
Journal of Eye Movement Research 

10(4):3 

   1 

Introduction 

The size of the human pupil regulates to the amount of 

light that enters the eye. An increase in luminance there-

fore results in a fast constriction of the pupil, a luminance 

decrease in a gradual ‘unconstriction’. The pupillary light 

reflex (PLR) (Mathôt, Van der Linden, Grainger, & Vitu, 

2013)regulates the light influx. On the other hand, there is 

a well-studied correlation between pupillary dilation and 

cognitive factors such as workload (Schwalm, 2009), sur-

prise (Kloosterman et al., 2015), attention (Hoeks & 

Levelt, 1993), and emotional arousal (Granholm & 

Steinhauer, 2004). 

Pupil dilation constitutes a proxy for indirect measure-

ment of these cognitive factors, which would otherwise 

only be visible with costly and intrusive measurements 

such as EEG. Through behavioral observation, however, 

one can only measure the superposition of PLR and cogni-

tive influences. Both, ‘unconstriction’ due to a luminance 

change and pupil dilation due to an increased arousal level 

result in a larger pupil. This fact effectively limits the use-

fulness of pupil dilation in most practical applications, as 

an equiluminant surrounding is only realistic for labora-

tory experiments. 

Not only are the causes of PLR unconstriction and cog-

nitive pupil dilation different, but also different brain re-

gions trigger them and they manifest through different 

components of the eye musculature. PLR is driven mainly 

by the constriction and relaxation of the iris sphincter mus-

cle; cognitive changes innervate the iris dilator muscle 

(Mathôt et al., 2013), (Tanaka, Kuchiiwa, & Izumi, 2005). 
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With their work on the ‘index of cognitive activity’ 

(ICA) Marshall demonstrated that these processes are in 

fact so different in their manifestation (especially in the 

speed and acceleration of dilation and constriction) that so-

phisticated signal processing can separate cognitive from 

PLR caused pupil size changes (Marshall, 2007). Schwalm 

et al. later used this method to distinguish between mental 

workload levels of drivers in a simulator (Schwalm, 2009). 

In the context of driving, the study of pupillary dilation has 

mostly focused on mental workload (M. Recarte & Nunes, 

2003; Zhang, Owechko, & Zhang, 2004). 

Driving is generally considered a foveated task (i.e., an 

object generally needs to be fixated by the driver in order 

to be perceived). However, drivers can perceive certain po-

tential hazards without or shortly before an explicit fixa-

tion. On the other hand, several studies have empirically 

shown that the mere fixation of a specific object does not 

imply its perception not its interpretation as hazardous by 

the driver. For example, in (Kübler et al., 2014) hazard fix-

ation was found to be unreliable for predicting hazard per-

ception, as an object can either be ‘cognitively overlooked’ 

or incorrectly judged as non-hazardous by the driver. Thus, 

if we want to infer information on hazard perception in a 

driving scene, the fixation-based information is not suffi-

cient. Other physiological signals, such as electrocardiog-

raphy (ECG) or Galvanic Skin Response (GSR), can help 

us to disambiguate. However, they usually show a variable 

and relatively long delay (within several seconds) so that 

they are not applicable to a real-time use case, e.g. to trig-

ger assistance systems, nor to determine the exact moment 

in time when a hazard is perceived. Contrary to these phys-

iological parameters, pupil response happens almost in-

stantly and spans only about 2 seconds(Privitera, 

Renninger, Carney, Klein, & Aguilar, 2010). This lack of 

a delay allows for a timely interaction with in-vehicle sys-

tems. 

