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How Much Prosody Can You Learn from Twenty Utterances?

Eric Keller / Brigitte Zellner Keller (Lausanne)

Abstract

It was examined how much speech material is required to build a prosodic model for duration,
fundamental frequency and intensity. For each of two speakers, fifty multiple linear
regression models were built on the basis of seventy utterances per speaker (7'522 and 7'643
segments respectively). Models based on eight and twenty utterances showed good stability,
satisfactory prediction for novel material, as well as closeness of fits comparable to those
reported by other researchers for much larger corpora. Linear regressions were typically based
on about ten independent predictors per prosodic parameter, which had previously been
ranked according to their prediction of the dependent parameter. This ranking procedure
advantageously replaced more commonly used regression trees. Variation in the closeness of
fit of models based on sliding windows eight and twenty utterances long were traced to
variations in bias, i.e., in the degree to which models systematically under- or overestimate

target values. While the models in this study involved simple, non-optimized linear
regressions without interactions, avenues are suggested for further improving the performance
of this class of models. The results of this study suggest that a series of well-adapted small-
footprint models provide more accurate information about the individual use of prosody in
specific speech situations than a single model based on abundant data.

1 Introduction

Prosodic structures are marked by considerable complexity and are produced with substantial
variability. At the same time, humans appear to recognize prosodic patterns quickly and
surely. Seconds after tuning to a new radio station, we know whether we're listening to a
sports report or a religious broadcast, even when the volume is too low to understand the
words. In multilingual environments, just one or two utterances identify the language in use.
If this observation on human prosodic perception is grounded in empirical fact, it should be

possible to get a computer to identify, perhaps even learn, a given prosodic style in just a few
utterances. Furthermore, we should be able to project this prosodic style upon new utterances.
And by the examination of the internal workings of the prosodic model, we should be able to
identify what distinguishes one prosodic style from another.

We found that it is possible to construct such a model with fairly simple statistical tools. By
applying a set of multiple linear regressions to the relationship between linguistic and
prosodic parameters, the essence of a prosodic style was captured in some twenty utterances.
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Specifically, the key prosodic parameters of duration [t, ms], fundamental frequency [F0, Hz]
and intensity [I, dB] were reliably linked to automatically derived linguistic components of
speech (segments, syllables, word groups and word group boundaries, etc.). This information
was reversed and applied to new sentences by means of a speech synthesis device.

The methodology employed in this study, statistical models, is somewhat different from
traditional linguistic methodology, since it pursues a different objective. In the linguistic
tradition, the most desirable model is usually the one that is the most general. This principle
extends the well-accepted scientific Principle of Parsimony (or "Occam's Razor"), which
specifies that one should always choose the simplest and most general explanation of a
phenomenon, i.e., the one that requires the fewest initial assumptions, leaps of logic, or
further explanations. Specifying a given linguistic or prosodic rule (e.g., final syllable

lengthening) for universal language use or for a certain set of languages is considered to be a
much more desirable statement than specifying it just for one speaker, in a small set of
utterances, or for one dialect of a given language. This serves to identify the "solid"
components of language structures.

However, a problem arises with this approach when one wishes to specify the exact value of a
rule, as when distinguishing its different uses in various languages, dialects, or speech styles,
such as in a sociolinguistic or speech simulation study. In an emphatic use of Italian, for
example, the precise degree of final syllable lengthening may well be notably different from
that used in similar situations in English, French or German, although all four languages show
the same basic phenomenon. This difference must be quantified somehow, not only by the
presence/absence or frequency of use of a given rule, but also by its distinctive or gradient

value, i.e., as long/short, or in milliseconds, or as a percent measure of some other duration. A
process model or a prosodic model oriented towards a style- and speaker-specific
characterisation of speech may thus have to be quite a bit more flexible and more detailed
than a model for general language use. Such a model must not only specify which
phonological rules should apply and with how much reliability, but also the gradient values
that govern the rules' application.

Numeric models are thus essential for characterizing the fine details of language behaviour
and for simulating speech behaviour over time ("process models"). In this class of models, the
evolution of parameters over time is emphasized, a dimension which is not taken into account
by traditional structural language descriptions (Zellner Keller 2002, 2003a, 2003b). While
numerical approaches are particularly well-adapted to capturing significant details of the

temporal evolution of quantitative parameters, qualitative aspects of prosody are of course not
ignored. For example, just like descriptive models, numeric models must incorporate
phonological and fast speech rules to be able to operate correctly.

Overspecification vs. Underspecification. Numeric prosodic modelling generally proceeds as
follows: prosodic parameters (e.g., t, F0 and, I, henceforth the "dependent variables" or DVs)
are derived from acoustic recordings, and relevant linguistic parameters (typically segmental
and syllabic identity, position, number and context, henceforth the "independent variables" or
IVs) are identified in the associated transcription. Numeric and/or logical relationships
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between linguistic and prosodic parameters (henceforth, "rules") are identified in various
ways to create numeric and/or rule-governed models. Such models are then used to analyse
and/or synthesize new stretches of speech and to fine-tune the model.

In this modelling process, two pitfalls should be avoided. A model based on very little data
(e.g. one or two utterances) would be overspecified, that is, its rules would be too specifically
oriented towards the input material at hand, and thus may not represent optimally prosodic
relations in other, similar stretches of speech. To ensure a model's sufficient generality, a
certain minimum number of observations of the IV-DV relation are needed. At the other
extreme, a model can be too general for the purpose at hand. Since prosodic parameters differ
from speaker to speaker, from speech style to speech style, and evolve even over the period of
a given speech activity by a given speaker, it may not always be advisable to base a model on

great amounts of speech material, since averages calculated on too much material may
obscure the very distinctions of interest. The question thus arises as to the optimal amount of
speech material required to satisfy the objectives of a given modelling effort. In our
observations of the literature, this question has not yet received an extensive treatment. The
present study furnishes some data relevant to this issue.

