Fluorescent properties of the kindling fluorescent protein (KFP) at acidic pH values
DOI:
https://doi.org/10.12684/alt.1.77Abstract
Kindling fluorescent protein (KFP) is the photoswitchable protein which can be used in high-resolution microscopy and as a quencher in FRET-sensors. Fluorescent properties of KFP depend on pH value. In this paper we investigate the influence of pH on the spectral properties and kindling/quenching ability of KFP in the acidic pH region.
Shift to the acidic region leads to the increase of fluorescence intensity of KFP over time. The excitation spectrum has a new peak near 455nm, giving two peaks - 530 and 590nm – in emission spectrum. We can assume that this maximum corresponds to the appearance of protonated form of the KFP chromophore.
Analysis of fluorescence decay curves of KFP in H2O and D2O showed the presence of the kinetic isotope effect, which can be caused by the proton transfer from solvent molecules to the KFP chromophore, confirming the hypothesis that in the acidic pH region protonated form of KFP chromophore appears.
At acidic pH irradiation of KFP with green light doesn’t lead to fluorescence increase, while blue light doesn’t quench the fluorescence. It means that KFP is also in the bright form, and there is no conformational states of protein which can be quenched by blue light.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under the Creative Commons Attribution License (CC BY 3.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
http://creativecommons.org/licenses/by/3.0/