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1 Introduction 

Gaze tracking is finally evolving from studies that are 

mainly performed in controlled laboratory environments 

and desktop trackers to field studies running on wearable 

hardware. These kind of mobile systems are applicable to 

actual operational environments and workplaces, e.g., 

walking, driving, operating machinery, and interacting 

with the environment and other people. Mostly due to the 

novelty and high price of the mobile gaze tracking tech-

nology, application potential remains, for the most part, 

unutilized.  

Current commercial systems for wearable gaze track-

ers offer working solutions for industrial and research cus-

tomers but are expensive and hide the implementation of 

their tracking hardware and algorithms behind proprietary 

solutions. This limits their accessibility, areas of applica-

tion, and the scale and scalability of gaze tracking and in-

hibits their further development, integration, customiza-

tion, and adaptation by the expert community of gaze 

tracking users and researchers. Also, the reported perfor-

mance metrics are hard to cross-evaluate between systems 

as they are typically reported for “optimal" tracking con-

ditions and well-performing subjects. Therefore, while 

commercial systems can supply high-performing solu-

tions, there is still a need for a low-cost alternative that 

opens up the further development of gaze tracking meth-

ods and algorithms. Enabling the larger user community to 

build their own trackers opens the playground for innova-

tion, novel approaches, and more rapid development cy-

cles. Computationally, the big challenges in mobile gaze 
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tracking include changing lighting conditions and move-

ment of the device in relation to the eyes of the users. 

In this paper, we present the algorithmic basis of our 

current open-source gaze tracker. The system provides a 

robust, probabilistic approach for realtime gaze tracking, 

especially for use with a mobile frame-like system, alt-

hough the presented algorithms should also work for re-

mote settings. The algorithms are based on advanced 

Bayesian modeling while utilizing a physical eye model. 

The system has proven very robust against dynamic 

changes in external lighting and possible movement of the 

gaze tracking frame in relation to the eyes of the user. 

Our hardware implementation is built from off-the-

shelf sub-miniature USB cameras and optical filters, a sim-

ple custom printed circuit board, and a 3D printed frame. 

Apart from a standard laptop computer for running the 

software, the total cost for the system is ca. 700 euros of 

which 80 % is dictated by the cameras. The software and 

the design of the circuit board and frame are released as 

open source under a permissive license. 

The temporal requirement of realtime systems (i.e., 

processing the video frames within the frame rate of the 

cameras) poses a challenge. Conventional USB-cameras 

capture 20–30 frames per second which our software im-

plementation is able to handle. However, due to the com-

plexity of the methods, using cameras with higher frame 

rates (such as 100 fps) may call for special solutions such 

as hardware acceleration or parameter optimization. 

In addition to performance metrics, we provide a com-

parison to a best-in-class commercial system (SMI Eye-

tracking Glasses with iView 2.1 recording software and 

BeGaze 3.5 analyzing software) in the same setting. Based 

on our experiments with 19 participants, the commercial 

system is outperformed for spatial accuracy and precision. 

The recorded data is published openly, too. 

Summarizing, the contributions of this paper are: 

• A complete probabilistic gaze tracking model 

and its full implementation. 

• Exhaustive evaluation of the performance of 

our system and publication of the recorded 

data openly for others to test. 

• Validation of the performance of the commer-

cial SMI gaze tracking glasses system. 

• C++ software implementation and hardware 

instructions published as open source. 

1.1 Related Work 

The large majority of gaze tracking research thus far 

has been performed in desktop environments using remote 

trackers, with the eye tracker and light sources integrated 

to the desktop environment and calibrated for a planar 

computer monitor. A number of wearable gaze trackers, 

both commercial and open-source, are also available. 

These allow the user to move around more freely and track 

gaze outside a single screen space. While the basic track-

ing methodology utilized is largely similar – tracking op-

tical features of the eye – there is large variation in tech-

nical details, performance, and robustness between the 

systems. A wide survey of gaze tracking methodology is 

presented by Hansen and Ji (2010). Hayhoe and Ballard 

(2005) offer a more mobile-centric review and Evans et al. 

(2012) focus on outdoor gaze tracking and some of the 

complexities inherent in taking gaze tracking out of the 

lab. 

The most typical solution in video-based gaze tracking 

is to track the pupil and usually one corneal reflection (CR) 

from a light source to offer rudimentary compensation for 

camera movement relative to the eye. These methods use 

a multi-point calibration on a fixed distance, mapping 

changes in pupil and CR positions to interpolated gaze 

points (Duchowski 2003). A more sophisticated solution 

utilizing a physical model of the eye was suggested in the 

desktop genre (Shih and Liu 2004; Guestrin and Eizenman 

2006; Hennessey et al., 2006). These require at least two 

light sources and the respective CRs for solving the geo-

metrical equations involved and also some sort of user cal-

ibration to compensate for the personal eye parameters. 

User calibration is usually lighter than with mapping meth-

ods; Chen and Ji (2015) even proposed a calibration-free 

model based method. 

The mobile setting poses more challenges than the 

desktop setting due to, e.g., changes in lighting and device 

orientation. As an added complication, the gaze distance 

varies when the user freely navigates her environment 

which leads to variable parallax error when gazing at dif-

ferent distances as the eyes and the camera, imaging user’s 

view, are not co-axial (Mardanbegi and Hansen 2012). The 

gaze distance can be approximated with at least three so-

lutions: use a fixed distance, use metric information about 

the environment based on visual (fiducial) markers, or em-

ploy binocular trackers (i.e, having eye cameras for both 

eyes) and produce an estimate for gaze distance using the 
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convergence of both eyes’ gaze vectors that can be com-

puted with the physical model. 

Commercial systems offer proprietary solutions to 

gaze tracking. Notable examples include Tobii Pro Glasses 

(http://www.tobiipro.com/product-listing/tobii-pro-

glasses-2/), Ergoneers Dikablis system (http://www.er-

goneers.com/en/hardware/eye-tracking/eye-tracking-

head-mounted/), and SMI Gaze tracking glasses 

(http://www.eyetracking-glasses.com/), the latter used 

here as a reference for evaluating performance. A consid-

erable number of open solutions for gaze tracking have 

also been suggested. Earlier mobile open source gaze 

tracker systems include the openEyes system (Li, Bab-

cock, and Parkhurst 2006) that introduced the popular 

Starburst algorithm for detecting eye features; the ITU 

Gaze Tracker system (San Agustin et al. 2010) that aims at 

providing a low-cost alternative to commercial gaze track-

ers; and the Haytham (Hales, Rozado, and Mardanbegi 

2013), developed more toward direct gaze interaction in 

real environments. Pupil labs offer both commercial and 

open-source systems (Kassner, Patera, and Bulling 2014) 

and Ryan, Duchowski, and Birchfield (2008) aimed at a 

tracker operating under visible light conditions. 

Here, we extend the physical eye model approach in-

troduced by Hennessey, Noureddin, and Lawrence (2006). 

We utilize Bayesian methodology to provide a robust 

method for accurate gaze tracking in real time. Work to-

ward the current system has been described by Lukander 

et al. (2013) which used a similar approach but with a dif-

ferent optical setup, monocular tracking, and a heuristic 

feature tracking solution; Toivanen and Lukander (2015) 

who presented probabilistic ideas for tracking the eye fea-

tures; and Toivanen (2016) who introduced a preliminary 

version of the Kalman filter for stabilizing the result. 

2 Proposed method 

Before going into more details with the method, let us 

give some definitions. The method is supposed to be used 

with a wearable gaze tracking system, a.k.a., gaze tracking 

glasses. The glasses contain one or two eye cameras that 

point towards eyes. There is also a scene camera pointing 

towards user’s scene. The glasses contain LED light 

sources, attached to the frame of the glasses. Each LED 

causes a reflection on the eye surface as seen by the eye 

camera, called a glint. The mutual configuration of the 

glints is specific to the placement of the LEDs in the 

glasses although this configuration changes according to 

the shape of the eye and pose and distance of the glasses 

with respect to the eye. The (average) mutual configura-

tion, or shape, of the glints is called a glint grid. The num-

ber of LEDs is denoted with 𝑁𝐿 and the glint grid contains 

thus 𝑁𝐿 glints. The captured eye image is generally de-

noted with ℐ throughout the paper but its specific form (in 

terms of preprocessing) depends on the context and is clar-

ified accordingly. An example of gaze tracking glasses 

with six infrared (IR) LEDs is shown in Figure 11, and an 

example of an eye image, captured with it, is given in Fig-

ure 2. For the sake of clarity, throughout the paper the no-

tation for matrices and vectors is not bolded except when 

being multivariate. 

The objective of the presented method is to estimate 

the three-dimensional point-of-gaze (POG) and its 2D pro-

jection in the image plane of the scene camera, utilizing a 

simplified eye model and knowledge about the configura-

tion of the cameras and LEDs in relation to each other. The 

identified 3D POG can also be projected to other reference 

coordinate systems, such as one based on fiducial markers 

detected in the scene image, but here we concentrate on the 

case of scene video. 

Mobile gaze tracking sets additional requirements for 

the performance as compared to desktop gaze trackers: dy-

namic lighting conditions require better tolerance for 

changing luminosity and extra reflections and tracking the 

eyes of a moving subject calls for robustness against pos-

sible movement of the device in relation to the tracked 

eyes. This necessitates using more LEDs than what is typ-

ically used in desktop trackers which then again increases 

the probability of some glints being non-visible. Also, in 

wearable systems the LEDs must be located at the very 

edge of the view to minimize their disturbance whereas in 

remote systems the LEDs can be located near center of the 

field of view. In addition, with the desktop gaze trackers 

the gaze distance is approximately constant, as opposed to 

mobile tracking. While a simpler mapping-based approach 

may be sufficient for desktop trackers, the variable nature 

of mobile tracking is better handled with a model-based 

approach.  