In this study, we investigate the pupil dilation in imme-

diate response to a hazard during driving. Our aim is to 

investigate the predictive quality of the pupillary signal to 

infer hazard perception. Being able to detect hazard per-

ception of a driver reliably via a change in pupil diameter 

is interesting for multiple reasons: In Underwood, Ngai & 

Underwood, 2013 the authors perform a hazard perception 

task where subjects are to press the space bar once they 

perceive a hazard. Similar experimental setups are com-

mon in studying hazard detection, e.g., in (Bowers, 

Mandel, Goldstein, & Peli, 2009) subjects were to honk 

upon detection of a pedestrian. We could substitute such 

artificial manual feedback by a non-invasive measurement 

of pupil dilation. Furthermore, we could disambiguate 

other stress signals, such as hazard fixation, heart rate 

changes or the galvanic skin response by use of the pupil 

diameter: was an object perceived and judged as hazard-

ous? 

For the purpose we can built on insights gained from 

the analysis of mental workload during driving, as the 

identification of a stress response shares the common prob-

lem of isolating a cognitive pupillary dilation from the 

PLR. For example in(M. A. Recarte & Nunes, 2000), the 

authors find an increase in pupillary dilation with mental 

workload that is reliable even under the daylight variations 

of a natural environment. However, the detection of this 

effect is only possible through averaging over of a large 

amount of data and by applying statistical methods. Find-

ing a statistically significant difference in a large collection 

of data does not imply that a useful classification of indi-

vidual trials towards a specific mental workload state is 

possible.  

In this context, the Index of cognitive activity is of 

much interest, as its authors claim that it is almost immune 

to illumination changes. Therefore, a wavelet transfor-

mation filters only those pupil changes that did not origi-

nate from ambient illumination changes. By analyzing 

only certain components of the wavelet-transformed sig-

nal, we filter for a specific dilation speed and ampli-

tude(Marshall, 2007). 

For determining a stress level, increasing mean values 

of the pupil diameter over time are commonly used(Zhai 

& Barreto, 2006). This averaging has the advantage of be-

ing relatively robust towards momentary pupil diameter 

changes as caused by rapid illumination changes. Pedrotti 

et al. used a wavelet transformed pupil diameter in a sim-

ulated driving task in order to classify different stress lev-

els of the driver(Pedrotti et al., 2014). Such a procedure is 

useful when a gradual change in stress level is expected. 

However, for our application, we are interested in sponta-

neous, fast stress events and an average filter would delay 

the detection of the expected steep and short peaks. 

In the following, a filtering and classification cascade 

for the pupil diameter signal is introduced that can be uti-

lized to classify the perception of hazards during driving 

in a simulator. 
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Methods 

Driving simulator experiment 

Thirty-one subjects drove in the moving-base driving 

simulator (Zeeb, 2010) at the Mercedes-Benz Technology 

Center in Sindelfingen, Germany. The cabin contained a 

real car body amidst a 360° virtual reality, thus the driving 

experience was very realistic. Each subject absolved a 40 

min drive of 37.5 km length. Nine hazardous situations oc-

curred at predefined positions along the course. A Dikablis 

essential eye tracker (Ergoneers GmbH, Manching/Ger-

many) recorded eye movements and pupil size at 25 Hz. 

Simultaneously, we recorded the physiological parameters 

galvanic skin conductance (GSC, Biotrace+ with finger 

electrodes) and heart rate (ECG, mobile 3-channel cus-

tomed EKG). Figure 1 shows the experimental setup. The 

processing steps required to derive an indicator of hazard 

perception from these sensors are published in(Kübler et 

al., 2014). 

 

Fig. 1. Setup of the vital parameter sensors in the 

driving simulator. 

All subjects were recruited from the department of 

Neuro-Ophthalmology at the University of Tübingen (Ger-

many). The research study was approved by the Institu-

tional Review Board of the University of Tübingen (Ger-

many) and was performed according to the Declaration of 

Helsinki. Aim of the original study was to analyze the driv-

ing performance of patients with binocular visual field loss 

(16 patients, 15 control subjects). For the analysis provided 

here, we do not expect an influence of these groups on the 

pupil diameter and therefore provide no further interpreta-

tion with regard to the visual field defects. 

