak detection threshold of θ̇PT = µ+4σ, which
objectively adapts with the signal characteristics. All
other parameters were fixed.

Results & Discussion

As shown in Table 1, a sampling frequency of 250
Hz is almost identical to one of 1250 Hz in terms of
both fixation and saccade duration. At 50 Hz, how-
ever, the measures start to diverge, and saccade du-
rations are more sensitive to sampling frequency than
fixation durations are. In fact, even with more than
25,000 saccades, the durations from the 50 Hz system
are not identical to the durations from the 1250 Hz or
250 Hz systems, indicating that whatever temporal er-
ror introduced by the event detection process the error
is not centered on zero. Checking the two-point data re-
quirements in Figure 6, a 50 Hz system should require
about 1000 data point to contain the error within 1 ms
of its expected mean for 95% of all cases. In this sim-
ulation, we have about 25,000 saccades, but the differ-
ence compared to the 250 Hz and 1000 Hz system is 5
ms. This means we are dealing with two types of tem-
poral sampling errors. If only a sampling error of the
type explained and tested in the rest of this article had
been present in the fixation/saccade detection, then at
almost 20,000 fixations and 25,000 saccades, the error
should be virtually zero. As this is not the case, there
must be other errors causes by the sampling frequency
at work. A lesson from this is that it may pay off bet-
ter to focus on selecting a reliable event detection algo-
rithm rather than worrying about temporal sampling
errors, especially if the amount of data available is not
a problem.
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Sampling frequency (Hz) 1250 250 50
Fixations (number) 19656 19793 19955
Fixation duration, M±SD, (ms) 177±83 177±83 175±85
Saccades (number) 24684 24768 24835
Saccade duration, M±SD, (ms) 43±19 43±19 48±22

Table 1
Effect of sampling frequency on number and duration of sac-
cades and fixations (reading data from 10 participants).

General discussion

We calculated and simulated the relationship be-
tween sampling frequency and data requirements.
Quadratic curves were fitted to the data, which can be
summarized in the following rule of thumb: a doubling
in sampling frequency allows for only a fourth of the
data, in order to maintain a constant sampling error.
Of course, this can also be rephrased as: if you halve
the sampling frequency, you will need four times as
much data to maintain the same temporal sampling er-
ror. However, these advice concern only the temporal
sampling error, and you still need data to reach ade-
quate power to confidently identify your experimental
effects of interest.

Examining the data which was fit to Equation (5),
we also find that the constant, c, is around twice as
large for two-point measures compared to one-point
measures. The implication is that, as a rule of thumb,
we need approximately twice the amount of two-point
measures in order to contain the temporal sampling er-
ror within a span that is equal in size that of one-point
measures.

Two-point measures are a particular group of mea-
sures, such as fixation duration, dwell time and saccade
duration. These measures have both an initiating and
a concluding event generated by gaze behaviours, and
as such have sampling errors at two separate points.
These errors even out on average, and more impor-
tantly, more data makes it more likely that the average
temporal sampling error will be close to zero.

One-point measures, such as saccadic latency, anti-
saccadic correction latencies and time to target, how-
ever, lack this property. The error of those measures
does not reduce, but at least it becomes more stable and
converge at an error of half a sample in time. One-point
measures are all measures that involve a single quali-
fying gaze behaviour, and the other qualifying events
should be system generated (independent of sampling
frequency). They are therefore very often latency mea-
sures. It is possible to correct this mis-estimation of
one-point measures by simply subtracting or adding
half a sample worth of time to center the temporal sam-
pling error on zero. Recording more data will then
mean that the one-point error will be close to zero. De-
pending on whether the start or the stop criterion of the
measure is gaze sampled, the correction procedure will

be adding or subtracting, respectively.
For some labs, sampling errors are not a problem be-

cause all their research are performed using 1000+ Hz
eye-trackers and these sampling errors pose no practi-
cal problems. However, for natural studies where the
participants should be able to move their heads, per-
haps reading a newspaper, working with several mon-
itors or even naturally walking around outside the lab,
this may be an issue. For naturalistic eye-tracking stud-
ies, current eye-tracking systems record at most at 250
Hz, but often much slower such as 50 Hz, and man-
ual video analysis at 25 fps/Hz is still common. Sim-
ilarly, some researchers focus exclusively on low-cost,
and hence slower, cameras in order to provide accessi-
ble systems for more users. We believe it is important to
understand how large these sampling-generated errors
are and at what point they cease to be a problem. Also,
some research questions allow only limited amounts of
data to be recorded, making it important to select a sys-
tem that will minimize the sampling errors.

Fortunately, sampling error is not a practical prob-
lem given eye-trackers that operate at roughly 200 Hz
or above (depending on available data amounts). Of-
ten, event detection algorithms pose more of a prob-
lem than sampling errors. This is mainly because event
detection errors are not centered on zero, where more
data negates the errors, and because the event detection
errors are not completely predictable, neither in direc-
tion nor magnitude (and depending on type of detec-
tion algorithm). Our final simulation attempted to put
the variation between event measures in perspective
against the magnitudes of sampling errors. For truly
accurate estimation of measures, it can be beneficial to
avoid an event detection process altogether, unless it is
explicitly required by a measure focused on a particular
oculomotor event such as a fixation or a saccade.