2.1 System overview 

Figure 1 presents a flowchart of the processing pipeline 

for video frames. The frames grabbed from the cameras 

are first preprocessed for finding the pupils and the corneal 
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features. These are used in computing the 3D cornea cen-

ters and pupil locations of the physical eye model. From 

these, the gaze vectors, and ultimately the gaze point in the 

scene video can be computed utilizing user calibration in-

formation. To stabilize the results, the gaze point can fur-

ther be Kalman filtered. Here, the focus is on supplying 

gaze location and path. However, fixations and saccades 

can be roughly estimated using the eye stability parameter 

which estimates how stable the eye has been during the 

latest video frames. In addition, the frames where eye fea-

tures cannot be detected can be assigned as blinks. 

For the utilized physical eye model (“physical model" 

block in the flowchart) we use the model presented by 

Hennessey (2006); Shih and Liu (2004). The main contri-

bution of this paper arises from applying the method to 

wearable gaze tracking and the methodology in the other 

blocks in Figure 1. Probably the greatest contributions are 

in the computer vision related tasks (“pupil" and “cornea" 

blocks) and in the Kalman filter. The glint grid is generally 

more difficult to locate than the pupil because there may 

be additional distracting reflections in the image and some 

of the glints may not always be visible. Therefore, we use 

a simpler detection scheme for pupil and a more advanced 

Bayesian tracking model for glints. The Bayesian ap-

proach allows neatly combining the expectations about the 

appearance of the glints and their mutual configuration. In 

addition, glints are likely to depend on their locations in 

the previous image; for most of the time, eyes fixate on the 

same point and the glints are stationary. With the Bayesian 

tracking framework, we can utilize this information in a 

sophisticated manner. 

The cameras are modeled as pinhole cameras. The in-

trinsic and extrinsic parameters are estimated using the 

conventional calibration routines (Zhang, 2000). 

 

Figure 1. A flowchart of the gaze tracking solution. The 

numbers refer to sections and subsections where the 

item is described. 
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2.2 Preprocessing the eye image and ap-

proximating the pupil center 

 

Figure 2. An example of a captured eye image (A) which 

is cropped (B), morphologically opened (C), and filtered 

(D). The filtered image shows also the estimated pupil 

center which is used later in estimating the glint loca-

tions and pupil edges. 

Figure 2A illustrates an eye camera image captured 

while wearing the glasses that are shown in Figure 11. The 

pupil and all the LED reflections (i.e., glints) are clearly 

visible. The eye images are preprocessed to decrease the 

image size by cropping away useless parts and color chan-

nels in the image in order to accelerate the computations, 

and to remove noise and enhance certain image features. 

Images B, C, and D of Figure 2 shows some preprocessing 

stages. 

The captured IR image is practically monochromatic 

so it is first converted to a grayscale image. Because the 

eye can be assumed to stay at a relatively fixed position in 

the image, the image is cropped around the assumed eye 

location, using a constant cropping area (B). For finding 

the initial approximation for the pupil, the cropped image 

is morphologically opened to remove the glints (C). Then, 

an approximate pupil center is located in order to further 

crop the image. For estimating the pupil center, the opened 

image is filtered by convolving it with a circular kernel 

whose radius approximately equals the expected radius of 

a pupil in the eye images; this removes dark spots that are 

smaller than the pupil so that after the filtering the pupil 

center would be the darkest pixel, which is considered to 

be the approximate pupil center (D). Despite the relative 

simplicity, this approximate pupil center detection per-

forms well. In our experiments, only very dark and thick 

make-up in the eyelashes caused the pupil center to be 

misdetected in the eyelash area. 

Different preprocessed stages are used in different 

parts of the algorithms: the eye stability estimator uses the 

filtered image (Figure 2D); the pupil localization uses the 

opened image (C) and estimated pupil center; and the glint 

localization uses the cropped and opened images (B and 

C) together with the estimated pupil center. 

2.3 Estimating stability in eye image 

We use information about how stable the eye image has 

been during the most recent 𝑘 + 1 previous video frames 

later in Sections 5, 6.4, and 7. To quantify this stability 

measure we use a simple scaled and smoothed estimator of 

an average change in the eye images that gives a value 𝜃 ∈

[0,1] which is close to unity if there have been large 

changes in recent frames and close to zero if the eye seems 

to have been relatively stable. 

More formally, given parameters 𝛼𝑚, 𝜆𝑚 > 0, 𝑤 > 0, 

and the size of the smoothing window 𝑘 + 1, we define the 

stability 𝜃𝑡 at time instance 𝑡 as 

 

where 𝑆max
𝑡 = max{𝑆𝑡−𝑘, . . . , 𝑆𝑡} is the maximum value of 

the previous 𝑘 + 1 sigmoid values, defined as 

 

where 𝑚𝑡 is a pixel-wise 𝐿2 norm between subsequent 

frames: 

where ℐ𝑡 is the observed (cropped, opened, and filtered) 

eye image at time 𝑡 (see Figure 2D for an example) and 𝐷𝑒  

is the number of pixels in the image. The parameter 𝜃𝑡 is 

estimated for the right eye image only since the eyes nor-

mally move in synchrony. The parameter values that we 

use in our experiments are presented in Table 2. 

3 Physical eye model 

The following section details the basic principles of 

computing the POG with the physical model. 

3.1 Gaze point computation 

Figure 3 illustrates the used (simplified) physical 

model of the human eye. The axis that traverses the 3D 
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centers of the pupil (𝑃𝑐) and the corneal sphere (𝐶𝑐) is 

called the optical axis. The corresponding unit vector is 

called the optical vector, denoted as 𝐿. The actual gaze 

vector that we are interested in traverses (approximately) 

through the cornea center and fovea which is the spot on 

the retina with the highest density of photoreceptors. The 

optical and gaze vectors are not parallel. Hence, the gaze 

point 𝑔𝑝 is computed as 

 

where 𝑅 is a matrix that rotates the optical vector to coin-

cide with the gaze vector and 𝛿 is the viewing distance be-

tween 𝐶𝑐 and the gaze point. Note that (4) applies for both 

eyes, each with its own gaze point. If two eye cameras are 

in use, the gaze distance 𝛿 can be estimated (see Subsec-

tion 3.3). 

 

Figure 3. The simplified model of the human eye. The pu-

pil is actually a hole in the iris, allowing light to enter the 

retina. The corneal surface can be modeled as a sphere 

partly embedded in the eye. Pc and Cc refer to centers of 

the pupil and corneal sphere through which the optical 

axis traverses. The radius of the corneal sphere is de-

noted with ρ. nc and nair refer to refractive indices of cor-

nea and air. Fovea is the spot on the retina with the high-

est density of photoreceptors. The axis that (approxi-

mately) traverses the gaze point, Cc , and the fovea is 

called the foveal axis (to be precise, the visual axis and 

the optic axis intersect at the nodal point of the eye 

which is within 1 mm of the cornea center (Guestrin and 

Eizenman, 2006)). δ is the gaze distance along the foveal 

axis between Cc and gaze point. 

3.2 User calibration 

The rotation matrix 𝑅 is a person-dependent constant 

as the location of fovea, and thus the angular difference 

between the optical and foveal axes vary between individ-

uals. This section describes how to estimate 𝑅; this proce-

dure is called user calibration. 

Let us assume that we know the transformation be-

tween the coordinate systems of each camera (both eye 

cameras and the scene camera). The 3D points 𝑃𝑐 and 𝐶𝑐 

are originally defined in the coordinate system of the cor-

responding eye camera. For computing the gaze point, the 

3D points in the left eye camera coordinates are trans-

formed to the right eye camera coordinates. Then we can 

transform both eye’s gaze point to scene camera coordi-

nates. Let 𝐴 and 𝑎 denote the rotation and translation parts 

of this transformation. The gaze point in the scene camera, 

𝑞, can thus be computed as 

where 𝐶𝑐, 𝛿, 𝑅, and 𝐿 “belong" to either the left or the right 

eye. 

In the user calibration procedure, the user fixates sev-

eral points which are a fixed distance 𝛿 away from the user 

and which are simultaneously annotated in the scene cam-

era video. For each annotation, the cornea centers and gaze 

vectors are extracted as well as the annotated 3D target 

values which can be estimated using the camera calibration 

information and the fixed distance to the calibration target. 

The calibration routine with 𝑁𝑐 samples results thus in a 

collection of points and vectors {𝑞𝑖, 𝐶𝑐
𝑖 , 𝐿𝑖 , 𝑖 =

1,2, . . . , 𝑁𝑐} which we denote with 𝑞cal, 𝐶𝑐
cal, and 𝐿cal. 

Eq. (5) should hold for each sample as well as possible so 

𝑅 is estimated in a least-squares sense as 

where the inverse of 𝐿cal can be solved with, e.g., 

pseudoinverse, as long as 𝑁𝑐 ≥ 3. Note that the viewing 

distance 𝛿 must be set to the real distance between the 

viewer and target, which distance is also used for compu-

ting the target points 𝑞cal – this should lead to negligible 

error as it can safely be assumed that the distance from the 

scene camera origin to the target approximately equals the 

distance from the cornea center to the target because the 

target distance is much larger than the distance between 

the scene camera and the eye. Calibration sets 𝐶𝑐
cal and 𝐿cal 

naturally differ between the eyes, resulting in separate cal-

ibration matrices for both eyes, 𝑅L and 𝑅R. 
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The matrix 𝑅 is, however, not strictly a rotation matrix 

but a general transformation matrix. This transformation 

can be thought of as dealing with all other kinds of (more 

or less systematic) inaccuracies present, apart from the an-

gle between gaze vector and optical vector. Errors may 

stem from the following factors: some user-dependent eye 

parameters are set to constant population averages, the 

physical eye model is over-simplified, the used pinhole 

camera model is only approximate (while calibrated), the 

estimated transformation matrices between LEDs and 

cameras are imperfect, and there may be inaccuracies in 

the estimated corneal and pupil centers. Because 𝑅 is not a 

rotation matrix, its determinant is not unity and it is not 

orthogonal. Therefore, the unit of 𝛿 is, strictly speaking, 

not metric but the norm of 𝑅𝐿 which might slightly deviate 

from unity and may thus attribute a minor error into the 

estimation (6). Finally, it should be noted that the user cal-

ibration needs to be done only once for each user after 

which the same calibration information can be used repeat-

edly. 