If only little material were needed for the key prosodic measures of duration, f0 and intensity,
prosody modelling could be simplified. Instead of obtaining ever more data to feed an already
sufficiently specified t-f0-I model, work could be directed at some of the more elusive
prosodic indicators such as pauses, hesitations, turn-taking indicators, as well as semantic and
pragmatic predictors of prosodic variation. These latter indicators may well take quite a bit
more than twenty utterances to document, and will thus require considerable attention in the

future.

This contribution has three main sections. In the first, our methodology is presented in some
detail. This section is more extensive than usual to permit researchers less familiar with the
numeric approach to undertake similar analyses themselves. Experienced researchers may
wish to skip most of this discussion. In the second section, we discuss the results on two
prominent MARSEC (Machine-Readable Spoken English Corpus, Knowles et al. 1996a,
1996b) speakers that were analysed with this system. Since numeric models can rapidly
become complex, only a rudimentary statistical model without interaction terms is described
here. Such a model is relatively easy to understand, all while providing initially satisfactory
results. However, it is not an optimized model that could be used in a commercial synthesis.
In the final part of the article, some suggestions will be made concerning how this class of

models can be further improved by various techniques, and an outlook is given on further
work that can be performed within this framework.
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2 Method

2.1 Corpus, Speakers, Independent and Dependent Variables

Two British English speakers from the Machine-Readable Spoken English Corpus
(MARSEC)1 were chosen for this study. Both speakers are representatives of the received-
pronunciation (i.e., the prestige/regionally neutral accent) form of British English (RP), and
both are practiced adult speakers. The two corpus segments used here were (1) one and a half
news bulletins spoken by Brian Perkins (BP) a BBC newscaster (the initial part of section B,
70 utterances, 7'522 segments), and (2) a portion of "Innocence and Design", the 1985 Reith
Lecture presented by economist David Henderson (DH) (the initial part of section C, 70
utterances, 7'643 segments).2

The punctuation-free text transcriptions provided by MARSEC were marked up using
common English punctuation rules. Signals from the corpus were subdivided at major tone
group ("utterance") boundaries that are marked by double bars in the MARSEC prosodic
transcription. With a few exceptions motivated by semantics and syntax, MARSEC tone
markers were translated into periods, question marks, exclamation marks and colons.
Commas were set according to English punctuation rules. The acoustic material from the two
speakers was segmented using a computer-aided technique of placing automatic segmentation
marks that are subsequently adjusted manually.3 For this task, a phonetician was trained with
a segmentation protocol defined in our laboratory (see Zellner 1998, Annex 4).

Independent variables. On the basis of the written versions of the text, punctuated and
adjusted for hesitations and speech errors, a set of 19 linguistic descriptors was obtained

automatically. Most of these descriptors have been shown to be of statistical relevance for the
prediction of duration (Fant et al. 1991, Huber 1991, Keller 2002, Keller/Zellner 1995, Riedi
1998, Riley 1992) (number of descriptors is given in square brackets):

•  Positional information [5] (segment position in syllable, syllable position in word,
word position in minor phrase, minor phrase position in major phrase, major phrase
position in utterance). "Major phrases" were text segments delimited by sentence
markers and by commas. "Minor phrases" were delimited by punctuation marks as
well as boundaries between lexical and grammatical words, as defined below. Such
position indicators have been shown to be of relevance for the prediction of duration
for French (Malfrère et al. 1998, Keller/Zellner 1995, Zellner 1996, 1998) and have
also been successfully applied to German (Siebenhaar et al. 2001), as well as in

various other languages (e.g., Campbell 1992 [English], Venditti/van Santen 1998

                                                  
1 MARSEC is available from www.rdg.ac.uk/AcaDepts/ll/speechlab/marsec.
2 According to the BBC, Brian Perkins is originally from New Zealand and came to the U.K. in his early

twenties. His news-reading style is widely acclaimed. The U.K. economist David Henderson has held various
academic posts and appointments in U.K. and international organisations. This is not the same person as the U.S.

economist David R. Henderson.
3 Thanks are given to Dr. Karlheinz Stöber, now at BKA, Wiesbaden, Germany, for the use of his dsp_dtwalign
algorithm in this context.
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[Japanese], Febrer et al. 1998 [Catalan]).

• Quantitative information [5] (number of segments in syllable, syllables in word, words
in minor phrase, minor phrases in major phrase, major phrases in utterance).

•  Boundaries [1] (distinguished were: no boundary, syllable, lexical, minor phrase,
major phrase, semicolon, period, question mark, exclamation mark and colon).

• Phonemic segment identity and lexical stress [6] (identity of preceding, current, and
succeeding segments, lexical stress of preceding, current and succeeding segments).

•  Part-of-speech [POS] membership [2] (the full POS classification according to the
CUVOALD electronic dictionary,4 and a simplified POS, where the CUVOALD
classifications G Anomalous verb (e.g., auxiliary), Q Pronoun, R Definite article, S
Indefinite article, T Preposition, U Prefix, and V Conjunction were set to "grammatical

word" and the rest of the classifications (nouns, full verbs and adjectives) were
considered "lexical words").

