
ISSN 1615-3014

What exactly is wrong and why?
Tutorial Dialogue for Intelligent CALL Systems

Manfred Klenner (Zurich) / Henriëtte Visser (Heidelberg)

Abstract

We introduce a dialogue-based explanation facility for Intelligent CALL (ICALL) Systems.
Our prototype system, DiBEx, uses meta reasoning to build up an explanation (error) tree,
given a faulty user input. It relies on correct grammatical subtheories, instead of explicit error
taxonomies. DiBEx, thus, realizes anticipation free error diagnosis. The system enters in a
tutorial dialogue with the student, where each explanation (dialogue) step is based on the prin-
ciples of a single tutorial strategy and a dynamic user model.

1 Introduction

Computer Assisted Language Learning (CALL) has been one of the first incarnations of E-
Learning, which has not only become a trend nowadays but also a commercial factor. CALL
has its own international conferences and a wide range of academic prototypes and commer-
cial products are available. As with E-Learning software in general, advanced CALL systems

are based on the principles of multi media design, facilitating modalities like audio and video,
e.g. speech input and output, animated graphics and avatars for guiding the user. Although
these design standards do improve the quality of E-Learning systems, it is widely accepted
that an optimal learning environment is one where the learner is guided by an intelligent per-
sonalized tutor, that adapts to the level of expertise of the learner, for example in tailoring ex-
planations to the user's domain knowledge and selecting appropriate exercises. This is the area
of Intelligent Tutorial Systems (ITS) and User Modelling (UM), so far a mainly academic dis-
cipline. If at all, only few commercial (CALL) products incorporate such capabilities. The
problem is that domain knowledge, reasoning and learning facilities and - in the case of verbal
explanations - natural language understanding capabilities are to be integrated; altogether a
non-trivial task for many application areas. As a consequence, intelligent tutorial systems

seem to be suited well only for restricted domains, e.g. circuit design (Davis 1984).

We believe that in the area of CALL systems we can in fact find such restricted domains (por-
tioned by the thematic closure of the exercises of a lesson). The domain knowledge here is
knowledge about grammar (word order, agreement, subcategorisation etc.) and the domain
modelling can be held local to each lecture. The challenge then is the reasoning and natural
language part of such an intelligent CALL (ICALL) system. We will elaborate on this below.
Let us first discuss the kind of learning tasks we are focussing on.

Linguistik online 17, 5/03

ISSN 1615-3014

82

2 Examples of Explanatory Dialogues

We are focussing on language generation tasks involving grammatical knowledge, such as
forming a sentence given a couple of words in base form or translating a sentence. Such an
exercise could be: Given the words 'Mann sehen grün Auto (man see green car)', form a full
inflected sentence (in the word order as given).

The correct answer is: 'Der Mann sieht das grüne Auto' (the man sees the green car). Here,
diverse grammatical knowledge (of German grammar) is inolved: the subject must be realized
in nominative case, an article must be selected that agrees with the noun in case, gender and
number. The object should be realised as accusative, adjective inflection, the article and the
noun must correspond to this.

Or consider the translation of the sentence "La lune s'est levée" into German language. The

result should be: 'Der Mond ist aufgegangen (the moon has risen)'. Here, among others, the
learner must know that 'lune' ('Mond') is masculine in German (in contrast, it is feminine in
French). If the learner responds with 'Die Mond ist aufgegangen', she probably is not aware of
that fact.1 A system that simply responds with 'no' is of little use. In Fig. 1, a wide range of
possible feedback statements to a faulty input 'die Mond' are enumerated.

1. 'die' is wrong (is feminine)
2. the wrong article was selected
3. 'Mond' is masculine
4. the noun is masculine
5. the noun is masculine, but the article is not
6. there is an agreement error
7. there is an agreement error within the subject
8. 'die' and 'Mond' do not agree
9. the article and noun do not agree
10. 'die' and 'Mond' do not agree in a grammatical category
11. 'die' and 'Mond' do not have the same gender
12. the (grammatical category) case of the subject is wrong
13. a grammatical category of the subject is wrong
14. the subject is wrong

Figure 1: Error Feedback

But what is the right level of explanation? For a learner who is familiar with grammatical con-
cepts like subject, agreement etc. the explanations given in e.g. 7 or 13 might suffice, i.e. help
her to find the correct solution. In contrast, beginners might prefer the explanations in 1 or 5.
Explanation 3 ('Mond' is masculine') is a very sophisticated one, since it requires some infer-
ences to be made by the student (e.g. 'Mond' is masculine' means 'something that also should
be masculine actually is not'). But if a single explanation does not provide sufficient informa-

tion to allow the learner to correct her input, a tutorial explanatory dialogue is needed. In Fig.
2 an example of such a top down dialogue is given.