3.3 Computing the binocular POG 

The gaze point can be computed using Eq. (5) for both 

eyes separately and taking the middle point: 

 

where superscripts  𝐿 and  𝑅 refer to left and right eye. 

We are left with estimating the gaze distances 𝛿L and 𝛿R 

for which we present two different methods. When gazing 

at a point, the left and right gaze vectors of the viewer are 

directed (approximately) to the same gaze point. Actually, 

due to possible fixation disparity there might be a slight 

mismatch between the gaze vectors (Jainta et al. 2015).  

 

 

We can thus minimize the squared difference between 

the left and right gaze points (see Eq. (4)) for solving the 

left and right gaze distances 𝛿L and 𝛿R. We get equations 

(8) and (9), where 𝑔 = 𝑅𝐿/∥ 𝑅𝐿 ∥ is the normalized gaze 

vector. 

When gazing at a long distance, the gaze vectors are 

nearly parallel and slight inaccuracy in the estimation may 

cause the gaze vectors to diverge, causing the intersection 

to be located behind the eyes. In a simpler approach, which 

avoids this problem, a common gaze distance 𝛿 = 𝛿L =

𝛿R is estimated by assuming both gaze vectors to have 

equal length, resulting in a configuration where the ap-

proximated gaze vectors always cross directly on the mid-

line between the eyes, in front of the nose. Here, we can 

define a right-angled triangle, where one of the angles is 

defined by the inner product of the gaze vectors, and one 

cathetus as half the distance between cornea centers. While 

in real viewing conditions where the lengths of the gaze 

vectors differ, the error is small as the viewing distance 

always clearly exceeds the distance between the eyes; in 

other words, the angle between the gaze vectors is typi-

cally small. For instance, when fixating a target 30 degrees 

to the left of the midline and one meter from the viewer, 

the resulting error in scene camera coordinates (located be-

tween the eyes) is only 0.03 degrees. 

4 Fitting the physical model 

As described in the previous section, the physical eye 

model uses pupil and cornea centers, 𝑃𝑐 and 𝐶𝑐, for com-

puting the POG. This section presents ways to compute 

these from certain features in the eye image – namely the 

LED reflections (that is, glints) and the pupil ellipse. 

Ideally, we would like to track the 3D points 𝑃𝑐 and 𝐶𝑐 

in time using, e.g., Bayesian estimation scheme for a Mar-

kov process. However, the resulting likelihood turns out to 

be problematic to solve as we would need to know the lo-

cations of the reflections on the surface of a sphere, pro-

jected to the 2D image plane, given locations of the light 

sources and the radius and center of the sphere. This ap-

pears intractable, at least in closed form and in realtime. 

However, the inverse problem is solvable, that is, it is 

possible to compute the 3D pupil and cornea centers from 

the detected pupil and glint locations in the 2D image: 
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where x is the vector of 2D glint locations in the observed 

image and u is a set of 2D coordinates of opposing point 

on the pupil perimeter. The following two subsections pre-

sent these computations. 

4.1 Cornea center computation 

Computing the cornea center from the detected glints, 

Eq. (10), is done using a scheme that is presented by Hen-

nessey et al. (2006) and Shih and Liu (2004) and explained 

here in brief. It is based on the law of reflection, according 

to which the LED source, its reflection from the corneal 

surface, the cornea center, camera’s optical center, and the 

image of the reflection on the camera’s image plane are all 

co-planar. Hence, we can form a glint specific auxiliary 

coordinate system whose origin is at the optical center of 

the camera, as described in Figure 4.  

 

Figure 4. The auxiliary coordinate system, used for esti-

mating the cornea center from glints. The origin O is at 

the optical center (i.e., the focal point) of the utilized pin-

hole camera model. Here 𝑞𝑖̂ is the location of i’th LED 

light source, 𝑔𝑖̂ is the corresponding glint on the corneal 

sphere, 𝑖𝑖̂ is the image of the i’th glint on the image plane, 

and 𝑐𝑖̂ is the cornea center. Each LED, and the corre-

sponding glint, has their own coordinate system with the 

shared origin. The figure is adapted from Hennessey et 

al. (2006). 

For the sake of clarity, the cornea center is denoted here 

with 𝑐. A light ray from 𝑞
𝑖
 reflects at 𝑔̂

𝑖
 and traverses 

through 𝑂 and 𝑖̂ 𝑖. Because the LED locations are assumed 

to be known in camera coordinates and the vectors 𝐼̂ 𝑖 

(which point from 𝑂 to 𝑖̂ 𝑖) are known, it is possible to com-

pute the rotation matrix 𝑅̂𝑖 between the camera’s own co-

ordinate system and the auxiliary coordinate system. 

The cornea center can then be defined in the auxiliary 

coordinates as 

where 𝜌 is the (fixed) radius of the corneal sphere and 

The cornea center in the auxiliary coordinates, 𝑐̂𝑖, can be 

transformed back to the camera coordinates, 𝑐𝑖 = 𝑅̂𝑖

−1
𝑐̂𝑖, 

which results in an underdetermined system of 3 equations 

with 4 unknowns: (𝑐𝑖)𝑥, (𝑐𝑖)𝑦, (𝑐𝑖)𝑧, and (𝑔𝑖)𝑥. However, 

having at least two LED sources and corresponding glints 

provides an overdetermined system because the cornea 

centers equal (𝑐𝑖 = 𝑐𝑗∀𝑗 ≠ 𝑖) and so with two LEDs there 

are 6 equations and 5 unknowns. Each additional LED 

(and corresponding glint) increases the rank of the system 

so that the difference between the number of equations and 

unknowns behaves as 3𝑁𝐿 − (3 + 𝑁𝐿) = 2𝑁𝐿 − 3 where 

𝑁𝐿 is the number of LEDs. The resulting system of (non-

linear) equations can be solved numerically using, e.g., Le-

venberg-Marquardt method. 

4.2 Pupil center computation 

In the pupil center estimation, Eq. (11), we again fol-

low Hennessey et al.(2006). The (3D) pupil center is com-

puted as the average of different opposing points on the 

pupil perimeter. In order to determine the 𝑖th perimeter 

point, a ray is traced from its image point 𝑘𝑖 on the cam-

era’s image plane, through the optical center 𝑂 and point 

𝑢𝑖 on the surface of the corneal sphere where the ray re-

fracts according to Snell’s law towards the perimeter point 

𝑢𝑖 (see Figure 5). 
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Figure 5. The ray tracing method for estimating the pupil 

center. Pc is the pupil center, Cc is the cornea center, ûi is 

a point in the pupil perimeter, ui is a point in the corneal 

surface, K̂i is a unit vector between these, ki is the image 

point of ui , Ki is the unit vector between these, and O de-

notes the optical center. The ray Ki refracts at the cor-

neal surface because the refractive index of the cornea is 

nc > 1. The figure is adapted from Hennessey et al. (2006). 

Let us first estimate the point 𝑢𝑖. The origin of the cam-

era coordinate system is at the optical center so 𝑢𝑖 can be 

described with a parametric equation 

because the point 𝑢𝑖 lies on the surface of the corneal 

sphere with center 𝑐 and radius 𝜌, ∥ 𝑢𝑖 − 𝑐 ∥= 𝜌, we have 

a set of 4 equations with 4 unknowns (𝑠𝑖 and the three com-

ponents of 𝑢𝑖) from which we can explicitly solve 𝑠 and 

thus obtain 𝑢𝑖. 

Tracing the refracted vector 𝐾̂ (with the known refrac-

tive index of the cornea 𝑛𝑐) gives another parametric equa-

tion: 

Because the distance between the pupil perimeter point 

and cornea center is ∥ 𝑢𝑖 − 𝑐 ∥= √𝑟𝑑
2 + 𝑟𝑝

2 where 𝑟𝑑 is 

given by population averages and 𝑟𝑝 is half of the length of 

the major axis of the fitted ellipse, we get a determined 

system of 4 equations with 4 unknowns (𝑤𝑖  and the three 

components of 𝑢𝑖) which is solvable for 𝑤𝑖 . The perimeter 

point 𝑢𝑖 can therefore be computed and the pupil center 𝑃𝑐 

can be estimated as the average of opposing points. We use 

two pairs of points: the endpoints of the major and minor 

axis of the fitted ellipse. 

5 Locating the pupil features 

The pupil detection is relatively straightforward, utiliz-

ing conventional computer vision methods. Since the com-

putation of the 3D pupil center requires locating at least 

two opposing points on the pupil perimeter, we search for 

an ellipse that most closely follows the pupil perimeter and 

use the endpoints of the ellipse axes for computing the 3D 

pupil center. 

 

Figure 6. From left to right: the low-pass filtered image 

with the estimated pupil center (see Section 2.2); the bi-

narized image; the filtered image with detected pupil 

contours, defined as the edges of the blob in the binarized 

image that contains the estimated pupil center; and the 

pupil ellipse that is fitted to the contours. 