 

 

Pupillary data processing 

As we are operating on data recorded in a close to re-

alistic environment, we have to first assure sufficient data 

quality. In a preprocessing step, we eliminated blinks, par-

tial blinks and unlikely pupil sizes from the data:  

The first 30 seconds of the pupil signal were very noisy 

due to an acclimation phase of the subject in the car. We 

discarded this relatively short time interval for all subjects. 

We identified blinks, tracking failures of the eye tracker 

and pupil size samples that differed by more than 10% 

from their preceding value (empirically chosen and mainly 

dependent on pupil detection quality). We eliminated these 

usually relatively short tracking losses from the data. That 

produces an artifact spanning up to five samples, given the 

25 Hz sampling rate of the eye tracker. Additionally, two 

samples (corresponding to 40 ms) before and after a blink 

were removed as well since a partial occlusion of the pupil 

by a half-closed eyelid may cause the pupil detection to 

report a smaller size than actual pupil size. To eliminate 

physiologically unlikely pupil sizes, we used a statistical 

approach and considered all pupil sizes that exceed the av-

erage by more than three standard deviations outliers. Such 

samples result from a failure of the pupil detection algo-

rithm (e.g., by detecting the iris instead of the pupil). We 

filled the gaps from missing/eliminated data by a linear in-

terpolation between the neighboring valid samples. This 

step was necessary  as the following frequency-based pro-

cessing steps require a continuous signal without disconti-

nuities. 

Trials with less than 75% of valid data (with interpo-

lated points of the previous step counting towards invalid 

data) were not included for further analysis. In the next 

step, we compensate for a non-stationary trend (i.e., a 

gradual slow change in pupil diameter over several 

minutes). We identify such a local trend by reconstruction 

of the original signal from wavelet coefficients that corre-

spond to a low frequency band (see Figure 2). It is neces-

sary to remove such a trend before applying spectral anal-

ysis, as it distorts the spectra of the signal at low fre-

quency(Andreas & Trevino, 1997). 

A manual analysis of the pupil diameter signal after fil-

tering and smoothing indicated that peaks do indeed occur 

at the hazardous situations, but also that a simple threshold 

approach is insufficient to detect them reliably amongst the 

high noise level. Spurious pupil diameter peaks need to be 

distinguished from the peaks corresponding to hazardous 



Journal of Eye Movement Research Vintila, F., Kübler, T. C., & Kasneci, E. (2017) 

10(4):3 Pupil response predicts hazard perception during simulator driving 

  4 

situations. We employ the method introduced in (Haver, 

2008) for this purpose: 

First, we detect zero-crossings of the smoothed first de-

rivative of the pupil diameter signal. They correspond to 

extrema in the original signal. We consider them as candi-

date peaks, if their amplitude exceeds 1.5 standard devia-

tions. Then, a parabola is fit to the set of points within a 

2.5 second time-window around the peak by least squares 

quadratic fit (Figure 3) using the full width at half maxi-

mum method(O'Haver, 2017). The pupil response to visual 

detection is supposed to last for 2-2.5 seconds(Privitera et 

al., 2010), motivating this choice of window width. 

 

Fig. 2. The raw pupil area signal (top) and its reconstruction 

using the wavelet coefficients (middle). We obtain a detrended 

signal (bottom) by subtracting the wavelet approximation from 

the original signal. The sampling rate is 25 frames/second. 

Wavelet Analysis 

For each drive, we identified and labelled all hazardous 

events and the corresponding pupil signal. We automated 

this process as the driving simulation provided the position 

of the vehicle on the track and we knew about the position 

of the pre-programmed hazardous events. 