1 Note however that often more than one explanation of a learner's mistake is possible. Here the learner might

well know that 'Mond' is masculine but erroneously believe that 'die' also is masculine

Manfred Klenner/Henriëtte Visser: Tutorial Dialogue for Intelligent CALL

ISSN 1615-3014

83

system: there is an agreement error
user: where?
system: at the subject
user: why?
system: the article and the noun do not agree in gender
user: i can't fix the problem
system: German 'Mond' is masculine
user: i see, but what am i supposed to do?
system: choose the corresponding masculine article
user: what is it?
system: 'der'

Figure 2: A Top Down Explanatory Dialogue

This is an example of an exhaustive dialogue, where the learner is not able to utilize the expla-
nations of the tutor at all. Thus, the dialogue finishes with a correction statement. We expect
such a situation to be the exception, which nevertheless should be manageable by the system.
Normally, after one or two dialogue steps, the learner should come up with the right solution.
Otherwise, the user model must be adapted to a lower level of expertise. Another tutorial strat-
egy is based on a bottom up explanation as given in Fig. 3.

system: the article is wrong
user: why?
system: 'die' is feminine
user: so what?
system: the article must agree with the noun
user: what's the problem?
system: German 'Mond' is masculine
user: i see

Figure 3: A Bottom Up Explanatory Dialogue

Why not simply provide the student with the correct solution? Language learning is a kind of
problem solving. Psychological studies have indicated that self explanation can improve
problem solving skills (Conati et al. 2001). We adopt that view and opt for a tutorial strategy
that helps the student to explain her mistakes to herself.

Another question that remains open is whether students pay attention to the metalinguistic
feedback at all. However, studies seem to suggest that students appreciate meaningful learner-
computer interaction and are willing to get involved in a longer dialogue as long as the option

of receiving the correct answer immediately remains open (Heift 2001).

In the next section we present an overview of the historical development of CALL and the
current challenges in system design. Our prototype system DiBEx (Dialogue-Based Explana-
tion) is described in section 4.

Linguistik online 17, 5/03

ISSN 1615-3014

84

3 Previous Work

3.1 CALL Systems: Introduction

Computer Assisted Language Learning (CALL)2 systems were developed as early as the 60s,
when mainframe computers were installed at universities and large firms and experimentation
with more personalized, non-mathematical and industrial uses of the computer began. The
pedagogy at that time was largely convinced of the value of repetitive and memorization tasks
for the learning of language and the use of computerized exercises meant alleviation for the
teacher, but the use of such programs remained limited. In the 70s the role of the teacher began
to change toward the role of a tutor, not only a corrector, who communicates more individu-
ally with the students and sets tasks. During this time (70s and 80s) the computer world was

revolutionized by the introduction of Personal Computers for individual use. The flexibility of
PCs in schools and in the workplace lead to initial euphoria about the role of the computer in
learning. Initially the attraction of the new medium seemed so all pervasive, that it was often
thought that the mere opportunity to use the computer meant that the students would concen-
trate on the learning tasks. Pedagogy in the CALL software was often ignored or restricted and
lagged behind the changes taking place in the classrooms. The introduction of multimedia
(audio, video, advanced graphics) in the 90s greatly improved the user attractiveness of the
medium. Also the new communication technologies such as the Web and email meant direct
access to original language environments. This convinced many users to invest in a PC for the
home, also because of the growing pressure toward life-long learning to secure the workplace
and participate in social life. Even though these developments increased the market for CALL

products, it also increased the drive to rapid commercialization and reduction of funds for re-
search and prototyping.

Although many commercial products are now available for a variety of language learning
tasks, the pedagogical demands have also increased. The computer no longer has the role of
being a mere tool for 'drill and kill' exercises, nor even that of a tutor imparting 'neutral' infor-
mation or knowledge, it is expected to be a teacher or facilitator. Real life teachers of course
have a variety of choices at their disposal to respond to a student. They can respond both in
writing and orally, make judgements about the students' expertise and learning progress and
adapt accordingly, in certain teaching situations they can overlook language errors to advance
the communicative tasks and build confidence. This flexibility of the teacher, both consciously
driven by the curriculum and the underlying pedagogy and partly driven by intuition, is very

difficult to simulate.

Research in this direction is sometimes referred to as Intelligent Tutoring Systems (ITS), or
more specifically for the language learning field, Intelligent CALL (ICALL). These systems
are conceived to include a user model, a tutorial model and underlying NLP tools. The user
model registers the learner history (exercises chosen, errors made), the tutorial model includes
the general curriculum and the individual exercises, as well as the response routines. Ideally
both the diagnosis and response routines are supported by NLP tools, such as a parser. All

2 For an interesting overview of the history of CALL related to technological developments: Warschauer 1996.

Manfred Klenner/Henriëtte Visser: Tutorial Dialogue for Intelligent CALL

ISSN 1615-3014

85

modules should be dynamic, i.e. output should change according to the information supplied
by the other modules. These tasks are certainly not trivial, but would improve the quality of
CALL systems. One of the criticisms of the current systems is the rigidity in handling the in-
put and in responding to the student. Most exercises allow at the most the input of short
phrases, sometimes only clicking and moving graphic objects. Behind such systems are fixed
sets of correct input to the exercises. However, learners respond with irritation when an alter-
native but correct answer is not accepted. Another reason for irritation is the fact that systems
often cannot analyze faulty input and do not give error explanations. If error explanations are
provided, these are usually fixed sets of responses to anticipated errors. Even though experi-
enced teachers can often anticipate which errors students will make, the limitations of such an
approach for a computer system are clear: if the error was not anticipated, there will be no

reaction at all and if the explanation given is not understood there is no possibility of asking
the teacher.

These limitations can be overcome to a certain extent by introducing NLP techniques, such as
parsing, to analyze the input as well as to provide an indepth error diagnosis. Building on such
a diagnosis, a response can be generated, which then can also be varied according to input of
the user model and the tutorial model.

3.2 The Problem of Error Diagnosis

In this section we discuss the problem of error diagnosis which is a prerequisite for any error
explanation. In general, parsing ill-formed sentences for error diagnosis is not trivial, espe-
cially if the correct solution is unknown. In DiBEx, the problem is somewhat relaxed, since

the correct solution is known, i.e. is specified in advance by a human exercise creator. This
simplifies error diagnosis significantly, as we will discuss in section 4.2. We nevertheless give
here a brief overview of the general problems involved in error diagnosis.