The opened eye image is cropped around the approxi-

mate pupil center (see Section 2.2) and low-pass filtered. 

The filtered image is morphologically closed to emphasize 

the pupil using a circular structural element with size close 

to the pupil size. As this may, however, disturb the pupil 

edges, it is heuristically summed with the non-closed im-

age. In order to achieve invariance to average brightness 

of the image, the summation image is scaled so that the 

intensity values are in the range [0,1]. The scaled image is 

thresholded, using a fixed threshold value. The connected 

components (“blobs") of the resulting binary image are 

computed, using a four-way connectivity. The blob that 

encloses the approximate pupil center is considered to be 

the pupil blob. The contours of the pupil blob are found 

and an ellipse is fitted to the found contours by minimizing 

the average distance between the ellipse and contour points 

(Fitzgibbon and Fisher 1995). Figure 6 gives an example 

of the filtered image, the binarized image, the found pupil 

contours, and the fitted ellipse. 

Finally, in order to increase robustness against image 

noise, the endpoints of the major and minor axes of the 

fitted ellipse are filtered using the eye stability parameter 

𝜃 (Eq. (1)) so that during the eye movements we would 

rely more on the measurements: 
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where 𝑢 depicts any of the four endpoints and 𝑢 is the cor-

responding measured endpoint. The thresholding of 𝜃 with 

𝛾min is there to force the measurements to be always con-

sidered by at least small amount. This is especially im-

portant in case of smooth pursuits, during which 𝜃 can be 

too low. 

6 Locating the cornea features 

Locating the group of glints in the eye image is gener-

ally a more complex task than locating the pupil. While the 

glints are typically very bright in the image, it should be 

easy to find the possible glint pixels by their intensity val-

ues. However, the surface of the eye is approximately 

spherical and smooth only on top of the corneal bulge. On 

top of the sclera (the white of the eye), the surface is une-

ven and can create additional distracting and distorted re-

flections. Identifying true glints from the corneal surface 

is alleviated by the fact that the grid shape is relatively sim-

ilar across eye images: the glints should approximately 

conform to a specific shape. In addition, during fixations 

the glints should appear at the same location as in the pre-

vious video frame. These three assumptions about (i) the 

appearance of a glint, (ii) the shape of the glint grid, and 

(iii) the dynamical behavior of the glints can be combined 

within the Bayesian framework used here. The Bayesian 

approach allows locating the glint grid even when some 

glints may be occluded or distorted due to extra reflections 

or the eyelid. In our previous implementation (Lukander et 

al. 2013), the glints were identified heuristically; with the 

presented model grid based approach this error-prone step 

is avoided as an additional benefit. 

6.1 Bayesian model for glints 

Let x denote the glint grid, i.e., the coordinates of the 

glints in the eye image. The size of x is hence the number 

of LEDs, 𝑁𝐿. The unnormalized posterior distribution for 

x, under Markov assumption, is 

where ℐ𝑡 denotes a “general" eye image, captured at time 

𝑡. Due to our chosen likelihood function, we are unable to 

compute the integral in Eq. (17) in closed form since the 

(unnormalized) posterior distribution is not of a standard 

integrable function. The integral could be estimated with 

numerical methods, such as variational Bayes or Monte 

Carlo sampling. These methods are computationally 

heavy, making them unfeasible for realtime use. We thus 

use MAP (maximum a posteriori) estimate, that is, take the 

posterior to be a delta function at its maximum value: 

where x̂t-1 is the MAP estimate of the posterior at previous 

time instance. Thus the only data we have to store in 

memory is the previous estimate, x̂t-1, and we can write 

 

6.2 Implementation of the model 

Section 2.2 presented cropping and opening of the in-

put eye image and a method for finding the approximate 

pupil center in it. In a practical implementation of our 

probabilistic model for finding glints, the cropped image 

is filtered with the morphological top-hat operation, de-

fined as the difference between original and opened image. 

The top-hatted image is cropped according to the pupil 

center and filtered using a small kernel to remove noise. 

This operated image is the input observation in the Bayes-

ian model, denoted ℐ. An example of ℐ is given in Figure 

7. 

In our practical algorithm for finding the MAP esti-

mate, the components are estimated one at a time. We are 

therefore interested on a conditional distribution, given the 

already estimated subset of the glint grid. The conditional 

posterior distribution for any component 𝑖 of xt can be 

written as 

 

where 𝒙1:𝑖−1
𝑡  denotes the already estimated components of 

the parameter vector of which the likelihood is independ-

ent. For convenience, we have dropped the “hat" symbol 

in the estimate of previous 𝑡 so that 𝒙𝑡−1 ≡ 𝒙𝑡−1. Luckily, 

we do not need to know the normalization constant of the 

posterior as we are interested only on the relative values of 

it. Note that the dimension of a single glint 𝑥𝑖 is two as 
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there are horizontal and vertical components. When esti-

mating the first component, 𝑖 = 1, there are no already es-

timated components: x1:i-1 = x1:0 = {}, and 𝑥1 must be esti-

mated by other means (our way of doing this is described 

in Section 6.5). 

6.3 Likelihood model 

The likelihood function should give high values for the 

glint locations. As these pixels are assumed to be bright 

(see Figure 2B), a natural form for the likelihood is 

 

where ℐ𝑠 is an eye image which is scaled by its maxi-

mum value: ℐ𝑠(𝑥) ∈ [0,1] ∀ 𝑥, and 𝛽 is a pre-fixed param-

eter. 

6.4 Prior model 

Our prior assumptions are that, a priori to seeing a new 

image, the shape of the glint grid will be similar to what it 

is on average (in reality, the shape of the glint grid varies 

according to the position and rotation of the eye, and the 

individual shape of the corneal surface) and that the move-

ment of the glints from the previous frame is in accordance 

with the estimated eye stability, 𝜃. These assumptions are 

realized by combining two independent prior distributions, 

both modeled as Gaussian distributions. 

 

Figure 7. An example of a top-hat operated eye image 

which is cropped according to the estimated pupil center 

and filtered. Right: An example of a model grid. Red dots 

depict the mean values of the grid and the contour lines 

represent the covariance of each grid point. Note that in 

the conventional image coordinate system, the vertical 

coordinates increase downwards. 

The prior model for the shape utilizes a model grid 

which depicts how the glint grid is typically distributed, 

how it (co)varies, and its scale. For computing the model 

grid, a set of training images is collected and the glint lo-

cations are manually annotated in each image. The average 

grid and covariance is computed from the collected point 

set in a mean and scale free space which makes the system 

invariant to the location and scale of the eye with respect 

to the eye camera(s). Including rotation invariance would 

be useless as the pose of the glasses with respect to user’s 

eyes is in practice always horizontal and the rotation invar-

iance would only increase search space and computation 

time. An example of a model grid is shown in Figure 7. 

Note that the manual annotation needs to be done only 

once for each device setup (not for each user). 

The grid point set is denoted with G and its covariance 

with 𝐶𝐺. The “total" prior distribution is a product of the 

two Gaussian distributions: 

 

The subscript 𝑐 stands for “conditional" and 𝑑 for “dy-

namical". The expected location of 𝑖th component of the 

conditional Gaussian, without yet taking the covariance 

into account, is 

 

where 𝐸[⋅] denotes the averaging operation and 𝑠 is the 

estimated scale. That is, to get the expected location of the 

current point (without covariance’s effect), the scaled dis-

tance of the current point of the model grid to the average 

of previous points of the model grid is added to the average 

of previously estimated grid. 

The scale 𝑠 is estimated (when 𝑖 > 2) as 

 

where 𝜎𝑢 denotes the standard deviation of the hori-

zontal components of the points and 𝜎𝑣 that of vertical 

components (note that 𝑥𝑖 is two-dimensional with horizon-

tal and vertical coordinates). Thus, if the glints appear in 

the eye image in same scale as in the model grid, we have 

𝑠 ≈ 1; if the eye is closer to the camera or the corneal ra-

dius is larger, compared to what was used for generating 
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the model, we have 𝑠 > 1. As more components are esti-

mated (that is, 𝑖 increases), the uncertainty in the scale es-

timation decreases. For the second component (𝑖 = 2), the 

scale is the grid model’s scale, i.e., we assume the scale to 

be the average scale of the training samples used for build-

ing the model grid (yet updated, see Subsection 6.6). 

In order to compute the conditional mean and covari-

ance, considering also the covariance 𝐶𝐺 , we partition 𝑥, 

𝐺, and 𝐶𝐺: 

 

We get for the (scaled) conditional mean and covari-

ance of the conditional prior distribution 𝒩𝑐: 

 

 

where the term 𝜅 𝑖 𝕀2 regularizes the covariance (𝕀2 is a 

2 × 2 sized identity matrix). This is because as 𝑖 gets 

larger, the covariance gets smaller and we found in prac-

tice that eventually the prior distribution may restrict the 

search space too much. An alternative would be to use a 

prior distribution with heavier tails, such as the t-distribu-

tion.  

Let us study the “dynamical" prior distribution, 𝒩𝑑 , of 

Eq. (22). Its mean value is simply the location of the cor-

responding glint in previous image: 

 

and the covariance is a diagonal matrix 

 

where 𝑐 sets the upper bound for the diagonal elements. 

Hence, if the eyes seem to be in the same location as in the 

previous image based on the eye stability estimate de-

scribed in Section (2.3), the glints are searched for in the 

close vicinity of their corresponding previous location and 

if the eye seems to be moving, the search space is in-

creased. Note that 𝜃 ∈]0,1[ and due to the ubiquitous and 

omnipresent image noise, 𝜃 is always clearly positive. 

However, one might want to use a lower bound on the di-

agonal elements of (29) to be on a safe side with its inver-

sion. 

