A simple way to estimate similarity between pairs of eye movement sequences

  • Sebastiaan Mathôt Vrije Universiteit, Amsterdam
  • Filipe Cristino Bangor University
  • Iain D. Gilchrist University of Bristol
  • Jan Theeuwes Vrije Universiteit, Amsterdam
Keywords: eye movements, distance, similarity, scanpaths, methodology


We propose a novel algorithm to estimate the similarity between a pair of eye movement sequences. The proposed algorithm relies on a straight-forward geometric representation of eye movement data. The algorithm is considerably simpler to implement and apply than existing similarity measures, and is particularly suited for exploratory analyses. To validate the algorithm, we conducted a benchmark experiment using realistic artificial eye movement data. Based on similarity ratings obtained from the proposed algorithm, we defined two clusters in an unlabelled set of eye movement sequences. As a measure of the algorithm's sensitivity, we quantified the extent to which these data-driven clusters matched two pre-defined groups (i.e., the 'real' clusters). The same analysis was performed using two other, commonly used similarity measures. The results show that the proposed algorithm is a viable similarity measure.
How to Cite
Mathôt, S., Cristino, F., Gilchrist, I. D., & Theeuwes, J. (2012). A simple way to estimate similarity between pairs of eye movement sequences. Journal of Eye Movement Research, 5(1). https://doi.org/10.16910/jemr.5.1.4

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.