Normally, parsing is the application of a correct grammar to an input sentence. If the input
sentence is incorrect, parsing simply fails. We illustrate this problem with a simple example
(taken from Yazdani 1988). Consider the phrase structure grammar (PSG) given in Fig. 4.

1 S � NP VP

2 VP � Verb

3 NP � Det Noun

4 NP � Name

5 Det � the

6 Noun � student

7 Name � joe

8 Verb � laughs

Figure 4: A Simple PSG

Given the student input: 'The joe laughs', a reasonable (high level) error explanation would be:
'The noun group is wrong'. However, to fix the problem that the noun group (!) is wrong, the
system must infer that 'the joe' in fact is meant to be a noun group. Since parsing the noun
group fails, parsing of the whole sentence fails, including the verbal phrase. But 'the verbal

Linguistik online 17, 5/03

ISSN 1615-3014

86

phrase is wrong' is not true. Note that not necessarily the phrase of the first proof failure is to
blame. Assume an additional S rule S � PPVP as the first S rule. Clearly, PP then is the first
phrase structure rule that fails to be proved. But the system should not come up with the error
explanation: 'the prepositional phrase is wrong'. The only trivial solution to that problem is to
augment the phrase structure grammar with error rules. For example:

NP → Det Name (Error: names are used without determiners)

But this widely used strategy leads to a proliferation of error rules (e.g. PP � Prep Det Name

and so on). Moreover, more complex phenomena like agreement hardly can be modelled by

such an anticipation based error diagnosis (but see Schneider/McCoy 1998, see also Menzel
1988 for a discussion of these problems).

The alternative to the anticipation of errors is an approach called model based diagnosis. We
discuss this kind of error diagnosis in the next section.

3.3 Menzel's Approach

In model based, anticipation free error diagnosis, no knowledge about possible errors is repre-
sented. There are no error rules (mal-rules) or precompiled error taxonomies (for an example
of such a system, see McCoy et al. 1996). Instead, error diagnosis is based on a universal pro-
cedure that infers errors made from a pool of valid domain knowledge. This kind of error de-
tection has first been applied to technical systems (Davis 1984, De Kleer/Williams 1987).

Menzel (1992) adapted it to the field of computer assisted language learning. We give a brief
introduction to Menzel's approach, since we use his representations. Note however that we do
not use Menzel's reasoning scheme, instead a meta interpreter is used.

First of all, to enable model based error diagnosis grammatical knowledge is represented more
explicitly than in standard NLP systems. For example, the principle of agreement in unifica-
tion based grammar is captured by the unification of feature structures. So the two feature
structures [gender=mas] ('der') and [gender=mas] ('Mond') do unify. However, the fact that
they should agree in gender is not explicitly represented. It is - so to say - built in. Such meta
knowledge about grammar is necessary, if those parts of the domain knowledge that are vio-
lated by the user input should be identifiable. A possible, more explicit representation for that
kind of knowledge is: agree(noun,article,case). This simply means: The noun and the article

must agree in case.

An anticipation free diagnosis model is made out of a set of such (named) model components
and the relation between them. To model, for example, case agreement within a prepositional
phrase, the following components can be used:

agr1: agree(noun,article,case)
agr2: agree(preposition,noun,case)

where agr1 and agr2 are the names of the model components. Each model component has an
input and an output value. The function in(x) (input value) returns the value of the first argu-
ment of a model component (which is always a triple) wrt. the third argument. For example:
in(agr1)= case of noun. Similarly, out(x) is the value for the second argument with respect to

Manfred Klenner/Henriëtte Visser: Tutorial Dialogue for Intelligent CALL

ISSN 1615-3014

87

the third, i.e. out(agr1)=case of article. Such information is part of the lexicon which is repre-
sented by facts of the general form val(word,feature,value).

Given such a definition of in and out, the (conditional) semantics of a model component can
be stated as:

)()()()(_ xoutxinxignoredxagreetype =→¬∧ .

To paraphrase this: given x is of type agree and (the principle) x is not ignored, the values of a
feature of the first and the second argument must be the same. We come back to that below.
Relations between (!) model components - similarily - relate input and output values. For ex-
ample: out(agr2)=in(agr1), which guarantees a consistent value assignment for the case fea-
ture within prepositional phrases.

How can this be used for error diagnosis? Let us look at an example: 'mit des Hauses' ('with
the house'). Its representation is:

agr1: agree(Hauses,des,case) % both genitive
agr2: agree(mit,Hauses,case) % mit/dative, Hauses/genitive

The relation between agr1 and agr2 is not violated, since it holds that out(agr2)=in(agr1)
(in(agr1) = genitive and out(agr2) = genitive). But according to the conditional semantics of a
model component of type agree, in(x)=out(x) also must hold, i.e. in(agr1)=out(agr1) and
in(agr2)=out(agr2). The later restriction is violated, since in(agr2)=dative and out(agr2)=
genitive. So, ¬ (in(x)=out(x)) is true for x=agr2. Applying this (via modus tollens) to the con-

ditional semantics of model components of type agree, we get ignored(x) (additionally,
¬ (¬ (type-agree(x))) holds, thus ignored(x) is true via disjunctive syllogism). ignored(agr2)

represents the fact, the student has ignored the agreement between the noun and the preposi-
tion.

Note that this exposition is nothing but a rough description of the kind of reasoning involved
in anticipation free error diagnosis.