Dependent variables. Signals from MARSEC were denoised and enhanced using a generic
technique furnished in the Pristine Sound software,5 and they were converted to 16 kHz after
appropriate low-pass filtering. The following DVs were obtained: (a) segmental duration as
marked, (b) fundamental frequency extracted at 500 Hz by Praat's autocorrelation-based
technique with default settings, except for a pitch ceiling of 250 Hz, and (c) intensity
extracted at 500 Hz by Praat's intensity extraction, with the minimum pitch set to 75 Hz.6 F0
and intensity curves were spot-checked for abnormalities and were found acceptable. For each
segment, ten equally-spaced f0 and intensity values were derived from the extractions by
interpolation, and mean values were stored for each segment. For ease of data manipulation,

Praat's interpolated f0 values were used for unvoiced segments, although physically no
voicing occurred, and logically no f0 value could apply. This manner of proceeding bore the
risk of depressing f0 prediction values; however, this was considered acceptable, since (a) the
interest of this study focuses on relative values and a depression in absolute predictions would
have no bearing on the interpretation of the results, (b) prediction is unaffected for segments
for which voicing is audible, and (c) the ultimate reduction in prediction proved to be minimal
(see below). Pauses were not modelled in this study.

After generating IV and DV information, a computer-assisted technique was used to align the
two sets of information. Specifically, the CUVOALD dictionary used for generating the IVs
provides rhotic transcriptions (/kA:r/ for "car"), while the two speakers generally use non-
rhotic pronunciations in the DV segmentations (e.g. /kA:/ for "car"). Since some r's were

pronounced, adjustments were required to remove excess IV segment information. Similarly,
some optional fast-speech rules, such as the suppression of schwa in "finally" or the deletion
of the second /t/ in "contract talks" had to be accounted for. After each modification, IV

                                                  
4 CUVOALD: Computer Usable Version of the Oxford Advanced Learner's Dictionary (1992). Available from

ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/.
5 Available at http://www.accuratesound.net.
6 Praat is available for free at http://www.praat.org.
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positional and segment context information was automatically adjusted to reflect the
segment's new status.

2.2 Multiple Regression as Applied to Prosodic Modelling

Modelling was performed with multiple least-squares linear regressions without interactions.
In such a model, numeric relationships are calculated between a set of IVs and a given DV in
such a way as to minimize the squared error along a straight prediction line (i.e., to minimize
the squared distance from such a line). Multiple regressions are an extension of the simple
linear regression of the form y = bx + a, where y is the dependent variable, b is a weight (or
"coefficient") that multiplies the independent variable x, and a is a constant for the y intercept.

Figure 1. Normal probability plots for 4818 measures of segment durations, speaker DH. Left: original measures
in seconds, middle: square-root transformed, right: log-transformed. Vertical axis: ordered response values,

horizontal axis: normal order statistic medians. The data are plotted against a theoretical normal distribution in
such a way that the points should form an approximate straight line. Departures from this straight line indicate

departures from normality (NIST/SEMATECH 2002). In the present data, the square-root transformation
provided the best approximation to a normal distribution.

In prosody, a simple linear regression could for example be applied to the problem of
predicting duration from lexical stress in English. Since unstressed vowels tend on the
average to be shorter than stressed vowels, a regression could be calculated in which x

corresponds to lexical stress, with 0 for unstressed, 1 for secondary and 2 for main stress, and
y corresponds to duration. The least-squares regression line in the x-y plane would run roughly
from the bottom left to the top right. Multiple regressions extend this principle by calculating
the x-y regression line from a group of predictors. Each IV-DV regression is calculated
individually, and the weight of its contribution to the overall prediction line is optimized. In
the application of multiple linear regressions, care must be taken to insure that the model's
basic statistical assumptions are met. Primarily, data must be linearly distributed7 (see Figure
1), distributions must be approximately normal, and extreme values not lying on the

prediction line ("outliers") must be removed. Also, IVs showing multicollinearity (high
intercorrelation) with other IVs must be selectively pruned, after considering their status from
a theoretical point of view.8

                                                  
7 This is a particularly stringent requirement for speech simulation experiments. If a linear prediction is made for

prosodic values with a non-linear distribution, the strongest and most audible predictions will typically be among
the most erroneous.
8 In its stepwise procedure, SPSS removes variables based on multicollinearity and contribution to the
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In the present study, the data were subjected to the following procedures before applying
regression analyses:

(1) Dependent variables were linearized. Various power transformations were applied
separately for the three DVs and for the two speakers (log, square root, raw data, and
power of 2), and the best transformation was chosen as judged with respect to the
proximity to zero on a calculation of skewness. For both speakers, the best
transformations in our data were the following: square root for segment duration, log for
f0, and power of 2 for intensity.

(2) Independent variables were ranked with respect to their prediction for a given DV. This
preprocessing step enables IVs for use as ordinal rather than nominal predictors, which
considerably increases their power of prediction.9 To illustrate with an example taken

from our previous studies, the best predictor of segmental duration in French and German
had been the phonemic identity of the segment (fricatives tended to be long, unaspirated
stops tended to be short, etc.). Since there was no obvious articulatory or acoustic logic for
ranking segments along the duration scale, our initial option was to treat segment identity
on a nominal scale (as a set of discrete IVs). This was not very appealing, since one of the
applicable regression mechanisms (regression for discrete or nominal values) was much
less powerful than a regression for ordinal or scale values, and another procedure, the
frequently employed binary regression tree (e.g., Riedi 1998, Klabbers 2000) required
quite a bit more data, due to the "sparse-data problem".10 A multiple regression for the
modelling of duration based on simple nominal values would explain only about 10-20%
of variance, while ranked regressions for the same data set generally explain more than

50%, and sometimes as much as 79% of variance (Zellner 1998).