Several different events resulted in a stress or emo-

tional response on different levels of intensity during the 

driving session. As the illumination within the simulator 

environment does not change as rapidly and intensely as 

during actual on-road driving, we can expect these events 

to have a major impact on pupil dilation. A stress response 

results in rapid pupil dilation, but also in the following 

gradual return to normal size. This gradual return is often 

of oscillatory nature and contains several (decreasing) 

waves. The more significant the event, the longer this re-

turn phase(Andreassi, 2000). In order to discriminate be-

tween possible causes for a pupil dilation, we perform a 

scale analysis of the time series: wavelet analysis. 

 

Fig. 3. Fit of a parabola to a candidate pupil dilation peak. 

 

The wavelet transform decomposes a signal into wave-

lets (i.e., small waves with their energy concentrated in 

time). These wavelets are scaled and shifted copies of a 

main pattern, called the mother wavelet. In a multiresolu-

tion representation, the signal is decomposed into increas-

ingly finer details based on wavelet and scaling functions, 

which correspond to a high pass and a low pass filter. Pre-

cise time information is contained at high frequencies and 

frequency information at low frequencies. These filters are 

applied successively to the signal joined by a down sam-

pling by factor 2 (Figure 4). The maximum level of decom-

position depends on the relevant time scale of events under 

consideration(Kaiser, 2010),(Mallat, 1998). 

We can separate events at different levels on the 

arousal scale by partial reconstruction of the signal in only 

one specific frequency sub-band, which corresponds to the 

respective arousal level. 

For our purpose, we chose to decompose and recon-

struct the signal accurately at a time scale of 1-2 s. The 

pupil can react to stimuli within 200-350 ms and reaches 

peak response between 500-1000 ms(Privitera et al., 

2010). For the 25Hz sampling rate of our eye tracker, this 

corresponds to the fourth level decomposition. 

It is important to select a wavelet that matches the 

shape and frequency characteristics of the signal we want 

to separate. The Daubechies wavelet family is optimal in 

the sense that most of the wavelet coefficients are small or 

zero, making them well suited for matching smooth poly-

nomial features in a given signal(Daubechies, 1992). 

Feature extraction 

For each of the candidate peaks extracted in the previ-

ous step, we applied a temporal window to extract the sig-

nal within 1.5 seconds before/after the peak. We then de-
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composed the signal within this window into sub-band fre-

quencies by means of a discrete wavelet transform with 

Daubechies 4 (db4) wavelets up to level 4 and extracted 

the detail and approximation coefficients. From these co-

efficients we calculated the relative energy of the wavelet, 

which characterizes the signal’s energy distribution at 

different frequency bands. 

 

Fig. 4. Construction of the feature vector for one candidate 

peak. Mean, amplitude and area are calculated from the A4 com-

ponent, the relative energy from the detail coefficients. 

 

Classification of pupil size peaks 

To discriminate between peaks that occur as an effect 

of noise and ambient illumination change during the drive 

from pupil responses to hazardous events, we used a sup-

port vector machine (SVM) with radial basis function 

(RBF) kernel. The feature vectors used for the training of 

the SVM were composed of the following: amplitude, 

mean diameter, area of the approximation coefficient A4, 

and the wavelet relative energy corresponding to the detail 

coefficients D1-D4 (Figure 4). The SVM selects those cri-

teria and their interactions that help us to distinguish be-

tween different kinds of peaks. Such a machine learning 

approach is sensitive to unbalanced data. In our case, the 

relatively large amount of peaks occurring during normal 

driving (that we want to classify as noise) would result in 

a relatively high classification accuracy, even if the SVM 

would simply classify every as noise. It would simply ne-

glect the few hazardous events. Therefore, we balanced the 

number of feature vectors for each class by oversampling 

of the minority class (i.e., the hazardous events). We 

trained and tested the SVM using leave-one-out cross-val-

idation and evaluated the classification accuracy sepa-

rately for each subject by using only training data from the 

other subjects. This evaluation procedure is almost unbi-

ased and gives a good indication of the cross-subject gen-

eralization performance (Elisseeeff & Pontil, 2003) while 

it makes good use of our limited training and test data. It 

should however be noted that the selection of candidate 

peaks and the construction of the feature vector involves 

subject-specific adaptation such as the subject’s average 

pupil diameter and its distribution. 