We saw an example of a rule violation. In a similar manner, the error can be traced back to a
(lexical) fact, namely: val(Hauses,case,gen).

Menzel's system, although designed to generate explanations at different levels of generality,
is not meant to participate in an explanatory tutorial dialogue (which is the focus of DiBEx).

3.4 NLP-based Intelligent Tutoring Systems

Work in the area of ITS often does not incorporate any natural language processing (NLP)
facilities at all. Graphical devices and precompiled (canned) text are used instead. This way,
the 'oddities' of dialogue modelling (i.e. parsing, semantic interpretation, response planning
and surface generation) can be circumvented and, consequently, these systems focus on other
essentials of the tutoring problem e.g. domain and learner modelling. These approaches are
mainly concerned with cognitive modelling.

There are a few exceptions, e.g. Aleven et al. (2001). Here, a dialogue based geometrical tutor
is introduced that helps students to explain the reasons behind their problem-solving actions.

Linguistik online 17, 5/03

ISSN 1615-3014

88

In this system, the student is requested to state (in natural language) an explanation of a (pre-
viously learned) geometrical theorem. The task of the tutor is to evaluate and criticize the stu-
dent explanation. For example, the student's statement 'angles are equal' as a trial to explain
the isosceles triangle theorem is criticized with a question: 'are any two angles congruent? '.
The ultimate goal is to help the student to form a complete and correct statement about a geo-
metrical rule. This is not to far from DiBEx' objective: to help the student find out why her
input is incomplete. In both cases, more precise knowledge needs to be activated by the stu-
dent. However, in Aleven's system the parsing results are mapped to a taxonomy of possible
student answers, where canned feedback messages are stored under each answer category.

The system that comes most close to DiBEx is Johanna Moore's PEA (Program Enhanced Ad-
visor) framework (Moore 1995). PEA is a tutor that helps students to improve their program-

ming skills in Lisp (the readability and maintainability of Lisp programmes). For example, the
students input for the task of accessing the first element of a list x might be: (car x) (where car

is the command to access the first element of a list). A correction advise is, for example: (first
x). An expert systems called EES is used to generate a so-called development history that fixes
the reasons for such an advice (a kind of explanation structure). Follow-up why questions use
the development history to provide more precise reasons (explanations) for the advice.

The quality of the generated explanations is debatable, but the discourse planning component
is compelling. PEA uses Rhetorical Structure Theory (RST, see Mann et al. 1992) to integrate
various knowledge resources (domain knowledge, discourse history, a speech act and user
model) into a single model component.

One main difference to DiBEx is that the development history is explicitly tailored to the ex-

planation task. That is, PEA uses a domain theory about how to enhance a program. It is, so to
say, an anticipation based tutor (in contrast to DiBEx). As a consequence, the DiBEx model is
much more concerned with getting concise explanations out of knowledge structures that are
only indirectly related to the explanation task at hand.

EES uses a user model based on the so-called overlay technique, that is, the users' knowledge
and goals are assumed to be a subset of the system's knowledge and goals. EES records four
types of knowledge about the user: the user's goal, her knowledge about methods for achieving
goals and performing acts, the concepts the user is familiar with and the facts the user be-
lieves. Any individual user model is based on a stereotype representing knowledge common to
all users (e.g. (know user (concept program))) and further facts derivable from the user inter-
action with the system (e.g. the lisp functions the user supplies in her program are assumed to

be known to the user). The user model of DiBEx is very similar to that of EES.

Manfred Klenner/Henriëtte Visser: Tutorial Dialogue for Intelligent CALL

ISSN 1615-3014

89

4 The DiBEx System

DiBEx (Klenner/Visser 1999) is a prototype ICALL system that is able to participate in an
explanatory tutorial dialogue. It is implemented in the programming language Prolog and has
been tested on three different kinds of grammatical phenomena (agreement, word order, domi-
nance). The main components of DiBEx are:

• background knowledge about grammar theory

• an error diagnosis component

• a reasoning component that forms an explanation structure from the faulty learner in-
put and the grammatical (sub-) theory under consideration

• tutorial strategies (currently a single one) how to guide the learner to identify his/her
mistake and how to correct it

• a dynamic user model

• a dialogue module including a natural language parser and a natural language generator

Additionally, there is an interface that facilitates the specification of new exercises. In a speci-
fication file, a complete and correct solution of the problem must be provided by the CALL
lecturer. This is a prerequisite for DiBEx' error diagnosis component. The system expands
these specifications to its internal format (see section 4.1). A subsequent user input is com-

pared to that representation as part of the error diagnosis. In this module, also an error expla-
nation tree is built, which is the starting point for the tutorial dialogues.

We describe the representation of grammatical knowledge (section 4.1), and the principles of
error diagnosis (section 4.2) done by DiBEx. We then discuss in detail the tutorial component
(section 4.3) including the dialogue module.

4.1 The Representation of Grammatical Knowledge

4.1.1 Grammatical Facts

We build on the representation format described in Menzel (1992). For example, the repre-
sentation for the subject of 'der Mond ist aufgegangen' is given in Fig. 5.

val(mond,case,nom). val(der,case,nom).
val(mond,number,sg). val(der,number,sg).
val(mond,gender,mas). val(der,gender,mas).

val(np1,isa,noun_group).
val(np1,isa,subject).
val(np1,has_part,mond).
val(np1,has_part,der).
val(np1,noun,mond). % the head of np1 is the noun mond

Figure 5: Representing Knowledge about 'der Mond'

Linguistik online 17, 5/03

ISSN 1615-3014

90

Here, for example, the first fact states that the case of 'Mond' is nominative.3 Additionally,
general grammatical restrictions are represented that way. For example that the noun restricts
the grammatical features case, number and gender:

val(noun, restricts,[case,number,gender]).

val(mond,isa,noun).
val(der,isa,artice).
val(article,isa,word).
val(noun,isa,word).