Finally, the combined prior distribution, which is the 

product of two Gaussian distributions (22), is another 

Gaussian: 

 

where 

 

and 

 

and the normalization factor is 

 

6.5 MAP estimation 

As mentioned in Section 6.1, for the glint locations, we 

search for values that maximize the posterior distribution: 

the MAP estimate. This is done by maximizing Eq. (20) 

one component at a time. In order to increase robustness, 

instead of a single MAP estimate many estimates are 

searched independently by using different ordering for the 

components of xt. As this approach resembles Particle fil-

tering – also known as Sequential Monte Carlo sampling 

(Doucet, De Freitas, and Gordon 2001) – we call the inde-

pendent searches “particles" which may be considered as 

hypotheses for the parameter values. For examples on us-

ing Particle filtering for locating image features, see (Tam-

minen and Lampinen 2006; Toivanen and Lampinen 

2011). 

First components of the particles are initialized in the 

brightest pixel locations of the image ℐ. The number of 

these “candidate" glint locations is denoted 𝑁gl.cand.. For 

each such candidate location, 𝑁𝐿 particles are initialized 

with different component order. Hence, the number of par-

ticles is 𝑁part. = 𝑁𝐿 × 𝑁gl.cand.. 
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 When searching the 𝑁gl.cand. brightest image pixels, the 

vicinity of the previously found location is overpainted so 

that neighboring pixels will not be chosen. The glint can-

didates may naturally contain also false glints but the more 

candidate points there are, the higher is the probability of 

correct glints being chosen. After each particle has 

searched their MAP estimates, they are compared and the 

one with the largest maximum value of the joint posterior 

(i.e., product of the MAP values of the conditional distri-

butions) is defined as the “winner" whose parameter val-

ues are taken to be the final MAP estimate. Figure 8 exem-

plifies the MAP estimation procedure. 

Note that the used method always localizes the glints, 

whether they are visible or not. Non-visible glints are lo-

cated in their supposed location as suggested by the grid 

model (that is, prior). Figure 9 illustrates such a case. How-

ever, when computing the cornea center (see Section 4.1), 

Figure 9. An illustrative example of the MAP estimation. Two particles are shown, in top and bottom rows. In the 

three leftmost panels, both particles have estimated two components, whose locations are marked with green plus 

signs, and are estimating their third component. The particle in the top row seems to be estimating the grid compo-

nents in correct order whereas the other particle in the bottom row has a false order. The panels from left to right 

show respectively the contours of the prior distribution, likelihood, and posterior distribution of the third component. 

The distributions are evaluated only in the vicinity of the prior mean. The MAP estimate is marked with a magenta 

cross. The rightmost panels show the final grid estimation of the particles. The maximum of the joint posterior of the 

top particle is likely to greatly exceed that of the bottom row so if only these two particles were in use, the estimated 

glint grid location would be that of the top row particle. 

Figure 8. An illustrative example of locating an occluded glint. The topmost glint is occluded by the eyelid. The parti-

cle has successfully estimated three components. Since there is no visible glint where the fourth glint is supposed to 

be according to the prior model, the likelihood is approximately flat and the posterior equals the prior (up to a scaling 

factor). The remaining two glints are again successfully located. The rightmost image shows the estimated grid lo-

cation. The red thick plus sign indicates a low intensity value at the corresponding glint location. 
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including the estimated location of the non-visible glints 

may increase the estimation error as opposed to including 

only the visible glints. Therefore, the cornea center is com-

puted from a subset of the detected glint grid which con-

sists of glints whose score exceeds a threshold. The score 

is defined simply as the intensity value at the glint in the 

scaled image, i.e., log likelihood (Eq. (21)) divided by 𝛽. 

The allowed minimum size for the subset is naturally two 

to be able to solve the 3D cornea center. Figure 10 gives 

an example of having additional distracting reflections 

around the “correct" glint. With a reasonable prior model, 

the MAP estimate is at the correct location. 

6.6 Updating glint grid 

The shape of the glint grid, G, varies from person to 

person, mainly due to different eye shapes. As noted, we 

use an average glint grid model which is a typical repre-

sentation of the grid. This grid model can be modified to 

adapt to the personal grid by updating the mean, covari-

ance, and scale recursively: 

 

 

 

where 𝑇𝑝𝑟 is the number of prior measurements assumed 

to have occured before the first frame and where the 

weight 𝜔 is defined as the logarithm of the MAP value di-

vided by the largest possible value for the logarithm of the 

posterior:  

 

where max[𝑝𝑟] is the sum of the maximum values of the 

logarithms of the conditional prior distributions, Eq. (30), 

summed over the components.  

7 Kalman filter 

Despite all the advanced tracking algorithms for the 

glints and pupil, the estimated gaze point is often still 

noisy. This is understandable since even the tiniest differ-

ences in the glint locations or the endpoints of the fitted 

pupil ellipse cause deviation in the calculated gaze point. 

Because images always contain noise, the estimations of 

the eye features, and therefore also the gaze point, fluctu-

ate even when steadily fixating a single point. This is at 

best just irritating but often disturbs the analysis and can 

even make the use of gaze information impractical. 

As a remedy, the gaze point is smoothed by Kalman 

filtering which has been shown to improve performance 

(Toivanen 2016). A Kalman filter produces a statistically 

optimal closed form point estimate for the unknown state 

of a linear dynamic model which has Gaussian distribu-

tions for process and observation noises; see, e.g., Särkkä 

(2013). A Kalman filter can predict the state also in case 

of missing observations which may happen here if the eye 

features of both eyes are misdetected. Comparing to prior 

work, Zhu and Ji (2005) used a Kalman filtering for track-

ing the pupil and Komogortsev and Khan (2007) used Kal-

man filter directly on the gaze signal, as is done here, but 

they had no observation model for the velocity component 

which compromises the performance with a noisy signal. 

Figure 10 An illustrative example of finding glint when there are additional false reflections around the correct glint. 

The likelihood of the second glint is multimodal. The prior assumption about the glint location causes the MAP to be 

in the correct location. The rightmost image shows the estimated grid location. 
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Let us denote the horizontal and vertical gaze coordi-

nates (in the scene camera) at time instance 𝑡 with 𝑞𝑢
𝑡  and 

𝑞𝑣
𝑡  and their velocities with 𝑞𝑢̇  and 𝑞𝑣̇ . The movement of 

the gaze point is assumed to be piece-wise linear so that 

the state can be modeled to evolve linearly as 

 

The process is assumed to be noisy with zero-mean 

Gaussian distribution so we get 

 

where 𝑄𝑡  is the covariance of the process noise. The pre-

dictions for the state estimate (𝛹
𝑡
) and its covariance (𝑃

𝑡
) 

at time instance 𝑡, given the previous estimates 𝛹̂
𝑡−1

 and 

𝑃̂
𝑡−1

, are 

 

 

Gaze coordinates and their velocities are measured 

with a zero-mean Gaussian noise distribution. The obser-

vations 𝑧𝑡 at time 𝑡 are thus related to the state by 

 

where 𝑅𝑡 is the covariance of the measurement noise. The 

(unknown) true state 𝛹𝑡 of the system, depicted with 

Equations (39) and (42), and its covariance 𝑃̂
𝑡
 can be esti-

mated as 

 

 

that is, the estimate for the state is a weighted average of 

the latest measurement and the prediction. Computing the 

weight as 

 

is known as Kalman filtering. 

The gaze point observations are naturally the estimated 

gaze points, see Eq. (7). The velocity observations could 

be simply the derivative of the gaze point observations but 

then the noise in the gaze point estimates would affect the 

velocity estimates, too. A better approach is to utilize the 

eye stability parameter 𝜃 since it is (almost) independent 

on the gaze point estimates. This is beneficial especially 

during fixations when the pixel-wise difference in subse-

quent eye image frames is close to zero (⇒ 𝜃 ≈ 0) while 

the difference in gaze point estimates can be relatively 

large. Because 𝜃 only estimates the amount of movement, 

the direction of the velocity is computed from the gaze 

point estimates and the velocity observations are 

 

One problem with the presented Kalman filter is that 

the saccades are relatively sudden and fast which can lead 

to the assumption about the piece-wise linearity failing, es-

pecially with a low frame rate (like 30 fps). Luckily, the 

covariances of the process noise (𝑄𝑡) and measurement 

noise (𝑅𝑡) can depend on the time instance 𝑡, that is, they 

can be modified realtime. Here the process covariance is 

taken to be constant, 𝑄𝑡 ≡ 𝑄 ∀𝑡, but the measurement co-

variance is modified in realtime so that the larger the ve-

locity estimate, the more the location observations are 

trusted and when the eyes seem to fixate, the location pre-

dictions are trusted more. In practice, this means that the 

gaze signal is filtered (almost) only during fixations; dur-

ing saccades and blinks, the Kalman filtered gaze point ap-

proximately equals the “raw" gaze signal. The covariance 

of the measurement noise is defined as a diagonal matrix 

 

where 𝑅𝑣 is a constant variance of the velocity observation 

and 𝑅𝑙
𝑡 is a time-dependent variance of the location obser-

vation: 

 

where 𝑅max is a pre-fixed maximum variance for the meas-

urement noise. Remember that 𝜃 ≈ 1 during and also 

slightly after the saccade so there is a small lag after be-

ginning of a fixation before the signal is filtered heavier, 
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exactly as wanted. Due to the modification of the measure-

ment noise, the Kalman filtering causes no latency. 

If the measured point is clearly outside the image area 

or if the measured velocity exceeds a threshold (as often 

happens during blinks), the measurement is considered an 

outlier; in this case, the prediction is used for the estimated 

location and the velocity is set to zero. 