In our previous work, segments were thus recoded as members of "duration groups"
(Keller/Zellner 1995). To counter the arbitrariness inherent in the constitution of such
groups, Zellner (1998) proposed a grouping on the basis of purely quantitative criteria, a
solution which was subsequently applied to German as well (Siebenhaar et al. 2001). This
categorisation process was quite successful, yet it also led to a certain loss of predictive
power because of the grouping of values. Also, while a specific grouping may be
satisfactory for one IV-DV relationship (e.g., the current segment identity - duration

                                                                                                                                                              
explanation of variance. However, Howell (1999) emphasizes the importance of basing the removal of variables

not only on statistical, but also on theoretical considerations. For example, the simplified lexical/grammatical
POS (obviously) showed multicollinearity with the full POS information, as distinguished by the CUVOALD

dictionary. After considering the behaviour of the two IV's throughout the data set, simplified POS IVs were
removed when they co-occurred with full POS IVs, even though according to SPSS, both could have remained in

the equations.
9 Ordinal predictors behave just like scale predictors in normal multiple regression analyses.
10 The "sparse data" or "LNRE (Large Number of Rare Events)" problem refers to the pervasive and difficult

issue that certain linguistic features or elements are far less frequent than others and that any combinatorial
information is difficult to obtain for the less frequent elements (Van Santen 1997, Van Santen/Shih 2000, Keller

2002, Möbius 2001). For example, /t/ is a very frequent sound in English, while /Z/ (as in "measure") is very rare

(Roberts 1965). Consequently, it is difficult to collect enough data to illustrate how /Z/ behaves in all possible
segmental combinations.
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relation), it may not be optimal for another (e.g., the relation between the identity of
previous segment and the duration of the current segment).

Table 1. Illustration of recoding of IV values

segment
[IVraw1]

arbitrary
code

[IVraw2]
seg dur

(s)

seg dur
[IV1trans]
(sqrts)

f0
(Hz)

f0
[IV2trans]
(log10Hz)

intensity
(dB)

intensity
[IV3trans]

(dB2)

h 24 0.061009 0.247 106.4633 2.0272 65.37516 4273.911

a 15 0.077006 0.2775 99.28874 1.9969 75.95093 5768.544

u: 38 0.070384 0.2653 105.5115 2.0233 76.49123 5850.908

A: 3 0.117443 0.3427 102.3057 2.0099 75.66772 5725.603

r 34 0.04028 0.2007 98.12959 1.9918 71.83326 5160.017

j 26 0.04469 0.2114 101.2278 2.0053 74.28013 5517.538

u: 38 0.070384 0.2653 105.5115 2.0233 76.49123 5850.908

Comment: IVs (for illustration here: segments) are initially assigned arbitrary codes for computational

manipulation and for compatibility with SPSS. They are then ranked according to their average prediction
on the IV-DV relationship in question. Since the DVs are themselves linearized by a given transformation,

the transformed value is used as the rank number (IV1-3trans). This recoding procedure has the effect of
transforming nominal IVs into rank-order IVs, which substantially increases their predictive power. The

sample utterance "how are you" is recoded here.

In the present study, optimal ranking of IVs was achieved by placing corresponding

linearized average DV values into IV prediction cells. For example, the short vowel /I/ has
an average duration of 58 ms in the data for speaker DH. Since this is a duration, its
linearized value, i.e., the square root of 0.058 s, or 0.2409 was placed in the duration-

predicting IV cell for this segment. If a numeric value was absent from the corpus (e.g., if
stress 0 and stress 2 were attested, but stress 1 was not), the interpolated value was taken
(i.e. (meanstress0 + mean stress2)/2). If a nominal value was unattested, but exists in the
language (such as /Z/), the DV's mean value was used as a predictor value in the simple
version of the algorithm used for this study.11 All IVs were re-coded in this manner,
separately for each IV-DV relationship (for an illustration, see Table 1). This means, for
example, that there is one ranking for the current segment - current duration relationship,
but a potentially different ranking for the relationship between the identity of the
preceding segment and the duration of the current segment.

To sum up, the present study takes the ranking logic to its limit and preserves the greatest
possible amount of predictive power by abandoning categorisation of IVs, by treating each
IV-DV relationship separately, and by letting the data itself determine the ranking, instead
of imposing groups preconceived on theoretical grounds. Furthermore, the approach is

                                                  
11 Missing nominal values can be a system's Achilles heel: the smaller the data set and the more exclusive the set
of prediction features that are employed, the more occurrences of missing nominal values and essentially

meaningless predictions there will be. Contrary to what might be expected, a careful human listener does not
simply pass over the occasional erroneous predictions induced by an expedient use of mean values. Sophisticated

rules are required to deal with the missing data problem in more advanced models (see "Outlook for further

research", below). In the current study dealing with the prediction of the common parameters t-f0-I from a set of
fairly pervasive linguistic features, missing nominal values did not pose a particular problem (see below).
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generalized here to f0 and intensity.

(3) Outliers were examined individually, and modifications to the source data were applied as
judged appropriate. Outliers were defined as data points lying two RMSEs or more above
or below the predicted value for the given data point. (See below for a definition of the
RMSE). The prediction model was recalculated after an inspection and the potential
removal/modification of outlier values.

(4) Variable pruning. After the calculation of an initial set of regressions for the two speakers,
IVs showing multicollinearity were removed with the aid of the stepwise procedure pro-
vided in SPSS. This assured the required degree of orthogonality in the predictor variables
(all of which are related to DVs to a statistically significant degree, p<0.05), and it served
to stabilize the regression coefficients. After this pruning step, IVs shown in Appendix I
were retained. It is noted that the list is somewhat different for the two speakers.

2.3 Evaluation and Precision

The evaluation of prosodic models. The performance of prosodic models can be assessed by
several objective and subjective indicators. Typical objective measures are the correlation

between predicted and measured values on pre-existing (model-feeding) as well as novel data,

the percent of variance explained, derived by squaring the correlation coefficient, RMSE, the
root mean-squared error on the prediction (akin to the standard deviation from the mean), and
the bias of the prediction, i.e., the degree to which the model systematically under- or
overpredicts target values.12,13 Arguably the most powerful objective indicators are RMSE
and bias. RMSE compensates for differences in corpus size, and it is affected by bias, which
is left aside by correlation-based statistics. A separate examination of bias may point up
structural limits or basic deficiencies in the model.