Let us elaborate on the translation task given above, i.e. 'La lune s'est levée'. We assume as
input the incorrect subject surface form: 'die Mond'. This corresponds to the facts in Fig. 6
(suppressing some possibilities for the ease of exposition):

val(mond,case,nom).
val(mond,number,sg).
val(mond,gender,mas).

val(die,case,nom). % also: accusative, feminine, singular
val(die,number,sg). % also: plural
val(die,gender,fem). % unrestricted, if plural nominative

Figure 6: Representing Knowledge about 'die Mond'

Given the representation in Fig. 5 and 6, we can easily fix the problem, viz. that 'die' is wrong
because the 'gender' of 'die' is 'fem' instead of the required 'mas'. One just has to find the two

most distinct corresponding facts from the correct and the incorrect representations, i.e.,

val(der,gender,mas) and val(die,gender,fem).

Given such an analysis, some error messages (e.g. 'die' is wrong) or correction advice ('replace
'die' by 'der') could already be generated. However, to initiate an elaborated tutorial dialogue,
additional knowledge is necessary. For dialogue steps like 'there is an agreement error' a the-
ory of agreement is needed as well as a reasoning scheme that finds all theory parts that are
explicitly or implicitly (defined below) violated by the user input.

Note that the editing distance of 'die' being nominative, masculine, plural compared to the cor-
rect values (nominative, masculine, singular) is the same as the one given in the example (Fig.
5) ('die' being nominative, feminine, singular). One has to alter one value (plural or feminine).
However, since 'lune' in French is singular, feminine, an error stemming from a 'gender trans-
fer' is more plausible than an error steming from a 'number transfer'. We have just started to
investigate such a model of heuristic 'error selection'.

4.1.2 Grammatical Rules

We represent grammatical rule knowledge as a logical theory in the programming language
Prolog. Such a theory must serve two purposes: under a declarative point of view, it must be a
valid description of the grammatical knowledge about a grammatical subtheory (e.g. agree-

3 np1 represents the internal identifier of the subject noun group.

Manfred Klenner/Henriëtte Visser: Tutorial Dialogue for Intelligent CALL

ISSN 1615-3014

91

ment), procedurally, it must be applicable to the user input in order to qualify the input as cor-
rect ('YES') or incorrect ('NO').

Fig. 7 represents the theory for agreement within noun groups.

1 proper_agreement(Noun_Group) :-
2 val(Noun_Group, isa, noun_group),
3 val(Noun_Group, noun, Noun), % the head
4 val(noun, restricts, Restriction_Set), % case, ..
5 forall(val(Noun_Group, has_part, Word),
6 feature_agreement(Noun, Word, Restriction_Set)).

7 feature_agreement(Word, Modifier, Restriction_Set) :-
8 forall(member(Feature, Restriction_Set),
9 agree(Word, Modifier, Feature)).

10 agree(Head, Modifier, Feature) :-
11 val(Head, Feature, Val),
12 val(Modifier, Feature, Val).

Figure 7: Agreement within Noun Groups

Let us begin with the end, the lines 10 to 12. Here, the agreement of a head (the Prolog vari-
able Head) and a modifier wrt. a grammatical feature is expressed. This rule states that the
head (e.g. 'Mond') and its modifier (e.g. 'die') agree in a feature (e.g. 'case'), if the head has a
value Val for that feature and the modifier has the same value Val for that feature. The gram-
matical fact that all (!) grammatical features of the head and the modifier must agree is defined
in the predicate feature_agreement (lines 7 to 9). Here Restriction_Set is the list

[case,number,gender], the forall predicate forces that each member of that list is bound to the
variable Feature and successively passed to the predicate agree (together with Word and
Modifier). The predicate proper_agreement (lines 1 to 6) is invoked with the name of the noun
group, e.g. np1 in our example. Line 2 checks whether the predicate is applicable at all, i.e.
whether Noun_Group actually is a noun group (there are other predicates for agreement). Line
3 fetches the head of the noun group ('Mond'), line 4 selects the restriction set
([case,number,gender]) and the lines 5 and 6 express that each word must agree with the noun
wrt. to restriction set.4

The background theory in Fig. 7 can be used as the basis for a verbal explanation of the theory
of agreement. The (rough) translation of it given in Fig. 8 might exemplify this.

4 The logicians among the readers might have noticed that something like not(Word=Noun) is missing. This is

omitted here for readability.

Linguistik online 17, 5/03

ISSN 1615-3014

92

Something has a 'proper_agreement'
 IF it is a noun group with noun Noun as (head) noun
 AND all words of the noun group agree with Noun in
 all features from 'Restriction_Set'

Two words agree wrt. to 'Restriction_Set'
 IF they agree for all features from 'Restriction_Set'

Two words agree wrt. to a grammatical feature
 IF they share the same value for that feature

Figure 8: A Rough Translation into Rules

The background theory in Fig. 7 also is operational. So, for example, a Prolog call
'proper_agreement(np1)' terminates with 'NO', since 'np1' ('die Mond') does not agree in gen-
der. On the other hand, a Prolog call 'proper_agreement(np2)', with 'np2' representing the cor-
rect phrase 'der Mond', would terminate with 'YES'.