8 Algorithmic nutshell 

The whole algorithm of tracking the gaze point is re-

capped below. The number in brackets shows the corre-

sponding sections and subsections. 

1. Preprocess eye images (2.2)  

a) Transform the images into grayscale and open 

and crop the images 

b) Locate the approximate pupil centers 

2. Estimate the eye stability (2.3) 

3. Localize glints (6) 

a) Use the likelihood and prior models (6.3, 6.4) 

b) Estimate MAP (6.5) 

c) Update the model glint grid (6.6) 

4. Localize pupil (5) 

5. Estimate cornea center (4.1) 

6. Estimate pupil center (4.2) 

7. Perform user calibration, if not already done (3.2) 

8. Compute POG (3.3) 

9. Kalman filter (7) 

Sometimes the localization of pupil and/or glints fail 

(steps 3 and 4 above). In case of pupil, the failure can be 

deduced from the difference between the left and right pu-

pil sizes which should approximately match. The validity 

of the estimated glint locations is inferred from the weights 

𝜔, see Eq. (37). Thresholding the weight, either of the gaze 

vectors can be excluded from the computation in which 

case the gaze point in Section 3.3 is computed using the 

“good" eye only and the gaze distance is estimated to be 

the previous successfully estimated distance. If features 

from both eyes are poorly localized, the frame is concluded 

to be part of a blink, during which the eyelid naturally oc-

cludes the pupil and glints. 

9 Experimental evaluation 

This section evaluates the performance of the presented 

algorithms. First, we present our hardware and software 

solutions, used for testing the algorithms. Next, we intro-

duce the experimental setup, provide the used parameter 

values, and show some qualitative results. Then we present 

the performance measures which are used for reporting the 

numerical performance. Finally, we discuss the challenges 

of the system through some example cases. The study pro-

tocol has been reviewed by the Coordinating ethics com-

mittee of the Hospital District of Helsinki and Uusimaa. 

The recorded data is published openly 

 (https://github.com/bwrc/ooga/tree/master/public_data). 

9.1 Hardware and software 

For testing and utilizing the presented algorithms we 

have built a glasses-like 3D printed headgear where the 

cameras and circuit boards are attached (see Figure 11). 

The cameras are standard USB cameras that have no IR 

filters and have high pass filters inserted for blocking vis-

ible light. For both eyes there is a circuit board powering 

six IR LEDs, powered via the USB camera cables. As the 

frame is 3D printed, the positions for the cameras and 

LEDs relative to the cameras are extracted from the 3D 

model. The cameras we used capture images with VGA 

(640 x 480 px) resolution. The average frame rate during 

the experiments was 25 fps (the cameras used have a fixed 

iris, and the frame rate depends on available illumination). 

The safety issues were considered in the design so that the 

overall emitted radiation power is in line with the safety 

standard IEC 62471 (International Electrotechnical Com-

mission 2006). 

 

Figure 11. The implemented gaze tracking glasses. There 

are six LEDs around each eye. The scene camera is lo-

cated above the nose. 

We have implemented all the presented algorithms in 

C++ utilizing the following libraries: The OpenCV library 

https://github.com/bwrc/ooga/tree/master/public_data
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for computer vision tasks, the Eigen library for matrix op-

erations, the GSL library for numerically solving the sys-

tem of nonlinear equations in estimating the cornea center, 

and the Boost library. During the experiments, for maxi-

mum control, the software was used just to record the vid-

eos which were processed afterwards with a Dell E6430 

laptop (containing i5-3320M @2.60 GHz and a Linux Ub-

untu 16 LTS operating system). 

9.2 Experimental setup 

The performance of the presented system, and for ref-

erence the commercial SMI system (with iView 2.1 re-

cording software and BeGaze 3.5 analyzing software) was 

tested in a laboratory setting with 19 participants (9 males, 

age 31 ± 8, all had normal vision with no corrective op-

tics). The subjects sat in a chair in a dimly lit room (the 

lighting in the room was dim to enable automatic detection 

of the gaze targets in the scene video) and viewed a display 

while wearing the gaze tracking glasses whose camera 

streams were recorded. Different gaze distances were used 

to test performance outside the calibrated distance. The ex-

periment included three different displays with three view-

ing distances (a 24” monitor at 60 cm, a 46” HDTV at 1.2 

m, and a projector screen at 3.0 m) so that at each distance 

the resolution of the stimulus was adequate and the viewed 

stimuli spanned a similar visual angle. 

The subjects were asked to sit relaxed and hold their 

head still during the measurements. User calibration was 

performed at only one of the three viewing distances for 

each subject. The presentation order of the displays and the 

calibration distance was permuted between the participants 

and each calibration distance was used equally often. 

 

Figure 12. From left to right: The image presented dur-

ing the free viewing task and schematic grids of the cali-

bration, saccade, and smooth pursuit tasks (not to scale) 

with the starting and turning points (with running num-

ber) and movement directions of the dot in the task (i.e., 

the sequences are 1-2-3-4-1, jump, 5-6-7-8-5). Note that 

only one grid point was visible at a time. 

The calibration procedure cycled a stimulus dot 

through nine different locations on the selected calibration 

distance. The duration of the fixation stimuli was jittered 

between 2–3 s to prevent anticipatory gaze shifts. To de-

crease artifacts in the evaluation data, after every third lo-

cation the dot changed from black to gray for three seconds 

signaling the subject to blink freely, while avoiding blinks 

during the rest of the sequence. The actual calibration of 

the system in this scenario was performed offline as de-

scribed in Section 3.2. 

The calibration also included a 20-second free viewing 

task with a picture of the Finnish Parliament House (the 

leftmost image in Figure 12). The stimulus was selected to 

supply evenly spread fixation targets across the image sur-

face. The data recorded during free viewing was used for 

forming the initial grid model by manually annotating glint 

locations in ten eye images (per eye) for each subject. In 

the evaluation, a grid model was constructed from all the 

other subjects’ glint location data but the one being meas-

ured, as a leave-one-out scenario, to avoid overfitting. The 

SMI offers a 1-point and 3-point calibration routines; we 

used the 3-point calibration, with a triangle of dots (see 

Figure 12). 

The test phase comprised two tasks: a saccade task and 

a smooth pursuit task. The saccade task included 25 stim-

ulus locations forming a regular 5 × 5 grid – see Figure 12 

– with a random presentation order (however, matching 

between subjects). Again, blinking was discouraged ex-

cept after every third stimulus location ending with a blink 

pause. The smooth pursuit task presented a dot moving 

with a constant velocity of 3.0 degrees per second. The se-

quence is depicted in the rightmost panel of Figure 12. In 

each corner, the dot stopped for the blink pause. In each 

phase and for each distance, the size of the dot was one 

degree and the dot grid spanned an area of 24 degrees in 

both directions. 

The performance of the presented and the SMI system 

was evaluated by running each stage two times, once for 

each system. For both devices, the calibration was per-

formed at the first presentation distance and the same cal-

ibration information was used for all distances. The track-

ers were swapped during each distance and between 

changing distances and the order of the glasses was bal-

anced, each system going first the same number of times. 

Unfortunately, some human errors were committed 

during the recordings. For two subjects, the recordings for 

the calibration phase were accidentally deleted. In these 
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cases, the first nine fixations in one of the other two sur-

viving test phase recordings were used for user calibration. 

Additionally, for one subject the calibration display was 

not fully visible in the scene camera recording, inhibiting 

performing the calibration. One subject wore heavy mas-

cara, challenging pupil detection for both systems, and the 

SMI calibration for one subject was poor. These anomalies 

are reported in Table 1. 

The videos, recorded during the experiments, were pro-

cessed using the presented method, producing gaze coor-

dinates in scene camera coordinate system, the weights 𝜔 

(see Eq. (37)), blink classification, and estimated gaze dis-

tances. If the frame was classified as a blink, it was not 

used in the analysis – sometimes the participants blinked 

also when not supposed to. The videos were also processed 

with the SMI software, outputting the gaze coordinates and 

event classification (a fixation, blink, or saccade). 

Table 1. The anomalies of the dataset 

ID# Issue 

06 Has heavy mascara 

07 Some of the calibration dots were not visible 

11 Calibration videos of the presented system were 

destroyed 

13 Calibration videos of the presented system were 

destroyed 

13 SMI calibration possibly failed 

9.3 Parameter values 

The algorithms require a set of fixed parameters, tuning 

their performance. However, the system is not very sensi-

tive to these as long as they are within a “reasonable" 

range. The parameters, their explanations and the values 

used are tabulated in Table 2. These values were found to 

give satisfactory performance during previous testing, i.e., 

they were not optimized in any sense for this particular da-

taset. The physical eye parameters were as follows: cornea 

radius 𝜌 = 7.7 mm, the refractive index of cornea 𝑛𝑐 =

1.336, and the distance between cornea center and pupil 

plane 𝑟𝑑 = 3.75 mm. 

The most effective parameters are probably the likeli-

hood steepness 𝛽, the prior covariance regulator 𝜅, and the 

threshold parameter in the pupil detection. Computation-

ally, the most demanding part is the MAP estimation of the 

glint locations. There, the computation time is directly pro-

portional to the number of particles, i.e., the number of 

glint candidates (𝑁gl.cand.) multiplied by the number of 

LEDs. Therefore, we also investigate the effect of decreas-

ing 𝑁gl.cand. on performance and computation time. 