While these indicators are useful to the model builder, it is hazardous to use them to compare
models from different speakers, different speech tasks and different languages, since they
vary considerably as a function of speech task and regularity of the subject's speech
behaviour, and since they do not necessarily reflect perceptual impressions. In fact, it is quite

difficult to accurately assess the "quality" of any prosodic model (see Sonntag 1999, for an
extensive treatment of this issue). In our work on exceptionally careful speakers of French and
German, for example, Pearson r's of 0.8-0.9 were attained for segmental durations (r = .870,
RMSE = 18 ms, reported for French by Zellner 1998 and Zellner Keller 2002; and r = .84
reported for Swiss High German,14 Siebenhaar et al. 2002). When such timing models are
combined with measured F0s and implemented in a speech synthesis system such as
Mbrola,15 the rhythmic component sounds quite convincing. With some other speakers, other

                                                  
12 RMSE is defined as sqrt(sumi...n (observed DVi - predicted DVi)

2)/n) and bias is defined as sumi...n (observed

DVi - predicted DVi)/n.
13 Several other measures are possible (e.g., a relative RMSE), but no convincing case has been made for their

use (see discussion in Klabbers 2000).
14 Combined modelling of segmental and pause durations.
15 For Mbrola see: http://tcts.fpms.ac.be/synthesis/mbrola.html.



Linguistik online 17, 5/03

ISSN 1615-3014

66

languages and in less formal speech, however, much lower coefficients (e.g., r's of 0.6-0.8)
have also been encountered using the exact same methodology. Yet such objectively "weaker"
models may perform also reasonably well when driving a speech synthesis system.

This has led to the notion that prosodic models should be evaluated via speech synthesis. It is
argued that more natural, holistic percepts can be created from several prosodic sub-models,
minimally one for timing and one for melody, and that such percepts can be compared to that
obtained from human speech. This introduces several new problems, however. Most impor-
tantly, the output combines effects and degradations introduced by the prosodic module with
those produced by the downstream signal generation module. Since signal components are
often quite deficient, this leads to dubious perceptual comparisons between two very different
entities, artificial and human speech. Furthermore, the long-term value derived from fairly

costly perceptual tests is questionable, since speech synthesis systems are in constant
evolution, and judgements obtained one year may be outdated the next. Consequently, only
prosodic output via a specific signal generation module is compared here, and we are circum-
spect about percepts derived from speech synthesis, even though we favour such implementa-
tions for the interactive development and testing of speech models (Keller 1997, 2002,
forthcoming).

Precision. A final concern in prosodic modelling is measurement precision. Although
computer programmes will perform their analyses according to an exact set of criteria, the
criteria themselves may not be defined (or easily definable) with sufficient completeness or
complexity. For this study, human intervention was applied at five points: (1) the initial
identification of predictor variables, (2) the phonetic segmentation of the acoustic signal, (3)

the alignment between the "default" (dictionary-and-rule-based) phonetic segment sequence
and the actually produced phonetic segment sequence, and (5) the selection of input
parameters for final statistical analyses.

3 Results

Two research questions were examined here:

1. How much data is required to build a reliable t-f0-I prosodic model?
2. How well do minimal t-f0-I prosodic models project to novel data?

In the following section, results for speaker BP are given first, and for speaker DH second.

3.1 Modelling the Original Data

To examine the first issue, 50 models per DV were calculated over domains of various sizes.
The first model was calculated on the basis of just two contiguous utterances (1 and 2), the
second on the basis of three (utterances 1, 2 and 3), through to the last model which was
calculated on the basis of the 51 initial utterances (1...51) of continuous speech by the two
speakers. Models were calculated separately for the three dependent variables t, f0 and I.

The results for the Pearson correlation coefficient r and RMSE show that the models stabilize
rapidly beyond the fifth utterance (Figure 2). Approximate stability is attained by models that
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are based on twenty utterances or more. The stability estimates are similar for the two
speakers, even though the model fits for BP are better than those for DH. The exact measures
were as follows for model 20, based on 21 utterances: (Speaker BP) t, r = .735, p<.001,
RMSE = 24 ms, bias = 2.3 ms; f0, r = .502, p<.001, RMSE = 2.55 semitones (16.7 Hz), bias =
1.24 Hz; I, r = .790, p<0.001, RMSE = 4.82 dB, bias = -0.17 dB. (Speaker DH) t, r = .686,
p<.001, RMSE = 28 ms, bias = 2.7 ms; f0, r = .294, p<.001, RMSE = 3.76 semitones (25.4
Hz), bias = 2.65 Hz; I, r = .721, p<0.001, RMSE = 5.56 dB, bias = -0.23 dB.

Since the model for fundamental frequency predicts values for both voiced and unvoiced
segments, even though only voiced segments provided reliable input data and unvoiced data
were interpolated, f0 predictions were potentially depressed in comparison with predictions
for segmental durations and intensities. However, a separate run for the voiced segments of

model 20 showed few if any improvements. Correlations r's for voiced segments (N=602)
were .549 for BP (marginally better) and .294 for DH (N=742, unchanged), and RMSEs were
2.47 semitones (15.7 Hz) and 3.6 semitones (24.2 Hz) respectively, both marginally better.