Agreement, word order, dominance etc. are modelled in such a fashion in Prolog. The input of

the learner must pass all those grammatical subtheories. If the application of one subtheory
fails, a meta interpreter is invoked, which is able to derive an explanation (trace) of the faulty
input.

Because it is possible to directly access Prolog program code within Prolog, it is easy to write
an interpreter for Prolog code in Prolog. Such an interpreter is called a meta-interpreter (cf.
Sterling/Shapiro 1986). Meta-interpreters are usually used to add some additional control
mechanisms to Prolog e.g., altering the built-in proof strategy (e.g. forward instead of back-
ward chaining). They are also used to generate proof trees as part of knowledge-based (expert)
systems or as debugging facilities. Actually, the DiBEx tutor is a kind of debugger that pro-
duces proof trees. It traces the user input and produces an explanation tree that marks violated
parts of the grammatical (sub-)theory under consideration. We will discuss this in more detail

in the next section.

4.2 Error diagnosis

The input of the student is automatically translated into grammatical facts (cf. Fig. 6 for the
representation of 'die Mond'). This is nothing but a lexicon lookup and not a full parse. For
example, 'die' is represented in the lexicon as, among others, an article with feminine gender
(nominative, singular or plural). No attempt is made to recognise that (the incorrect) 'die
Mond' is meant to be the subject noun group of the sentence 'die Mond ist aufgegangen'.
DiBEx has no procedures to parse ill-formed sentences (see the discussion in section 3.2). But
what then makes an analysis of the student input in terms of the grammatical rule knowledge
(e.g. the rules for agreement from Fig. 7) feasible? To prove proper_agreement from Fig. 7

'die Mond' must be classified as a noun phrase, otherwise the predicate (trivially) fails already
at a very early stage of processing. We have defined a mapper that compares (a copy of) the
correct input to the incorrect input. According to its minimal editing distance to the incorrect
input, the copy is adapted: correct facts are replaced by incorrect facts, the rest is left as it was.

Manfred Klenner/Henriëtte Visser: Tutorial Dialogue for Intelligent CALL

ISSN 1615-3014

93

This produces, for example, the representation in Fig. 9.

% from the correct solution
val(np1,isa,noun_group).
val(np1,isa,subject).
val(np1,has_part,mond).
val(np1,noun,mond).

val(np1,has_part,die). % replacement of 'der' by 'die'

% from the faulty user input
val(mond,case,nom). val(die,case,nom).
val(mond,number,sg). val(die,number,sg).
val(mond,gender,mas). val(die,gender,fem).

Figure 9: Guessing the Intended Input Structures

Crucial here is the replacement of 'der' by 'die'. Now, 'die Mond' is accessible with np1 as a
noun group. We believe that this approach is valid for a wide range of faulty input structures
(although very complicated and abstruse errors might lead to a confusing representation). At
this stage, all grammatical subtheories (agreement, word order etc.) can be invoked with these
'intended user input structures'. If one subtheory does fail (a Prolog fail), error diagnosis is
triggered.

The error diagnosis component of DiBEx is realized as a meta interpreter. It receives as input
the subtheory that is violated by the (augmented) user input, and it outputs an explanation of
the error. This explanation is represented by a tree structure of the subtheory, where all vari-
ables are instantiated with the values from the user input and where, beginning from the root
of the tree, a path down to a tree leaf indicates everything that is explicitly (a leaf node) or
implicitly (intermediate nodes) violated by the user input. Let's have a look at the (slightly
simplified) error tree given in Fig. 10.

1 not(proper_agreement(np1))

2 not(forall(val(np1,has_part,X),feature_agreement(mond,X,{case,num,gen})))

3 not(feature_agreement(mond,die,{case,num,gen}))

4 not(forall(member(Y,{case,num,gen}),agree(mond,die,Y)))

5 agree(mond,die,case) agree(mond,die,num) not(agree(mond,die,gen))

6 val(mond,gen,mas) not(val(die,gen,mas))

Figure 10: Explanation (Proof) Tree

Linguistik online 17, 5/03

ISSN 1615-3014

94

This tree structure represents an error proof tree underlying the application of the subtheory
from Fig. 7 to the user input np1 ('Die Mond', cf. Fig. 9) as represented by the call
proper_agreement(np1). The whole tree can be read as an explanation sequence of the (erro-
neous) input:

The noun group ('np1') does not have a proper agreement (top node, depth 1 in Fig. 10), since:
not for all of its words, the features of the word and the features of 'mond' do agree (subordi-
nate of top node, depth 2). Not for all of the words of the noun group, the features of the word
and the features of 'mond' do agree (subordinate of top node), since: it is not true that 'mond'
does agree with 'die' in case, number and gender (next subordinate, depth 3), and so on.

The basic fact that is violated by the user input is given at the bottom of the tree in Fig. 10,
namely 'not(val(die,gen,mas))'. This is derived from the failure to prove line 12 in Fig. 7 (the

variable Modifier holds 'die', Feature holds 'gen' (gender), Val is preoccupied with 'mas').
Starting from that prove failure, the error diagnosis component marks (recursively) all inter-
mediate nodes of the tree that dominate this leaf as violated (the 'not' in front of each node
description). Each intermediate node forms a (more or less abstract) error description for the
user input. 'not(val(die,gen,mas)' could be verbalized as: 'die' is not masculine, or
'not(agree(mond,die,gen)))' as: 'mond' and 'die' do not agree in gender.