It should be noted that the temporal sampling error
described in this paper has implications for all users of
eye-trackers, though some are more affected than oth-
ers. Two-point temporal measures, such as fixation du-
rations and duration of visits, are possible to use even
with a low-speed eye-tracker. However, it depends en-
tirely on the researcher being able to add more data.
This translates into more participants and more trials,
which are not equally easy to add for all types of exper-
iments. For example, a supermarket study analysed by
video (equal to 25 Hz) involves more effort to recruit
and test participants, and unrestricted participants pro-
duce the number of visits on products they do, no
more, no less. To produce more data, this may involve
only recruiting shoppers with long grocery lists, and
avoid the single item shoppers, or generally just adding
more participants. For manually analysed data, adding
more data is an alternative preferably avoided.

Similarly, researchers investigating low-cost cameras
for gaze interfacing are very restricted in the ability to
acquire more data. If they are interested in using gaze
for, e.g., dwell-time based triggers on the screen, then
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they only have a single data point, one dwell, to work
with. In this case, it is unclear whether there exists
some way to get around the problem at all.

However, even though all researchers may not be
able to reduce their temporal sampling error in the way
described in this paper, at least all should be able to
calculate this error and decide for themselves whether
it is a problem or not. It may be fruitful for a gaze-
interfacing researcher to further investigate how par-
ticipants handle this temporal sampling error. Do gaze-
interface users experience an annoying element of un-
certainty in using dwell-time based triggers due to the
temporal sampling error, and in that case, at what sam-
pling frequency does that uncertainty cease to be an-
noying?

The findings of this study has the greatest impact for
researchers who have traded system speed for ecologi-
cal validity in their setups. For example, using a head-
mounted eye-tracker or a remote eye-tracker, which
typically (but not necessarily) have speeds below 200
Hz. This is especially important for experiments us-
ing special populations, e.g. clinical groups, children
or even primates, which may put a limit on the number
of trials that can be recorded.

Our aim has been to break down sampling-related
errors in an accessible form for all users of eye-trackers,
and we suggest the following heuristics for researchers
and reviewers:
• Are you using one-point temporal measures such

as saccadic latency or time to target? On average, the
measures are mis-estimated by half a sample of time.
This error decreases linearly as sampling frequency in-
creases. For example, using a 50 Hz system will on av-
erage mis-estimate the duration with 10 ms, and a 100
Hz system will on average mis-estimate with 5 ms. Is
the temporal sampling error a problem? Either check
Figures 4 and 5 , or use Equation (5) to calculate the
adequate (equivalent to a 1000 Hz system) number of
data points needed or adequate sampling frequency. If
you want true estimates of a one-point error, you need
to subtract or add half a sample of time from them to
center them on zero (depending on the partcular mea-
sure). Use Equation (5) to calculate the requirements
for you to estimate them within 1 ms.
• Is the two-point temporal sampling error really a

problem your experiment? Either check sampling fre-
quency and data amount against the graph in Figure
6, or calculate the data requirements using Equation
(5). For example, if you have a sampling frequency
of 60, you need at least 675 data points. On the other
hand, if you are a reviewer and read an article that
has used a given number of data points, you can use
Equation (5) (use the correct constant!) to calculate the
minimum sampling frequency they should have used.
For example, 24 participants tested on 30 trials each,
where every trial produce one (1) data point (e.g., one
dwell duration), then the total number of data points
are 24 ·30 ·1= 720. This translates into a minimum sam-

pling frequency of 58 Hz. At 58 Hz, the temporal sam-
pling error is not eliminated, but equivalent to that of a
1000 Hz system and in effect negligible.
• Are you considering using a slower, but more nat-

uralistic, system set-up? Use the quadratic relationship
to calculate the increased data requirements. Halving
the frequency means you have to increase the data re-
quirements a fourfold to maintain the same temporal
sampling error.
• Are you planning to buy an eye-tracker? Check

Figures 4 and 6 to see just how much more data you
need to record given the sampling frequency of your
different candidate systems. This may be an issue if the
sampling frequency is low and/or you are limited in
the number of data points (trials) you can record per
participant, e.g. if you use babies or perhaps primates.
• Do you want to compare studies two studies using

different sampling frequencies? You can then check the
amount of data used against Equation (5) or Figures 4
& 6, and see if the temporal sampling error is contained
within 1 ms. If this is the case for both studies, then it
is safe to compare estimates. If any of the studies have
used one-point measures, such as saccadic latency, then
you may have to subtract or add half a sample of time
to correct the estimates.

Conclusion

We found that one-point measures, such as vari-
ous latencies, have a temporal error distribution cen-
tered on half a sample in time, but can be centered
on zero by deducting or adding the corresponding
amount of time. Two-point measures, such as fixation
and saccade durations, have sampling errors centered
on zero. Both measure groups will be more accurately
estimated by adding more data (assuming one-point
measures have been centered on zero). Finally, there is
a quadratic relationship between sampling frequency
and data amount, where a doubling of sampling fre-
quency lowers data requirements to one fourth if the
goal is to maintain the same average temporal sam-
pling error. Another rule of thumb is that two-point
measures, such as fixation durations, require around
twice the amount of data compared to one-point mea-
sures to contain the temporal sampling error within the
same span.
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