Since bias captures the degree to which a model over- or underestimates target values, it was
interesting to examine the relationship between bias and RMSE (Figure 3). There were strong
correlations between RMSE and bias for all parameters (t: r=.906, f0: r=.988, I: r=-.904),
indicating that in this data set, bias accounts for nearly all of RMSE variation.16 However, the
percentages of the RMSE accounted for by bias were not excessive (means of bias as a
percent of RMSE for 50 models and the two speakers: t: 9.8% and 10.0%, f0: 7.3% and
10.2%, I: 3.5% and 4.0%). This analysis shows that the models for the two speakers tended on
the average to underestimate duration and fundamental frequency, and to overestimate

intensity. This can probably be related to the physical and physiological nature of the scales
involved. In normal speech, segmental duration is open-ended at the top but close-ended at
the bottom, fundamental frequency shows more range above median activity than below, and
intensity shows the inverse tendency.17 This is reflected in the relationship between the mean
and the median, where BP, for example, shows a median lying below the mean for duration
(median: 48.6 ms, mean: 50.0 ms) and fundamental frequency (median: 100.7 Hz, mean:
102.2 Hz), but a median situated above the mean for intensity (median: 72.7 dB, mean: 71.8
dB).

A further observation is of interest. The closeness of fit for some of the small-footprint
models (e.g., model 7 for BP, based on eight utterances and 779 (BP) / 978 (DH) segments, or
model 6 for DH, based on seven utterances) is especially strong for duration and fundamental

frequency (see Figure 2). Also a hint of a "counter-effect" is visible for f0 around models 16
and 13, respectively. It is possible that a rather good short-term fit could be based on just
seven to eight contiguous utterances. In contrast to the stable long-term model visible for

                                                  
16 It is not necessary for bias to correlate with RMSE. As the deviation from a prediction changes, both RMSE

and bias change, but not necessarily in the same direction, since RMSE is based on a squared error estimate and
bias is based on a direct error estimate.
17 Assuming skew-optimized scales for the three variables, as discussed above.
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pools of 20+ utterances, this short-term model could possibly represent an optimum for
capturing changing prosodic trends within ongoing speech activity.

Sliding-window model fits for 70 sentences appear to bear out the similarity of results for
short- and longer-term analyses. In this analysis, a first set of short-term models based on a
sliding 8-utterance window, and a second set of longer-term models based on a sliding 20-
utterance window were calculated. For each speaker, all possible models were constructed for
a total of 70 continuous utterances (Figure 4). In several tasks, the 8-utterance models fit the
data better than the longer-term 20-utterance models, particularly for BP, both in the sense of
reflecting more local variation and by reducing the RMSE somewhat. In other tasks and
particularly for DH, the results were mixed, but the longer-term models never showed any
clear superiority over the short-term models.

Figure 2. Correlation coefficients and RMSEs for 50 models of increasing domain, where model 1 is based on

utterances 1...2, model 2 on utterances 1...3, and model 50 is based on utterances 1...51. Left: Closeness of fit as
measured by the correlation coefficient r between predicted and measured mean segment values for segmental

duration, fundamental frequency and intensity (with r, higher is better). Beyond the 20th utterance, the model fit
is approximately stabilized for all three measures and for both speakers. Right: In terms of the RMSE (where

lower is better), the fit appears to stabilize even earlier, on the basis of fewer utterances. The stability estimates
are similar for the two speakers, even though the model fits for BP are better than those for DH. The N for the

first 20 utterances was 1'962 and 2'331 phonetic segments for BP and DH respectively.
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Figure 3. The relationship between RMSE and bias for the two speakers. Strong correlations are visible for all
parameters (t: r=.874 and .979, f0: r=.989 and .997, I: r=-.979 and -.999, all p<0.001), suggesting that bias

accounts for nearly all of RMSE variation. Since bias = mean(predictedi -observedi ), positive-going values

correspond to underestimations and negative-going values to overestimations. In both cases, greater divergence
from zero corresponds to greater degrees of under- or overestimation. In all conditions shown here, bias accounts

only for a small proportion of total error, typically less than 10%. Also, bias does not account for residual
(unsystematic or otherwise unaccounted for) error.
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Figure 4. Model fits of 70 utterances of continuous speech, as estimated by the RMSEs on 8- and 20-utterance
sliding window analyses. In some tasks, short-term models fit the data better than longer-term models (with

RMSE, lower is better). Since RMSE variation reflects primarily bias (as confirmed for the sliding-window
models) and thus represents over- and underestimations, the variations shown here correspond primarily to the

presence of excessive values in the data. E.g., the increase of duration RMSEs in the first part of BP's first news

bulletin (models 8-35) reflects the presence of a substantial number of particularly long phonetic segments, as
verified manually.

Since RMSE variation was again found to reflect primarily bias and thus captures small over-
and underestimations, the variations shown here probably correspond to the presence of

excessive values in the data. For example the stretch of high-duration RMSEs in the middle of
BP's speech material (roughly, the middle of the first news bulletin) suggests that in those
places, the model underestimates duration in the observed data, which in turn suggests the
presence of an exceptionally high number of particularly long phonetic segments. This was
confirmed by a visual inspection of the raw and bias values (not shown here). At the
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beginning of the news bulletin (models 0-7), average bias decreases briefly, to be followed by
a long rise (models 8-35), and during its last part (models 36-42), bias was seen to decrease.
(The first news bulletin ends on utterance 49.).

Figure 5. Model fits for new data as measured by the correlation r and RMSE between produced and predicted

prosodic values. Model fits are weaker than for the original data, and BP's model has greater predictive strength
than DH's models. Models based on 20 utterances furnish only marginally better predictions than those based on

eight utterances (average of 1.3% for correlations, 0.9% for RMSEs).
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In conclusion, it seems reasonable to suggest that a t-f0-I prosodic model for news and lecture
material can furnish useful short-term information based on just eight utterances, or less than
1000 segments, while a still very compact 20-utterance model can provide a stable estimate of
longer-term behaviour of these three prosodic parameters.

3.2 Modelling Novel Data

Correlations and RMSEs. To examine the models' ability to generalize to novel speech
material, 8- and 20-utterance models were trained on the two speakers' initial utterances in the
corpus and were applied to the speakers' respective utterances numbered 21-70. Only data
from the training set was used in the ranking procedure for the IV-DV relationships used in
the training models.