Table 2. The parameters of the model, their explanation, 

the corresponding equation or section in the text, and the 

values used. 

param. explanation in text value 

𝛽 likelihood steepness Eq.(21) 100 

𝜅 prior covariance reg-

ulator 

Eq.(27) 1 

𝑐 max. variance in dyn. 

prior 

Eq.(29) 100 

𝑄 process variance in 

Kalman filter 

Eq. (39) 1 

𝑅𝑣 velocity meas. vari-

ance in Kalman filter 

Eq. (47) 1 

𝑅max max. meas. variance 

in Kalman filter 

Eq. (48) 100 

𝜆𝑚 sigmoid parameter Eq. (2) 0.02 

𝛼𝑚 sigmoid parameter Eq. (2) 500 

𝑤 increase of 𝜃 after 

saccades 

Eq. (1) 0.7 

𝑇𝑝𝑟 number of prior 

measurements 

Eq. (36) 10 

𝛾min minimum 𝜃 value in 

pupil detection 

Eq. (16) 0.2 

𝑁gl.cand. number of glint can-

didates 

Sec. 6.5 6 

thold threshold in pupil de-

tection 

Sec. 5 0.2 

9.4 Qualitative performance 

Figure 13 exemplifies a gaze tracking signal, blink 

events, and sigmoid values of Eq. (2), estimated from a 

video material recorded during the saccade and smooth 

pursuit tasks. The signal seems to behave smoothly during 

fixations, as expected from the utilized Bayesian tracking 

algorithms and Kalman filtering. On the other hand, the 

signal succeeds to follow the saccadic behavior without an 

“overshooting" effect, owing to the modified measurement 

variance of the Kalman filter. Also the sigmoid value, 
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which reveals the stability of the eye images, seems to be-

have as assumed: close to zero during fixations and unity 

during saccades. The signal seems reasonable during the 

smooth pursuits, too, albeit the signal “jerks" a bit when 

the stability is estimated to change. Remember that during 

blinks, the POG estimate is typically the Kalman filter pre-

diction. 

 

Figure 13. Illustrative examples of the estimated gaze 

tracking signal, in the scene camera coordinates. Blue 

and green lines show the horizontal and vertical coordi-

nates. Estimated blinks are shown as vertical red dotted 

lines. The black curve shows the sigmoid values of Eq. (2), 

scaled between 0 and 500 which is indicated as a dashed 

vertical line. Left panel is from the saccade task and right 

panel from the smooth pursuit task. 

9.5 Performance measures 

For an automatic performance analysis, the scene cam-

era videos were processed with a Matlab script which au-

tomatically localizes the stimulus dot, allowing the com-

putation of the error between the estimated and true values 

and thereby the numerical performance. For analyzing 

gaze location accuracy, after each stimulus movement a 

period of one second was excluded from the analysis; it 

was assumed that the corresponding reaction time and sac-

cade time was never longer than one second. 

As performance measures, we report accuracy and pre-

cision. Accuracy is defined as the angular error between 

the estimated gaze point and target point (Holmqvist et al. 

2011). Note that the “true" fixation target remains un-

known – we can only hope that the subjects were really 

fixating the dot. The angle is estimated by using the known 

gaze distance, the metric distance between the gaze and 

target points, and a right triangle rule. For computing the 

metric distance between the points, the mm per pixel rela-

tion was estimated using known real-world dimensions of 

the displays and annotating the corresponding points in a 

few representative video frames 

Precision reflects the ability of the eye tracker to relia-

bly reproduce the same gaze point measurement and is 

thus related to the system noise. Good precision is desired 

in, at least, gaze based interaction and fixation analysis as 

noisy estimates during single fixation may be misclassified 

into several short fixations. Precision is usually defined as 

a root-mean-square (RMS) or root-median-square 

(RMedS) value of subsequent angular errors between esti-

mated and target points, 𝑞𝑖
est and 𝑞𝑖

target
, measured during 

a fixation (or a separate smooth pursuit movement) 

(Holmqvist et al. 2011). The RMS value would thus be 

 

where 𝑁𝑓 is the number of fixation samples and 𝐷 is the 

gaze distance (note that 𝑞’s are metric vectors here). 

RMedS would be similar but using a median value of 

{𝜖𝑖
2, 𝑖 = 1, . . . , 𝑁𝑓 − 1} instead of mean. In addition, we re-

port the standard deviation of the angular errors during a 

fixation (or smooth pursuit) as an alternative precision 

measure. 

9.1 Numerical performance 

The accuracy values of each subject in saccade and 

smooth pursuit tasks are given in Figure 14 for both gaze 

trackers. The figure shows the 25th, 50th (median), and 

75th percentile values of the accuracies for all three gaze 

distances concatenated. 

 

Figure 14. Accuracy values for the saccade task (left 

panel) and the smooth pursuit task (right panel) for the 

presented and SMI systems, using all the data. For visu-

alization purposes, our results are slightly left and SMI's 

slightly right of the tick location of the corresponding 

subject ID. The square depicts the median value and the 
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endpoints of the error bars the 25th and 75th percentile 

values. The SMI's accuracy values for ID13 are out of fig-

ure range. Lower values are better. 

. Our tracker seems to outperform the SMI system with 

most of the subjects. In addition, the performance of the 

presented system stays relatively equal for each subject, 

whereas SMI’s varies a lot. The SMI’s accuracies of ID13 

are out of figure range, with its median values being 19 and 

17 degrees for saccade and smooth pursuit tasks. In our 

gaze tracker, subject ID06 performs poorly due to mascara. 

Evaluating a “winner" from the median values and per-

forming a pairwise Fisher Sign Test gives a p-value of only 

0.0044 for the null hypothesis that ours and SMI systems 

perform equally well. We can therefore conclude that in 

this task our system outperforms the SMI’s (P=0.0044, 

pairwise two-tailed Fisher Sign Test). 

A possible explanation for the difference in the perfor-

mances is SMI’s apparent intolerance to the movement of 

the frame; based on our experiments, even slight change in 

locations of the cameras and LEDs with respect to the eye 

caused deviation in SMI’s estimated gaze point. Hence, the 

SMI glasses should not be moved at all once calibrated. In 

the experimental setup, however, the glasses were 

switched during each gaze distance and between them so 

the glasses were taken off and put back on after each dis-

tance change. The presented system is invariant to the 

movement of the glasses – as long as the eye camera sees 

the pupil and at least two LED reflections, the fixated gaze 

point is stationary. Figure 15 illustrates the errors only for 

the calibration distances, including thus only the record-

ings of the test phase following the calibration phase. Here 

the accuracy values for the SMI system show clear im-

provement. 

 

Figure 15. Accuracy values for the saccade task (left 

panel) and the smooth pursuit task (right panel) for the 

presented and SMI systems, using only data from the cal-

ibration distances. See caption of Figure 14 for details 

and note the different scale in vertical axis. Lower values 

are better. 

 

Figure 16. Precision values for the saccade task (left 

panel) and the smooth pursuit task (right panel) for the 

presented and SMI systems. See caption of Figure 14 for 

details. Lower values are better. 

The precision (RMS) values are presented in Figure 16. 

For each subject, the RMS values of the subsequent angu-

lar errors between estimated and actual target points for 

each fixation are concatenated over the three gaze dis-

tances and the percentile values are computed from these. 

On average, the presented system provides better precision 

than the SMI device and the behavior is more or less sim-

ilar over the subjects. For both systems, the precision is 

worse in the smooth pursuit task. In our case, this is be-

cause the tracking components, especially the pupil ellipse 

end points tracker and Kalman filtering, may lag if the eye 

is estimated to be stable, as is the case during a smooth 

pursuit. 

The averaged results of all subjects are tabulated in Ta-

ble 3, which shows the outstanding numerical performance 

of the presented system – the mean and median accuracy 

of the saccade task is 1.68 and 1.20 and the RMS precision 

is 0.12 degrees of visual angle, averaged over all the sub-

jects and viewing distances. Dropping the anomalous test 

subjects, as reported in Table 1, out of the analysis im-

proves the performance and computing the results only for 

the distance where the device is calibrated gives even bet-

ter results; half of the time the error is less than 0.92 de-

grees. The probable reason for the slightly poorer perfor-

mance when including also the data from other viewing 

distances is that the calibration scheme optimizes the cor-

rection matrix 𝑅 to give best accuracy in the calibration 

distance – remember that 𝑅 is not a pure rotation matrix 

and it aims to correct all error sources there are, from im-

perfect hardware calibration to incorrect eye parameters 

for the user. Still, the values of Table 3 demonstrate that 
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the presented system performs well in all gaze distances. 

The performance in the saccade task is generally better 

than in the smooth pursuit task. 

In the third column (“W. Mean"), the POG values have 

been weighted by the average of left and right eye’s 

weights 𝜔 which was defined as the logarithm of the MAP 

value of the fitted glint grid, divided by the largest possible 

value for the logarithm of the posterior (see Eq. (37)). This 

is another benefit of the probabilistic approach: we natu-

rally get a “score" for the estimation, reflecting the (un)cer-

tainty about it. For SMI, such value is unavailable and we 

used unity weights there so the weighted mean equals the 

ordinary mean. As our weighted mean values are better 

than ordinary means, the 𝜔 seems to indeed reflect the un-

certainty about the gaze point estimate and taking it into 

account improves the results. 