Results 

Figure 5 shows the detailed results of the classifi-

cation for each subject. A white circle indicates a 

change in pupil diameter that the classificatory 

judged relevant; a black circle indicates that such 

a change was not detected. The surrounding 

square indicates whether the driving instructor 

judged the driving response as adequate or not. 

Both markers have to be considered in conjunction. 

For example, a black square and black circle indi-

cate a situation that the driver did not perceive 

and, consequently, did not  react to. A white square 

with a white circle would correspond to a hazard that the 

subject responded to adequately and that caused a pupil 

dilation. 

 

Fig.6. Receiver operating curves of the classification per-

formance for both the visual field defect patients and the 

control group. 

Figure 6 shows the ROC curves for the classification, sep-

arately for the patient and the control group. As there were 

very few inadequate driving responses in the control 

group, we can expect the curves to differ even in the case 

that the visual field defect does not have any effect on the 

pupil diameter.  
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Fig. 5. Presence of a detected pupil diameter change at hazardous 

situations for all subjects and situations. Each row corresponds to 

the drive of one subject. The squares along the drive correspond 

to the hazardous situations and are filled black, if the driving in-

structor judged an inadequate driving response. The inscribed cir-

cle shows whether a pupil response was observed (filled white) 

or not (filled black). Lines without pupil markers correspond to 

trials excluded from data analysis due to a bad tracking rate of 

the eye-tracker. In addition, we provide locations of dangerous 

situations along the route. In each case, where a subject aborted 

the experiment, the reason (either technical difficulties or motion 

sickness) is provided. 

 

Such a prediction assumes that a hazard to which the driver 

reacted was perceived and via versa a hazard that was not 

reacted to adequately was overlooked by the driver. From 

previous analyses of vital parameter data we know that this 

was not always the case, e.g., some drivers responded in-

adequately to a hazard they had perceived. Therefore, we 

cannot expect a perfectly reliable classification result. For 

our analysis, we decided to predict as many of the hazard-

ous situations from the pupil data as possible and allowed 

for a moderate number of false positives (so we judge in 

favor of hazard perception in case of doubt). The numeri-

cal classification results are provided in Table 1.  

 

When we analyze those situations that lead to a failure of 

the driving test, we can now distinguish between a percep-

tual failure and a behavioral failure: Subject PH11 fails the 

first situation without perceiving the hazard. The same 

subject also fails the sixth situation, but this time perceived 

the hazard, as a pupil diameter change happens. This might 

be due to a general awareness of a dangerous situation 

without knowledge about the exact location. Just as inter-

esting is that we can also derive that PH07 showed an ad-

equate driving behavior to the first and seventh situation, 

even though the hazardous object was likely not perceived. 

Being able to include such events in the evaluation of driv-

ing performance will allow us to better judge driving 

safety also for subjects with a more defensive driving style 

that would require extensive testing before the percep-

tional deficit becomes obvious in terms of a driving test 

failure.  

Table 1: Results for the prediction of hazardous event 

perception from the pupil diameter. 

 Control group Patients 

Specificity 

Sensitivity 

0.89 

0.92 

0.78 

0.83 

Precision 0.93 0.87 

Table 2 gives some insights to the false positives that 

influence the ROC curves and classification results. We 

can observe that the classification step performs well in 

filtering only few events from many candidates (e.g., from 

86 to 7 for subject CG66). It returns an average of 8±8 false 

positives, i.e. it classified pupil size peaks as a stress re-

sponse to a hazard that were not associated with one of the 

predefined hazardous situations. Without the classifier, an 

average of 50 false peaks per drive would be reported. For 

the task at hand we aimed at predicting hazard perception 

at the predefined hazardous situations. It is possible that 

some subjects were very careful at several other situations 
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along the route that looked like potential hazards, and 

therefore, showed valid additional stress responses that we 

are (wrongly) counting as false positives. In order to de-

cide in favor of hazard perception we accepted a relatively 

high number of false positives along the complete drive.. 