The new speech material of 50 utterances was subdivided into equal slices of about five
utterances each. Each slice was 556 segments long for BP and 591 segments long for DH.
Correlations and RMSEs were calculated between predicted values and prosodic data
extracted from the original files (Figure 5). Results showed that model fits were weaker than
for the original data, but for the most part were still in the useful range. RMSEs were less
strongly correlated with bias (rt = .460, rf0 = .415, rI = .049, average of two model types, both
subjects), suggesting that some of the divergence between produced and predicted values was
probably due to differences between the model's source data and the novel data, not to
systematic model bias. In line with BP's better-fitting models for the original data, this
speaker's model had stronger predictive power for new data than did the models based on
DH's material. Models based on twenty utterances furnished only marginally better

predictions than those based on eight utterances (an average of 1.3% improvement for
correlations and an average of 0.9% improvement for RMSEs).

Missing data were calculated for eight new utterances on the basis of eight and twenty
utterances (Table 3). It is recalled that the missing data for numeric IVs (e.g., stress levels) are
interpolated and that average values are substituted for nominal IVs (e.g., segments). Since
interpolation was necessary for 5% or less of predicted values, and since no substitution of
averaged values was necessary, it can be concluded that missing data did not play a major role
in this data set.

Table 3. Missing Data

subject

data base for
parameter
table total predictions

values found
in table

interpolated
numeric values

averaged
nominal
values

N % N % N % N %

BP 8 utterances 183480 100.0 174362 95.0 9118 5.0 0 0

BP 20 utterances 183480 100.0 180836 98.6 2644 1.4 0 0

DH 8 utterances 177480 100.0 171339 96.5 6141 3.5 0 0

DH 20 utterances 177480 100.0 173749 97.9 3731 2.1 0 0
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In general it can be concluded from this set of experiments that t-f0-I models based on as few
eight contiguous utterances generalize satisfactorily to new speech material from the same
speaker and in the same speech style, as long as the original fits are satisfactory. For example,
BP's original models for fundamental frequency showed a relatively low correlation r of
around 0.5 with an RMSE of around 2.5 semitones (Figure 2). In their application to new
material, the correlations dropped to around 0.45, but the RMSEs stayed at about 2.5
semitones. By contrast, DH's models for fundamental frequency showed very low correlations
r's of about 0.3 and considerably higher RMSEs of about 3.8 semitones on both old and new
material. At these levels, the models' predictive capacity is so diminished that their usefulness
can be questioned. This suggests that initial speaker selection plays a more crucial role in
assuring high levels of model fit than increased amounts of data.

Speech Synthesis. In a second test of the models' ability to generalize to new data, two
passages were synthesized on the basis of the 8- and 20-utterance models for the two
speakers. The first was a Hello World message, the second was the British version of the
Northwind Passage.18 Only predictions for segmental duration and fundamental frequency
were used. Four fundamental frequency values were generated by interpolation from the
single predicted value per segment, and a cubic spline function was applied to smooth the f0
curve. Pauses were simulated by static rules (end of major breaks: 100 ms, utterance final:
600 ms). Durations were linearly lengthened somewhat (maximum: 5%) to facilitate
perception and judgement.19 Outputting was effected through Mbrola with the "en1" diphone
database,20 and was subsequently denoised and filterband enhanced with the Pristine Sound
software, before being converted to MP3. The sounds are available at our website.21

Without systematic perceptual testing, it is hazardous to form judgements concerning these
sample files. At the same time, the main conclusions of the objective evaluation do appear to
be borne out. They are:

• An interesting default t-f0-I prosodic model can be based on very little speech material
using the methodology described here.

• There are few differences between models based on eight and twenty utterances, with
the possible exception of f0 prediction.

                                                  
18 The Hello World message is: "Hello world, how are you, I'm a simple {eight, twenty}-utterance prosodic

model, trained on {speaker's name}, speaking through Mbrola." The Northwind Passage exists in a North
American and a British version (available at http://www.alt-usage-english.org/north_txt.html). The North

American version of the Northwind Passage was used in the early 1980s for an evaluation of the MITalk system
(http://www.mindspring.com/~ssshp/ssshp_cd/ss_mit.htm).
19 Native English listeners unfailingly considered the unlengthened versions to be too rapid, a phenomenon that

may be attributed to the limited quality of the resynthesis system.
20 The en1 database was provided by the Edinburgh team distributing the Festival project: Alan Black, Paul

Taylor, Roger Burroughes, Alistair Conkie, and Sue Fitt. http://www.cstr.ed.ac.uk/projects/ festival.html.
21 http://www.unil.ch/imm/docs/LAIP/LAIPTTS_pros_footprint.htm.
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•  The better-fitting models based on BP's speech do appear to sound a bit better than
those based on DH's speech material, particularly with respect to fundamental
frequency.

• Some of the stylistic differences between BP's and DH's prosody can be identified in
the synthesis by listeners familiar with the speech patterns of the two speakers, notably
DH's considerable f0 modulations.

4 Outlook for Further Research

It was found that simple linear regression models for t, f0 and I, based on eight and twenty
consecutive utterances of news bulletins and prepared lecture presentations showed good
stability, satisfactory prediction for novel material, as well as closeness of fits comparable to

those reported by other researchers for much larger corpora. For example, the RMSEs for
duration data in our two speakers ranged from about 21-29 ms for about 2000 segments.
Klabbers (2000: 70), using classification trees established on the basis of phonetic principles,
reported RMSEs ranging from 19 to 27 for duration data on Dutch (RMSE 27 ms, 12'948
segments), German (RMSE 19 ms, 24'240 segments) and French (RMSE 25 ms, 7'143
segments). We saw that beyond the 20th utterance, the variable of greatest impact was not the
size of the data set, but the selection of the speaker (e.g., mean duration RMSEn=8 for BP: 24.0
ms, DH: 26.5 ms). Also, closeness of fit varied over short stretches of speech, suggesting that
a locally-adapted model may sometimes be preferable to a models based on long-term
behaviour.