As mentioned, SMI clearly suffers from the movement 

of the frame after calibration, resulting in decreased accu-

racy. However, the presented solution outperforms the 

SMI, in terms of accuracy and precision, also when includ-

ing only the calibration measurements. The SMI performs 

better only in the smooth pursuit task at the calibrated dis-

Table 3. The performance over all test subjects’ data for both the saccade and smooth pursuit tasks, for the presented 

device (“ours") and the SMI system, in degrees of visual angle. The leftmost column lists the device; next four columns 

report the mean, median, 𝜔-weighted mean (see Eq. (37)), and standard deviation (STD) values of accuracy; three 

rightmost columns report the precision measure which are the average root-mean-square (RMS) and root-median-

square (RMedS) values of subsequent angular errors between estimated and target points during fixations or a 

smooth pursuit movement, and an average standard deviation of the angular errors during a fixation or a separate 

smooth pursuit movement (STD(a)). Before computing the values, the results from all gaze distances were concate-

nated. The superscripts c refer to using data only from the calibration distance and * refer to excluded recordings 

ID06, ID07, ID11, and ID13 (see Table 1 for explanation). The values at the bottom show the average missing value 

rate in percentages, that is, the ratio of blinks and unavailable measurements to the number of all events. In each pair 

of ours and SMI results, the better result is written in italics. Lower values are better. 
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tance when the “bad" subjects’ data are removed. Our sys-

tem also fails on less samples (SMI 17.4 % vs. 11.2 % in-

cluding all data) and while these numbers include periods 

during blink breaks, there is no reason to suspect that the 

blinking behavior would differ between the devices so our 

system more often produces a valid measurement. 

 

Figure 17. Histograms of accuracy values in the saccade 

task for both devices. Recordings ID06, ID07, ID11, and 

ID13 were excluded from the analysis. Lower accuracy 

value is better. 

As a final comparison between the two systems, Figure 

17 shows the histograms of accuracies in the saccade task, 

excluding the anomalous cases. Accuracy values for the 

presented systems are clearly concentrated around lower 

error values, whereas the distribution of the SMI device is 

wider, including values with larger errors. 

Table 4. Real and estimated gaze distances (mean, me-

dian, and STD), in meters, using all the data. 

Real value Mean estim. Median estim. STD of estim. 

0.60 0.59 0.59 0.32 

1.20 1.10 1.01 0.77 

3.00 2.72 1.81 5.67 

Table 4 shows estimations of gaze distances with the 

presented system, including all the test data. The shorter 

distances seem to be more accurate than the largest dis-

tance whose distribution is skewed due to some very large 

distance estimations, manifesting also as a large difference 

between the mean and median values. For 3D gaze points 

this might present a problem. However, when the gaze dis-

tance is larger than three meters, the vergence angles of the 

eyes are practically in parallel and estimation errors above 

introduce very small changes to the 2D projected gaze 

point at these distances. 

 

 

The effect of decreasing the number of glint candi-

dates, 𝑁gl.cand., and thereby the number of particles in the 

glint finding algorithm was studied by running the results 

again with value 𝑁gl.cand. = 2 (corresponding to 2×6 par-

ticles) instead of 𝑁gl.cand. = 6 (36 particles). The compu-

tation times were estimated by processing one of the rec-

orded videos with the two different values for 𝑁gl.cand.. 

The results are given in Table 5 and indicate that dropping 

the parameter value has a negligible effect on the perfor-

mance but a large effect on the computation time. The 

lower particle number does have a slight effect on the rate 

of missing values as the algorithm may fail to find a good 

fit for the glint grid in difficult cases where only a small 

number of the glints are visible. Even with 36 particles, the 

running time of the algorithm is below 33ms, enabling 

realtime handling of 30 fps camera streams, whereas using 

12 particles allows to process 80 frames per second. 

10 Challenges 

While the presented solution seems robust for all eyes 

encountered so far, the dynamic, variable nature of eye im-

ages presents occasional challenges for the algorithms. 

Typical examples of performance with artefactual images 

are presented in Figure 18: Half-closed eyelids or eyelids 

occluding the pupil and part of the glints as well as miss-

ing, extra, or distorted reflections from the surface of the 

sclera outside the corneal bulge are generally well handled. 

The failure of approximating the initial pupil due to, for 

instance, heavy mascara ruins the performance. Addition-

ally, external IR sources such as sunlight can create extra 

reflections and even block some of the features – the bot-

tom right panel of Figure 18 exemplifies this. 
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Figure 18. Examples of challenging issues. Green dots in-

dicate identified glints, red dots indicate glints inferred 

as non-visible (at locations where the posterior glint 

model expects them), blue circle depicts the located pupil 

ellipse. (A,B) simultaneous frames for the left and right 

eyes, where the eyelid and eyelashes occlude some of the 

glints and part of the pupil. (C) Heavy mascara corrupt-

ing the pupil location and “dragging" the glint grid to the 

left. (D) additional false reflections on the scleral surface. 

(E) missing glints. (F) an example of a reflection of a win-

dow. 

11 Discussion and conclusion 

This paper has presented algorithms for tracking gaze 

with a mobile wearable device. The algorithms are based 

on a physical eye model, computer vision methods, Bayes-

ian tracking of glints and a particle filter like method for 

computing the MAP estimate, binocular gaze estimation, 

and Kalman filtering. The main mathematical contribu-

tions are in locating the LED reflection (glints) and the pu-

pil in the 2D eye image robustly, performing user calibra-

tion, and Kalman filtering the estimated gaze point in the 

2D scene camera coordinates. The promise of the method 

was evaluated in experiments where 19 test subjects 

viewed a moving dot on three displays with different view-

ing distances. Publication of this experimental data is an-

other of our contributions. Benefits of an open source pub-

lication compared to a proprietary architecture are that the 

full system becomes documented and the system can be 

modified for different needs; one can easily adjust any part 

of our algorithm, from image processing to system output. 

An additional contribution is testing the commercial SMI 

Eye Tracking Glasses – to the best of our knowledge, this 

is the first study to make a proper “scientific" quantitative 

evaluation of its performance. 

The results show that when fixating only on the cali-

brated distance, our spatial accuracy is approximately one 

degree of visual angle; the median is slightly below, and 

ordinary and weighted means are slightly above one de-

gree. When viewing also other distances – as is the case in 

natural viewing conditions – the accuracy deteriorates 

slightly. This is because the user calibration not only cor-

rects the deviance between the measured optical vector and 

the “real" gaze vector, but also compensates for the other 

imperfections of the eye model and algorithms, and is op-

timal for the calibrated distance. However, the perfor-

mance is good also when averaged over all the viewing 

distances: the median is 1.17 and weighted mean is 1.55 

degrees when excluding the “anomalous" subjects. Addi-

tionally, it should be noted that the automatic localization 

of the target point in the calibration procedure is imperfect 

and the corresponding error is included in the computed 

error – the real error in accuracy is thus likely less than the 

reported values (this of course applies to SMI, too). It can 

be concluded that during fixations, our accuracy is better 

than 1.5 degrees. The precision is also fairly good: the av-

erage root-mean-square and root-median-square values of 

subsequent angular errors between estimated and target 

points during fixations are approximately 0.1 degrees. 

Also in the smooth pursuit task, with a moving target, the 

accuracy is better than two degrees.  

The performance of the commercial SMI system is, in 

general, worse – the mean accuracy over all subjects is four 

degrees. This is mostly due to the intolerance of the SMI 

system against the movement of the device; due to the ex-

perimental setup, the device had to be removed after re-

cording the calibrated distance. Including only the cali-

brated measurements gives better results but our system 

outperforms here, too, both in terms of accuracy and pre-

cision. Additionally, our system has a lower missing value 

Table 5. The result of comparing two different values for N_(gl.cand.), using all the data. The columns refer to mean 

and median accuracy, RMS precision, missing value rate, and mean and median computation times of single frame in 

milliseconds. The unit of accuracy and precision is degrees. Lower values are better. 
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rate. The intolerance against device movement is problem-

atic for the SMI device in practical measurements because 

it necessitates monitoring the subjects during the measure-

ments and the experiment must be aborted when the device 

moves and the subject needs to be re-calibrated. Due to the 

model-based approach, our system provides tolerance 

against device movement. Another nice feature of our sys-

tem owes to the probabilistic approach: the estimates can 

be weighted by their certainties, allowing more robust es-

timation of the metrics that depend on the gaze point, such 

as the accuracy measure in our experimental evaluation. 

During user calibration, the glints were sometimes 

misdetected and the corresponding gaze point could not be 

utilized in the calibration process. These were mostly some 

of the four corner points of the 3 × 3 dot grid which the 

subjects viewed in such a wide angle that the LEDs were 

reflected completely outside the corneal bulge. In retro-

spect, in order to ensure the quality of the calibration sam-

ples it would had been wiser to calibrate while recording, 

as is done in “live" usage – if the glints are not properly 

detected, the user is asked to move the head slightly until 

they are found. The user calibration scheme of SMI con-

sisted of only three calibration points (three is the maxi-

mum) and is therefore lighter to perform than our calibra-

tion. While three points is theoretically enough for our cal-

ibration, too, the used nine points which approximately 

cover the viewing area give a more reliable estimate of the 

calibration matrix. 

Computationally, the biggest effort is spent on finding 

glints. The computation time here is controlled by the 

number of particles. The results show that, at least in this 

setup, the performance is similar between 36 and 12 parti-

cles while the corresponding processing times were 30 and 

12 ms per frame. However, in more challenging environ-

ments with distracting reflections from external sources, 

e.g., sunlight, the particle number may have a larger effect 

on the performance. Using more particles gives more ro-

bustness at the cost of computation time. In a practical im-

plementation, the glint search process could be sped up by 

parallelizing each (independent) particle by making them 

run in their own threads or even utilizing hardware accel-

eration. A ruder trick would be to skip the glint and pupil 

estimation if the eyes seem to be fixating (and the fixation 

has lasted for few frames) which can be assessed from the 

stability parameter 𝜃. As most of the viewing time in typ-

ical applications is spent fixating, this would speed up the 

computation significantly. 

All algorithms and calibration routines were written in 

C++. Due to the involvement of the GSL library, the soft-

ware is currently licensed under the GPL, version 3, while 

solutions for a more permissive license are sought for. The 

project is released in Github: 

https://github.com/bwrc/ooga. (OOGA is Open-source 

GAzetracker). 
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