It is the task of the tutor to select the right level of abstraction. This includes the choice of an
appropriate tree node to be verbalized with respect to the ongoing dialogue and the user
model, but also the choice of how the arguments of the selected node should be referred to:
'die' could be referred to by 'die' or by 'the article' or even by 'a word' (although this might be
too general in most circumstances). The tutor is introduced in the next section.

4.3 The Tutor

Depending on the dialogue history, the user model and a tutorial strategy, the tutor selects a
node from the error tree that is assumed to be the best response (reaction) to a user question
(or, initially, the faulty user input).

DiBEx currently uses the following tutorial strategy:

1. guide the user to identify the faulty fact in a top down manner, i.e. identify the gram-
matical principle violated by the input

2. provide sparse information, i.e. explain everything on an abstract level if possible (e.g.
refer to a word by its word class).

3. introduce at each explanation step at least one piece of information that is new to the

user
4. avoid becoming too vague (i.e. don't use more than one indefinite description)

Manfred Klenner/Henriëtte Visser: Tutorial Dialogue for Intelligent CALL

ISSN 1615-3014

95

Often such a top down strategy is called a Socratic (tutorial) Strategy, attributing this kind of
dialogue to the Greek philosopher Socrates. The assumption here is that people already know
the correct answer to (philosophical) questions and the task of the philosopher (tutor) is to
elicit that knowledge by posing the right questions.

Let's continue our example. At the beginning of the dialogue, the root node of the error tree
(Fig. 10) is selected, i.e. not(proper_agreement(np1)). According to tutorial principle 2, the
tutor decides to suppress the referent np1, thus, 'There is an agreement error' is generated. The
dialogue history is updated, i.e., it records that proper_agreement is verbalized without refer-
ence to np1. Assume 'where? ' as follow-up question. This would lead to an update of the user
model. If the user does not question a grammatical term, the user is assumed to know the un-
derlying concept. So, for example, know(user,definition(agreement)) is added to the user

model. np1 is the only referent recorded in the dialogue history that can provide localization
information, thus it is selected and: 'at the subject' (np1 is the internal identifier of the subject
noun group) is generated. The dialogue history (referred_to_by(np1,subject)) and the user
model (know(user,is(np1,location_of_error))) are updated.

Let's assume the next user question to be 'why?'.5 A why question6 causes the tutor to search
for a more precise explanation down the error tree. The next node (depth 2, Fig. 10) is a com-
plex formula (not(forall ...)) that includes the quantifier forall. There are several reasons not to
select that node. Since the user is assumed to know the concept 'agreement', she knows that
there must be two words that do not agree in a grammatical category. The only new informa-
tion here could be that one of these words is 'Mond' (but there are only two words). Another
observation leads us to a general rejection of such formulas as an explanation to a why query.

They (procedurally) define the grammatical principle represented by their immediate mother
node. So agreement is defined by: all words of a noun group must agree with the noun in case,
number and gender. Such formulas are thus reserved to questions that ask for the definition of
a grammatical concept. They are appropriate, for example, if DiBEx generates: 'there is an
agreement error' and a user follow-up question is: 'what does that mean?'. Formulas including
forall are thus not accessible to the tutor given a why question. But what about the node at
depth 3 (not(feature_agreement(..)))? The user knows from the previous dialogue steps already
that 'there is an agreement error at the subject' and she knows the definition of agreement. This
implies the knowledge expressed by node at depth 3, viz. 'the article and the noun do not agree
in a grammatical category'.

The node at depth 4 (again) is a formula containing forall. But at depth 5, the tutor succeeds:

not(agree(mond,die,gen)): the information that 'Mond' and 'die' do not agree in gender is new.
According to tutorial principle 2, 'Mond' and 'die' are referred to by their word class.

5 In general, why questions can have several interpretations. Here: 'Why at that place' (and not e.g. at the verb
phrase) and 'why is there agreement error at the subject?'.
6 Other types of user questions are clarification questions (i don't understand), questions for more detailed infor-

mation (where, in what way) and requests for instruction (what am I to do).

Linguistik online 17, 5/03

ISSN 1615-3014

96

There are rules that restrict the kind of reference to predicate arguments:

• given two arguments, they must be referred to at the same level:
*"'die' and the noun do not agree" is odd.

• reference to arguments must not be too general:
*'a function word is wrong' (given e.g. several function words)

• the reference to arguments may switch from abstract (word class) to specific (word-
form), but not the other way round. So a sequence:

system: 'die is wrong'

user: 'why'

system: 'because the article does not agree with the noun'

 is pragmatically ill-formed.

The system verbalises the selected node with: 'The article and the noun do not agree in gen-
der'. A follow-up why question can be answered in various ways. Fetching the next negated
node (not(val(die,gen,mas)) at depth 6) would lead to: 'die is not masculine'. An alternative
response is: 'die' is feminine. This fact is not explicitly represented in the error tree, but can be
derived by domain specific rules like:

if not(val(X,Y,U)) is an explanation to a question of type 'why'
then val(X,Y,V) (part of the background knowledge) also is

Here, the if-part is not(val(die,gen,mas)) and the then-part val(die,gen,fem). This gives: (the
gender of) 'die' is feminine.

Finally, val(mond,gen,mas) ('German Mond is masculine') is also a possible explanation.
Again, a domain specific rule can be formulated:

if
not(val(Word1,Feature,Val)) is an explanation to a why question
then
val(Word2,Feature,Val) (under the same negated node) also is

The instantiations are: Word1/die, Word2/der, Feature/gen, Val/mas.