It may be possible to further optimise this type of model:

1. Predictors. While the current, easily obtainable set of independent variables shows
fairly good predictive power, it does not exhaust the list of useful prosodic predictors.
Some obvious variables left aside in this study relate to semantic prominence and
stress. Manually-marked or upstream-generated semantic prominence inputs would
quite likely improve the power of the model. Similarly, stress was treated as a lexical
phenomenon here, while phrase-domain stress rules would probably be better
predictors for running English speech.

2. Interactions. The modelling of interactions was left aside here. Yet many independent
variables clearly show interaction effects. For example, in vocalic portions of a
syllable, stress has different effects on segmental duration than during consonantal
portions. There thus exists an "interaction" between stress and segmental type, as the

two exert their combined effect on duration. In our French synthesis, some of these
deficiencies were "patched up" by supplementary rules. It would be preferable to
incorporate interactions right into the overall model, for example by including a set of
contextually inspired predictor variables, or by having the multiple regression
algorithm model interactions directly.
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3 .  Increased exposure to absent predictors and to missing data. As mentioned in
footnote 11, it would be short-sighted to believe that the occasional erroneous
calculation based on a missing data point or the absence a rarely-occurring predictor
does not matter to a careful listener. At the same time, simple calculations of
probabilities of occurrence for rare phonetic and prosodic data indicate that even
sizeable data bases (e.g., in excess of 100'000 segments) cannot provide actual data
points for every phonetic and prosodic contingency (for further discussion of this
point, see Portele 1998, Möbius 2001 and Keller 2002). Consequently, more advanced
models would have to include a sophisticated logic to deal with missing data, based on
a theoretically and empirically informed analysis of observed IV-DV relationships.

4. Nonlinearities. Multiple linear regressions are efficient and relatively unambiguous in

their application, but they require linearity and approximate normality of distribution
in the dependent variable. In our work on t, f 0 and I , this has not posed any
insurmountable problems, but the case may be different for the prediction of other
prosodic parameters (pauses, turn-taking signals, etc.). If considerable nonlinearities
are observed, numeric modelling techniques more adapted to non-linear data (such as
neural nets) may be called for (for the application of neural nets to prosodic
parameters, see Campbell 1992, Pfister/Traber 1994, Traber 1992, and many
subsequent authors). The neural net approach becomes of particular interest if there is
evidence of non-gradience in the prosodic parameter of interest, e.g., when prosodic
parameters act as "edge markers" in speech, rather than as continuously present
parameters in need of quantity specification (as with t, f0 and I).

It thus appears that the relationship between size of data base and prosodic model is largely a
function of the parameters involved. From the present results it can be concluded that the
fundamental behaviour of frequently-observed continuous parameters such as t, f0 and I can
profitably be modelled on the basis of relatively small amounts of data, at least in read
material such as news bulletins and professionally delivered lectures. More data per se did not
improve the model fit or render it more stable. On the contrary, models based on more than an
optimal amount of data may well be incapable of capturing the very detail of interest in
specific speech and speaker styles.

This suggests that small-data models could well serve as default models for the simulation of
individualized prosody, and that sophisticated ways (typically extra parameters and specific
rule sets) should be devised to deal with the deficiencies induced by missing data.

Particularly, infrequent and inconsistently used "marker" parameters would probably require
specific well-targeted investigations of wider data sets before they could be modelled
adequately. Building a series of well-adapted small-footprint models may well say more about
the individual use of prosody in specific speech situations than building a single model on the
basis of a great deal of data.
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Appendix I. Independent and Dependent Variables of this Study

Speaker BP Speaker DH

Independent Variable Dependent
Variable

Independent Variable Dependent
Variable

boundary duration boundary duration

full POS duration full POS duration

major phrase in utterance,

number

duration minor phrase in major phrase,

number

duration

minor phrase in major phrase,

number

duration minor phrase in major phrase,

position

duration

phonetic segment in syllable,
number

duration phonetic segment in syllable,
number

duration

phonetic segment, current duration phonetic segment, current duration

phonetic segment, preceding duration phonetic segment, preceding duration

phonetic segment, succeeding duration phonetic segment, succeeding duration

stress, current duration stress, preceding duration

stress, preceding duration syllable in word, number duration

syllable in word, number duration syllable in word, position duration

full POS f0 full POS f0

major phrase in utterance,

number

f0 major phrase in utterance,

number

f0

major phrase in utterance,

position

f0 major phrase in utterance,

position

f0

minor phrase in major phrase,

number

f0 minor phrase in major phrase,

number

f0

minor phrase in major phrase,

position

f0 minor phrase in major phrase,

position

f0

phonetic segment in syllable,
number

f0 phonetic segment, current f0

phonetic segment, current f0 phonetic segment, preceding f0

phonetic segment, preceding f0 phonetic segment, succeeding f0

phonetic segment, succeeding f0 word in minor phrase, number f0

stress, preceding f0 boundary intensity

word in minor phrase, number f0 minor phrase in major phrase,

number

intensity

boundary intensity minor phrase in major phrase,

position

intensity

full POS intensity phonetic segment in syllable,

position

intensity

major phrase in utterance,

position

intensity phonetic segment, current intensity

minor phrase in major phrase,

number

intensity phonetic segment, preceding intensity

minor phrase in major phrase,

position

intensity simplified POS intensity

phonetic segment, current intensity stress, preceding intensity

phonetic segment, preceding intensity syllable in word, position intensity

phonetic segment, succeeding intensity word in minor phrase, position intensity

stress, preceding intensity

stress, succeeding intensity

syllable in word, position intensity