Table 2. Pupil dilation event classification. F = the number of 

candidate peaks that did not correspond to a hazard situation but 

were misclassified as such an event (false positives); D = the 

number of candidate peaks before the classification step. Subject 

descriptors indicate the patient groups of hemianopia (PH) and 

glaucoma (PG) as well as their respective control groups 

(CH/CG) 

Subj. F D   Subj. F D 

PH07 14 31  PG69   

PH50 4 46   PG63 36 94 

PH11 4 29   PG75 5 24 

PH05     PG61   

PH27 2 34   PG65   

PH25 1 6   PG71 7 42 

PH15     PG77   

PH01 5 44   CG74 8 98 

CH06 8 37   CG66 7 86 

CH12 6 41   CG62 10 54 

CH08     CG78   

CH28 17 75   CG68   

CH20 7 62   CG80 4 55 

CH02     CG72 2 4 

 

Discussion 

Hazard perception involves the input of sensory infor-

mation and subsequent cognitive processing. This pro-

cesses result in the identification of potentially dangerous 

traffic situations. Only the combined process of seeing and 

identifying a hazard will lead to a stress response. We 

found that pupil dilation can be utilized to disambiguate 

hazard perception and adequate driving reaction in a sim-

ulated driving scenario. 

We employed a filtering and classification cascade that 

is able to identify sudden stress responses from the pupil 

data. We aimed at correctly detecting as many of the haz-

ardous situations as possible from the pupil diameter only 

while trying to minimize the  false positives. This allows 

us to determine whether the subject likely perceived a haz-

ard. Due to the number of false positives during the drive 

it could not be used as a stand-alone detection system for 

hazardous situations, e.g., to trigger assistance systems. It 

only indicates the perception of the driver, if such an event 

has occurred. We designed the hazard situations to be eas-

ily overlooked by the driver and to resemble a looming 

emergency. They are therefore very attention arousing and 

stress inducing. For less challenging scenarios where the 

driver can detect hazardous objects earlier and sufficient 

reaction time is available, no stress signals would be ex-

pected. Eye-tracking measures would then be sufficient. 

Pupil dilation events were more absent in those situa-

tions that were relatively difficult (e.g. 1, 2 and 6, where 

subjects actually failed the driving test or had only few re-

action time available). That indicates that careful, prospec-

tive driving behavior may have resulted in a less intense 

experience of the hazardous situation for some drivers – or 

that they were simply lucky to have passed the situation. 

We further found that there is a large individual variation 

in the number of predicted stress peaks per subject, likely 

associated with the level of engagement and emotional 

arousal of the driver during the test scenario. 

We showed that the pupil variation events occur with 

the detection, recognition and reaction to potentially dan-

gerous events while driving. It indicates the moment at 

which a potentially dangerous event becomes relevant to 

awareness. Furthermore, the pupil dynamics can resolve 

the ambiguity of perception and unexpected uncertainty 

that plays an important role in detecting and recognizing 

unexpected dangerous events(Einhäuser, Stout, Koch, & 

Carter, 2008),(Nassar et al., 2012). 

As brightness within a simulated world (road surface, 

sky, vegetation, etc.) varies only about ±5% from the av-

erage brightness(Palinko, Kun, Shyrokov, & Heeman, 

2010), we can currently not conclude as to whether and to 

what extend these findings may hold for on-road driving. 

Yet, the indicator may be useful for studies that require a 

precise distinction between hazard perception and the be-

havioral driving response without requiring unnatural be-

havior such as pressing a button upon detection. The ap-

proach may also be used to assess the design of a simulator 

track as to whether a timely detection of planned hazard 

scenarios is possible. 
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