Two final dialogue steps from Fig. 2 are left to be explained. DiBEx generates 'choose the
corresponding masculine article' as a response to the user question 'what am i supposed to do'.
The following rule captures this:

if not(val(Word,Feature,Val)) is a leaf in the error tree
 and WC is the word class of Word
then inform(system,user,choose(user,WC,attribute(WC,Val)))
 (i.e. 'choose the corresponding Val WC') is an answer
 to a request for instruction

The instantiations are: Word/die, Feature/gen, Val/mas, WC/article. If the user still is not able
to correct its input, but asks: 'what is it', then this question can be answered by looking up the
correct solution in the knowledge base.

Manfred Klenner/Henriëtte Visser: Tutorial Dialogue for Intelligent CALL

ISSN 1615-3014

97

5 Summary and Outlook

We argued in this paper that an explicit representation of grammatical knowledge can be used
for the verification of user input as well as for error diagnosis and error explanation (given a
faulty input). An error tree generated by a meta interpreter serves as the starting point for a
tutorial dialogue that (currently) is based on a single Socratic tutorial strategy: provide sparse
error descriptions, give hints of why something is wrong. Each node in the error tree can be
used as a more or less abstract error explanation. A why question posed by the student in re-
sponse to such an explanation can be resolved by ascending the tree to a subordinated (ne-
gated) node, leading to a more precise error description.

Future work will be concerned with extending and broadening the grammatical subtheories
that can be handled (integrating e.g. subcategorization and selectional restrictions). Also, the

DiBex model needs to be refined in order to be able to recognize and cope with multiple er-
rors. We also plan to port our mainly rule-based dialogue model to a plan-based model in the
style of Moore (1995). Finally, we will integrate at least a second tutorial strategy and a pref-
erence strategy to cope with concurrent explanations given of a single error. The empirical
evaluation of our tutor must await these modifications to the DiBEx model.

We would like to thank the two anonymous reviewers for their suggestions.

References

Aleven, Vincent/Popescu, Octav/Koedinger, Kenneth (2001): "Towards tutorial dialog to sup-
port self-explanation: Adding natural language understanding to a cognitive tutor". In:
Moore, J. D./Redfield, C. L./Johnson W. L. (eds.): Artificial Intelligence in Education: AI-

ED in the Wired and Wireless Future. Proceedings of AI-ED 2001: Amsterdam 246-255.
Conati, Cristina/Larkin, James/VanLehn, Kurt (1997): "A computer framework to support

self-explanation". In: du Bolay, B./Mizoguchi, R. (eds.): Artificial intelligence in educati-

on: knowledge and media in learning systems. Proceedings of AI-ED 97 World Conference.

Amsterdam: 279-286.
Davis, Randall (1984): "Diagnostic reasoning based on structure and behaviour". Artificial

Intelligence, 24 (1-3): 347-410.
De Kleer, Johan/Williams, Brian C. (1987): "Diagnosing multiple faults". Artificial Intelli-

gence, 32 (1): 97-130.
Heift, Trude (2001): "Error-specific and individualised feedback in a Web-based language

tutoring system: Do they read it?". ReCALL 13 (1): 99-109.

Klenner, Manfred/Visser, Henriëtte (1999): "A dialogue-based explanation module for error
correction for intelligent CALL systems". EuroCall'99: 158-160.

McCoy, Kathleen. F./Pennington, Christopher A./Suri, L. Z. (1996): "English error correction:
A syntactic user model based on principled 'mal-rule' scoring". In: (UM-96) Proceedings of

the Fifth International Conference on User Modeling. Proceedings of the conference, 2-5

January 1996, Kailua-Kona, Hawaii. Newton, MA: 59-66.
http://www.cis.udel.edu/~mccoy/publications/1996/McCoPenn96a.ps

Linguistik online 17, 5/03

ISSN 1615-3014

98

Mann, William C./Matthiessen, Christian M./Thompson, Sandra A. (1992): "Rhetorical struc-
ture theory and text analysis". In: Mann, William C./Thompson, Sandra A. (eds.): Diverse

Analyses of a Fund Raising Text. Amsterdam: 39-78.
Menzel, Wolfgang (1988): "Diagnosing grammatical faults - a deep modelled approach". In:

O'Shea, Tim/Sgurev, Vasil (eds.): Artificial Intelligence III - Methodology, Systems, Appli-

cations. Amsterdam: 319-326.
Menzel, Wolfgang (1992): Modellbasierte Fehlerdiagnose in Sprachlehrsystemen. Tübingen.
Moore, Johanna D. (1995): Participating in explanatory dialogues. Cambridge, MA.
Schneider, David A./McCoy, Kathleen F. (1998): "Recognizing syntactic errors in the writing

of second language learners". In: Proceedings of International Conference on Computatio-

nal Linguistics (Coling-ACL 1998): 1198-1204.

http://acl.eldoc.ub.rug.nl/mirror/P/P98/P98-2196.pdf
Sterling, Leon/Shapiro, Ehud (1986): The Art of PROLOG: Advanced Programming

Techniques. Cambridge, MA.
Warschauer, Mark (1996): "Computer-assisted language learning: An introduction". In: Fotos,

Sandra (ed.): Multimedia language teaching. Tokyo: 3-20.
Yazdani, Masoud (1988): "Language tutoring with Prolog". In: Papers of the Int. Workshop

Intelligent Tutoring Systems for Second Language Learning. Trieste: 150-155. Reprinted
in: Cameron, Keith (ed.): Computer assisted language learning. Oxford: 101-111.

